feat(alerting): add timeserie aggregation functions

pull/5622/head
bergquist 9 years ago
parent 205afd7212
commit abc1ae3956
  1. 39
      pkg/models/timeseries.go
  2. 36
      pkg/models/timeseries_test.go
  3. 21
      pkg/services/alerting/executor.go
  4. 58
      pkg/services/alerting/executor_test.go

@ -1,8 +1,47 @@
package models
import "math"
type TimeSeries struct {
Name string `json:"name"`
Points [][2]float64 `json:"points"`
Avg float64
Sum float64
Min float64
Max float64
Mean float64
}
type TimeSeriesSlice []*TimeSeries
func NewTimeSeries(name string, points [][2]float64) *TimeSeries {
ts := &TimeSeries{
Name: name,
Points: points,
}
ts.Min = points[0][0]
ts.Max = points[0][0]
for _, v := range points {
value := v[0]
if value > ts.Max {
ts.Max = value
}
if value < ts.Min {
ts.Min = value
}
ts.Sum += value
}
ts.Avg = ts.Sum / float64(len(points))
midPosition := int64(math.Floor(float64(len(points)) / float64(2)))
ts.Mean = points[midPosition][0]
return ts
}

@ -0,0 +1,36 @@
package models
import (
. "github.com/smartystreets/goconvey/convey"
"testing"
)
func TestTimeSeries(t *testing.T) {
Convey("timeseries aggregation tests", t, func() {
ts := NewTimeSeries("test", [][2]float64{
{1, 0},
{2, 0},
{3, 0},
})
Convey("sum", func() {
So(ts.Sum, ShouldEqual, 6)
})
Convey("avg", func() {
So(ts.Avg, ShouldEqual, 2)
})
Convey("min", func() {
So(ts.Min, ShouldEqual, 1)
})
Convey("max", func() {
So(ts.Max, ShouldEqual, 3)
})
Convey("mean", func() {
So(ts.Mean, ShouldEqual, 2)
})
})
}

@ -11,6 +11,15 @@ type Executor interface {
type ExecutorImpl struct{}
type fn func(float64, float64) bool
var operators map[string]fn = map[string]fn{
">": func(num1, num2 float64) bool { return num1 > num2 },
">=": func(num1, num2 float64) bool { return num1 >= num2 },
"<": func(num1, num2 float64) bool { return num1 < num2 },
"<=": func(num1, num2 float64) bool { return num1 <= num2 },
}
func (this *ExecutorImpl) Execute(rule m.AlertRule, responseQueue chan *AlertResult) {
response, err := graphite.GraphiteClient{}.GetSeries(rule)
@ -18,10 +27,10 @@ func (this *ExecutorImpl) Execute(rule m.AlertRule, responseQueue chan *AlertRes
responseQueue <- &AlertResult{State: "CRITICAL", Id: rule.Id}
}
responseQueue <- this.executeRules(response, rule)
responseQueue <- this.ValidateRule(rule, response)
}
func (this *ExecutorImpl) executeRules(series m.TimeSeriesSlice, rule m.AlertRule) *AlertResult {
func (this *ExecutorImpl) ValidateRule(rule m.AlertRule, series m.TimeSeriesSlice) *AlertResult {
for _, v := range series {
var avg float64
var sum float64
@ -31,19 +40,19 @@ func (this *ExecutorImpl) executeRules(series m.TimeSeriesSlice, rule m.AlertRul
avg = sum / float64(len(v.Points))
if float64(rule.CritLevel) < avg {
if rule.CritOperator != "" && operators[rule.CritOperator](float64(rule.CritLevel), avg) {
return &AlertResult{State: m.AlertStateCritical, Id: rule.Id, ActualValue: avg}
}
if float64(rule.WarnLevel) < avg {
if rule.WarnOperator != "" && operators[rule.WarnOperator](float64(rule.WarnLevel), avg) {
return &AlertResult{State: m.AlertStateWarn, Id: rule.Id, ActualValue: avg}
}
if float64(rule.CritLevel) < sum {
if rule.CritOperator != "" && operators[rule.CritOperator](float64(rule.CritLevel), sum) {
return &AlertResult{State: m.AlertStateCritical, Id: rule.Id, ActualValue: sum}
}
if float64(rule.WarnLevel) < sum {
if rule.WarnOperator != "" && operators[rule.WarnOperator](float64(rule.WarnLevel), sum) {
return &AlertResult{State: m.AlertStateWarn, Id: rule.Id, ActualValue: sum}
}
}

@ -0,0 +1,58 @@
package alerting
import (
m "github.com/grafana/grafana/pkg/models"
. "github.com/smartystreets/goconvey/convey"
"testing"
)
func TestAlertingExecutor(t *testing.T) {
Convey("Test alert execution", t, func() {
executor := &ExecutorImpl{}
Convey("Show return ok since avg is above 2", func() {
rule := m.AlertRule{CritLevel: 10, CritOperator: "<", Aggregator: "sum"}
timeseries := []*m.TimeSeries{
m.NewTimeSeries("test1", [][2]float64{{2, 0}}),
}
result := executor.ValidateRule(rule, timeseries)
So(result.State, ShouldEqual, m.AlertStateOk)
})
Convey("Show return critical since below 2", func() {
rule := m.AlertRule{CritLevel: 10, CritOperator: ">", Aggregator: "sum"}
timeseries := []*m.TimeSeries{
m.NewTimeSeries("test1", [][2]float64{{2, 0}}),
}
result := executor.ValidateRule(rule, timeseries)
So(result.State, ShouldEqual, m.AlertStateCritical)
})
Convey("Show return critical since sum is above 10", func() {
rule := m.AlertRule{CritLevel: 10, CritOperator: "<", Aggregator: "sum"}
timeseries := []*m.TimeSeries{
m.NewTimeSeries("test1", [][2]float64{{9, 0}, {9, 0}}),
}
result := executor.ValidateRule(rule, timeseries)
So(result.State, ShouldEqual, m.AlertStateCritical)
})
/*
Convey("Show return ok since avg is below 10", func() {
rule := m.AlertRule{CritLevel: 10, CritOperator: "<", Aggregator: "avg"}
timeseries := []*m.TimeSeries{
m.NewTimeSeries("test1", [][2]float64{{9, 0}, {9, 0}}),
}
result := executor.ValidateRule(rule, timeseries)
So(result.State, ShouldEqual, m.AlertStateOk)
})
*/
})
}
Loading…
Cancel
Save