The open and composable observability and data visualization platform. Visualize metrics, logs, and traces from multiple sources like Prometheus, Loki, Elasticsearch, InfluxDB, Postgres and many more.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
grafana/pkg/tsdb/azuremonitor/azuremonitor-datasource_tes...

393 lines
14 KiB

package azuremonitor
import (
"encoding/json"
"fmt"
"io/ioutil"
"net/url"
"path/filepath"
"testing"
"time"
"github.com/grafana/grafana/pkg/components/simplejson"
"github.com/grafana/grafana/pkg/models"
"github.com/grafana/grafana/pkg/tsdb"
. "github.com/smartystreets/goconvey/convey"
)
func TestAzureMonitorDatasource(t *testing.T) {
Convey("AzureMonitorDatasource", t, func() {
datasource := &AzureMonitorDatasource{}
Convey("Parse queries from frontend and build AzureMonitor API queries", func() {
fromStart := time.Date(2018, 3, 15, 13, 0, 0, 0, time.UTC).In(time.Local)
tsdbQuery := &tsdb.TsdbQuery{
TimeRange: &tsdb.TimeRange{
From: fmt.Sprintf("%v", fromStart.Unix()*1000),
To: fmt.Sprintf("%v", fromStart.Add(34*time.Minute).Unix()*1000),
},
Queries: []*tsdb.Query{
{
DataSource: &models.DataSource{
JsonData: simplejson.NewFromAny(map[string]interface{}{
"subscriptionId": "default-subscription",
}),
},
Model: simplejson.NewFromAny(map[string]interface{}{
"subscription": "12345678-aaaa-bbbb-cccc-123456789abc",
"azureMonitor": map[string]interface{}{
"timeGrain": "PT1M",
"aggregation": "Average",
"resourceGroup": "grafanastaging",
"resourceName": "grafana",
"metricDefinition": "Microsoft.Compute/virtualMachines",
"metricNamespace": "Microsoft.Compute-virtualMachines",
"metricName": "Percentage CPU",
"top": "10",
"alias": "testalias",
"queryType": "Azure Monitor",
},
}),
RefId: "A",
},
},
}
Convey("and is a normal query", func() {
queries, err := datasource.buildQueries(tsdbQuery.Queries, tsdbQuery.TimeRange)
So(err, ShouldBeNil)
So(len(queries), ShouldEqual, 1)
So(queries[0].RefID, ShouldEqual, "A")
So(queries[0].URL, ShouldEqual, "12345678-aaaa-bbbb-cccc-123456789abc/resourceGroups/grafanastaging/providers/Microsoft.Compute/virtualMachines/grafana/providers/microsoft.insights/metrics")
So(queries[0].Target, ShouldEqual, "aggregation=Average&api-version=2018-01-01&interval=PT1M&metricnames=Percentage+CPU&metricnamespace=Microsoft.Compute-virtualMachines&timespan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z")
So(len(queries[0].Params), ShouldEqual, 6)
So(queries[0].Params["timespan"][0], ShouldEqual, "2018-03-15T13:00:00Z/2018-03-15T13:34:00Z")
So(queries[0].Params["api-version"][0], ShouldEqual, "2018-01-01")
So(queries[0].Params["aggregation"][0], ShouldEqual, "Average")
So(queries[0].Params["metricnames"][0], ShouldEqual, "Percentage CPU")
So(queries[0].Params["interval"][0], ShouldEqual, "PT1M")
So(queries[0].Alias, ShouldEqual, "testalias")
})
Convey("and has a time grain set to auto", func() {
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"azureMonitor": map[string]interface{}{
"timeGrain": "auto",
"aggregation": "Average",
"resourceGroup": "grafanastaging",
"resourceName": "grafana",
"metricDefinition": "Microsoft.Compute/virtualMachines",
"metricNamespace": "Microsoft.Compute-virtualMachines",
"metricName": "Percentage CPU",
"alias": "testalias",
"queryType": "Azure Monitor",
},
})
tsdbQuery.Queries[0].IntervalMs = 400000
queries, err := datasource.buildQueries(tsdbQuery.Queries, tsdbQuery.TimeRange)
So(err, ShouldBeNil)
So(queries[0].Params["interval"][0], ShouldEqual, "PT15M")
})
Convey("and has a time grain set to auto and the metric has a limited list of allowed time grains", func() {
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"azureMonitor": map[string]interface{}{
"timeGrain": "auto",
"aggregation": "Average",
"resourceGroup": "grafanastaging",
"resourceName": "grafana",
"metricDefinition": "Microsoft.Compute/virtualMachines",
"metricNamespace": "Microsoft.Compute-virtualMachines",
"metricName": "Percentage CPU",
"alias": "testalias",
"queryType": "Azure Monitor",
"allowedTimeGrainsMs": []int64{60000, 300000},
},
})
tsdbQuery.Queries[0].IntervalMs = 400000
queries, err := datasource.buildQueries(tsdbQuery.Queries, tsdbQuery.TimeRange)
So(err, ShouldBeNil)
So(queries[0].Params["interval"][0], ShouldEqual, "PT5M")
})
Convey("and has a dimension filter", func() {
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"azureMonitor": map[string]interface{}{
"timeGrain": "PT1M",
"aggregation": "Average",
"resourceGroup": "grafanastaging",
"resourceName": "grafana",
"metricDefinition": "Microsoft.Compute/virtualMachines",
"metricNamespace": "Microsoft.Compute-virtualMachines",
"metricName": "Percentage CPU",
"alias": "testalias",
"queryType": "Azure Monitor",
"dimension": "blob",
"dimensionFilter": "*",
"top": "30",
},
})
queries, err := datasource.buildQueries(tsdbQuery.Queries, tsdbQuery.TimeRange)
So(err, ShouldBeNil)
So(queries[0].Target, ShouldEqual, "%24filter=blob+eq+%27%2A%27&aggregation=Average&api-version=2018-01-01&interval=PT1M&metricnames=Percentage+CPU&metricnamespace=Microsoft.Compute-virtualMachines&timespan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z&top=30")
})
Convey("and has a dimension filter set to None", func() {
tsdbQuery.Queries[0].Model = simplejson.NewFromAny(map[string]interface{}{
"azureMonitor": map[string]interface{}{
"timeGrain": "PT1M",
"aggregation": "Average",
"resourceGroup": "grafanastaging",
"resourceName": "grafana",
"metricDefinition": "Microsoft.Compute/virtualMachines",
"metricNamespace": "Microsoft.Compute-virtualMachines",
"metricName": "Percentage CPU",
"alias": "testalias",
"queryType": "Azure Monitor",
"dimension": "None",
"dimensionFilter": "*",
"top": "10",
},
})
queries, err := datasource.buildQueries(tsdbQuery.Queries, tsdbQuery.TimeRange)
So(err, ShouldBeNil)
So(queries[0].Target, ShouldEqual, "aggregation=Average&api-version=2018-01-01&interval=PT1M&metricnames=Percentage+CPU&metricnamespace=Microsoft.Compute-virtualMachines&timespan=2018-03-15T13%3A00%3A00Z%2F2018-03-15T13%3A34%3A00Z")
})
})
Convey("Parse AzureMonitor API response in the time series format", func() {
Convey("when data from query aggregated as average to one time series", func() {
data, err := loadTestFile("azuremonitor/1-azure-monitor-response-avg.json")
So(err, ShouldBeNil)
So(data.Interval, ShouldEqual, "PT1M")
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
query := &AzureMonitorQuery{
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Average"},
},
}
err = datasource.parseResponse(res, data, query)
So(err, ShouldBeNil)
So(len(res.Series), ShouldEqual, 1)
So(res.Series[0].Name, ShouldEqual, "grafana.Percentage CPU")
So(len(res.Series[0].Points), ShouldEqual, 5)
So(res.Series[0].Points[0][0].Float64, ShouldEqual, 2.0875)
So(res.Series[0].Points[0][1].Float64, ShouldEqual, int64(1549620780000))
So(res.Series[0].Points[1][0].Float64, ShouldEqual, 2.1525)
So(res.Series[0].Points[1][1].Float64, ShouldEqual, int64(1549620840000))
So(res.Series[0].Points[2][0].Float64, ShouldEqual, 2.155)
So(res.Series[0].Points[2][1].Float64, ShouldEqual, int64(1549620900000))
So(res.Series[0].Points[3][0].Float64, ShouldEqual, 3.6925)
So(res.Series[0].Points[3][1].Float64, ShouldEqual, int64(1549620960000))
So(res.Series[0].Points[4][0].Float64, ShouldEqual, 2.44)
So(res.Series[0].Points[4][1].Float64, ShouldEqual, int64(1549621020000))
})
Convey("when data from query aggregated as total to one time series", func() {
data, err := loadTestFile("azuremonitor/2-azure-monitor-response-total.json")
So(err, ShouldBeNil)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
query := &AzureMonitorQuery{
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Total"},
},
}
err = datasource.parseResponse(res, data, query)
So(err, ShouldBeNil)
So(res.Series[0].Points[0][0].Float64, ShouldEqual, 8.26)
So(res.Series[0].Points[0][1].Float64, ShouldEqual, int64(1549718940000))
})
Convey("when data from query aggregated as maximum to one time series", func() {
data, err := loadTestFile("azuremonitor/3-azure-monitor-response-maximum.json")
So(err, ShouldBeNil)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
query := &AzureMonitorQuery{
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Maximum"},
},
}
err = datasource.parseResponse(res, data, query)
So(err, ShouldBeNil)
So(res.Series[0].Points[0][0].Float64, ShouldEqual, 3.07)
So(res.Series[0].Points[0][1].Float64, ShouldEqual, int64(1549722360000))
})
Convey("when data from query aggregated as minimum to one time series", func() {
data, err := loadTestFile("azuremonitor/4-azure-monitor-response-minimum.json")
So(err, ShouldBeNil)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
query := &AzureMonitorQuery{
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Minimum"},
},
}
err = datasource.parseResponse(res, data, query)
So(err, ShouldBeNil)
So(res.Series[0].Points[0][0].Float64, ShouldEqual, 1.51)
So(res.Series[0].Points[0][1].Float64, ShouldEqual, int64(1549723380000))
})
Convey("when data from query aggregated as Count to one time series", func() {
data, err := loadTestFile("azuremonitor/5-azure-monitor-response-count.json")
So(err, ShouldBeNil)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
query := &AzureMonitorQuery{
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Count"},
},
}
err = datasource.parseResponse(res, data, query)
So(err, ShouldBeNil)
So(res.Series[0].Points[0][0].Float64, ShouldEqual, 4)
So(res.Series[0].Points[0][1].Float64, ShouldEqual, int64(1549723440000))
})
Convey("when data from query aggregated as total and has dimension filter", func() {
data, err := loadTestFile("azuremonitor/6-azure-monitor-response-multi-dimension.json")
So(err, ShouldBeNil)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
query := &AzureMonitorQuery{
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Average"},
},
}
err = datasource.parseResponse(res, data, query)
So(err, ShouldBeNil)
So(len(res.Series), ShouldEqual, 3)
So(res.Series[0].Name, ShouldEqual, "grafana{blobtype=PageBlob}.Blob Count")
So(res.Series[0].Points[0][0].Float64, ShouldEqual, 3)
So(res.Series[1].Name, ShouldEqual, "grafana{blobtype=BlockBlob}.Blob Count")
So(res.Series[1].Points[0][0].Float64, ShouldEqual, 1)
So(res.Series[2].Name, ShouldEqual, "grafana{blobtype=Azure Data Lake Storage}.Blob Count")
So(res.Series[2].Points[0][0].Float64, ShouldEqual, 0)
})
Convey("when data from query has alias patterns", func() {
data, err := loadTestFile("azuremonitor/2-azure-monitor-response-total.json")
So(err, ShouldBeNil)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
query := &AzureMonitorQuery{
Alias: "custom {{resourcegroup}} {{namespace}} {{resourceName}} {{metric}}",
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Total"},
},
}
err = datasource.parseResponse(res, data, query)
So(err, ShouldBeNil)
So(res.Series[0].Name, ShouldEqual, "custom grafanastaging Microsoft.Compute/virtualMachines grafana Percentage CPU")
})
Convey("when data has dimension filters and alias patterns", func() {
data, err := loadTestFile("azuremonitor/6-azure-monitor-response-multi-dimension.json")
So(err, ShouldBeNil)
res := &tsdb.QueryResult{Meta: simplejson.New(), RefId: "A"}
query := &AzureMonitorQuery{
Alias: "{{dimensionname}}={{DimensionValue}}",
UrlComponents: map[string]string{
"resourceName": "grafana",
},
Params: url.Values{
"aggregation": {"Average"},
},
}
err = datasource.parseResponse(res, data, query)
So(err, ShouldBeNil)
So(res.Series[0].Name, ShouldEqual, "blobtype=PageBlob")
So(res.Series[1].Name, ShouldEqual, "blobtype=BlockBlob")
So(res.Series[2].Name, ShouldEqual, "blobtype=Azure Data Lake Storage")
})
})
Convey("Find closest allowed interval for auto time grain", func() {
intervals := map[string]int64{
"3m": 180000,
"5m": 300000,
"10m": 600000,
"15m": 900000,
"1d": 86400000,
"2d": 172800000,
}
closest := findClosestAllowedIntervalMS(intervals["3m"], []int64{})
So(closest, ShouldEqual, intervals["5m"])
closest = findClosestAllowedIntervalMS(intervals["10m"], []int64{})
So(closest, ShouldEqual, intervals["15m"])
closest = findClosestAllowedIntervalMS(intervals["2d"], []int64{})
So(closest, ShouldEqual, intervals["1d"])
closest = findClosestAllowedIntervalMS(intervals["3m"], []int64{intervals["1d"]})
So(closest, ShouldEqual, intervals["1d"])
})
})
}
func loadTestFile(name string) (AzureMonitorResponse, error) {
var data AzureMonitorResponse
path := filepath.Join("testdata", name)
jsonBody, err := ioutil.ReadFile(path)
if err != nil {
return data, err
}
err = json.Unmarshal(jsonBody, &data)
return data, err
}