The open and composable observability and data visualization platform. Visualize metrics, logs, and traces from multiple sources like Prometheus, Loki, Elasticsearch, InfluxDB, Postgres and many more.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
grafana/pkg/tsdb/prometheus/time_series_query.go

550 lines
18 KiB

package prometheus
import (
"context"
"encoding/json"
"fmt"
"math"
"sort"
"strconv"
"strings"
"time"
"github.com/grafana/grafana-plugin-sdk-go/backend"
"github.com/grafana/grafana-plugin-sdk-go/data"
"github.com/grafana/grafana/pkg/tsdb/intervalv2"
apiv1 "github.com/prometheus/client_golang/api/prometheus/v1"
"github.com/prometheus/common/model"
"go.opentelemetry.io/otel/attribute"
)
//Internal interval and range variables
const (
varInterval = "$__interval"
varIntervalMs = "$__interval_ms"
varRange = "$__range"
varRangeS = "$__range_s"
varRangeMs = "$__range_ms"
varRateInterval = "$__rate_interval"
)
//Internal interval and range variables with {} syntax
//Repetitive code, we should have functionality to unify these
const (
varIntervalAlt = "${__interval}"
varIntervalMsAlt = "${__interval_ms}"
varRangeAlt = "${__range}"
varRangeSAlt = "${__range_s}"
varRangeMsAlt = "${__range_ms}"
varRateIntervalAlt = "${__rate_interval}"
)
const legendFormatAuto = "__auto"
type TimeSeriesQueryType string
const (
RangeQueryType TimeSeriesQueryType = "range"
InstantQueryType TimeSeriesQueryType = "instant"
ExemplarQueryType TimeSeriesQueryType = "exemplar"
)
func (s *Service) runQueries(ctx context.Context, client apiv1.API, queries []*PrometheusQuery) (*backend.QueryDataResponse, error) {
result := backend.QueryDataResponse{
Responses: backend.Responses{},
}
for _, query := range queries {
plog.Debug("Sending query", "start", query.Start, "end", query.End, "step", query.Step, "query", query.Expr)
ctx, span := s.tracer.Start(ctx, "datasource.prometheus")
span.SetAttributes("expr", query.Expr, attribute.Key("expr").String(query.Expr))
span.SetAttributes("start_unixnano", query.Start, attribute.Key("start_unixnano").Int64(query.Start.UnixNano()))
span.SetAttributes("stop_unixnano", query.End, attribute.Key("stop_unixnano").Int64(query.End.UnixNano()))
defer span.End()
response := make(map[TimeSeriesQueryType]interface{})
timeRange := apiv1.Range{
Step: query.Step,
// Align query range to step. It rounds start and end down to a multiple of step.
Start: alignTimeRange(query.Start, query.Step, query.UtcOffsetSec),
End: alignTimeRange(query.End, query.Step, query.UtcOffsetSec),
}
if query.RangeQuery {
rangeResponse, _, err := client.QueryRange(ctx, query.Expr, timeRange)
if err != nil {
plog.Error("Range query failed", "query", query.Expr, "err", err)
result.Responses[query.RefId] = backend.DataResponse{Error: err}
continue
}
response[RangeQueryType] = rangeResponse
}
if query.InstantQuery {
instantResponse, _, err := client.Query(ctx, query.Expr, query.End)
if err != nil {
plog.Error("Instant query failed", "query", query.Expr, "err", err)
result.Responses[query.RefId] = backend.DataResponse{Error: err}
continue
}
response[InstantQueryType] = instantResponse
}
// This is a special case
// If exemplar query returns error, we want to only log it and continue with other results processing
if query.ExemplarQuery {
exemplarResponse, err := client.QueryExemplars(ctx, query.Expr, timeRange.Start, timeRange.End)
if err != nil {
plog.Error("Exemplar query failed", "query", query.Expr, "err", err)
} else {
response[ExemplarQueryType] = exemplarResponse
}
}
frames, err := parseTimeSeriesResponse(response, query)
if err != nil {
return &result, err
}
// The ExecutedQueryString can be viewed in QueryInspector in UI
for _, frame := range frames {
frame.Meta.ExecutedQueryString = "Expr: " + query.Expr + "\n" + "Step: " + query.Step.String()
}
result.Responses[query.RefId] = backend.DataResponse{
Frames: frames,
}
}
return &result, nil
}
func (s *Service) executeTimeSeriesQuery(ctx context.Context, req *backend.QueryDataRequest, dsInfo *DatasourceInfo) (*backend.QueryDataResponse, error) {
client, err := dsInfo.getClient(req.Headers)
if err != nil {
return nil, err
}
queries, err := s.parseTimeSeriesQuery(req, dsInfo)
if err != nil {
result := backend.QueryDataResponse{
Responses: backend.Responses{},
}
return &result, err
}
return s.runQueries(ctx, client, queries)
}
func formatLegend(metric model.Metric, query *PrometheusQuery) string {
var legend = metric.String()
if query.LegendFormat == legendFormatAuto {
// If we have labels set legend to empty string to utilize the auto naming system
if len(metric) > 0 {
legend = ""
}
} else if query.LegendFormat != "" {
result := legendFormat.ReplaceAllFunc([]byte(query.LegendFormat), func(in []byte) []byte {
labelName := strings.Replace(string(in), "{{", "", 1)
labelName = strings.Replace(labelName, "}}", "", 1)
labelName = strings.TrimSpace(labelName)
if val, exists := metric[model.LabelName(labelName)]; exists {
return []byte(val)
}
return []byte{}
})
legend = string(result)
}
// If legend is empty brackets, use query expression
if legend == "{}" {
legend = query.Expr
}
return legend
}
func (s *Service) parseTimeSeriesQuery(queryContext *backend.QueryDataRequest, dsInfo *DatasourceInfo) ([]*PrometheusQuery, error) {
qs := []*PrometheusQuery{}
for _, query := range queryContext.Queries {
model := &QueryModel{}
err := json.Unmarshal(query.JSON, model)
if err != nil {
return nil, err
}
//Final interval value
interval, err := calculatePrometheusInterval(model, dsInfo, query, s.intervalCalculator)
if err != nil {
return nil, err
}
// Interpolate variables in expr
timeRange := query.TimeRange.To.Sub(query.TimeRange.From)
expr := interpolateVariables(model, interval, timeRange, s.intervalCalculator, dsInfo.TimeInterval)
rangeQuery := model.RangeQuery
if !model.InstantQuery && !model.RangeQuery {
// In older dashboards, we were not setting range query param and !range && !instant was run as range query
rangeQuery = true
}
// We never want to run exemplar query for alerting
exemplarQuery := model.ExemplarQuery
if queryContext.Headers["FromAlert"] == "true" {
exemplarQuery = false
}
qs = append(qs, &PrometheusQuery{
Expr: expr,
Step: interval,
LegendFormat: model.LegendFormat,
Start: query.TimeRange.From,
End: query.TimeRange.To,
RefId: query.RefID,
InstantQuery: model.InstantQuery,
RangeQuery: rangeQuery,
ExemplarQuery: exemplarQuery,
UtcOffsetSec: model.UtcOffsetSec,
})
}
return qs, nil
}
func parseTimeSeriesResponse(value map[TimeSeriesQueryType]interface{}, query *PrometheusQuery) (data.Frames, error) {
var (
frames = data.Frames{}
nextFrames = data.Frames{}
)
for _, value := range value {
// Zero out the slice to prevent data corruption.
nextFrames = nextFrames[:0]
switch v := value.(type) {
case model.Matrix:
nextFrames = matrixToDataFrames(v, query, nextFrames)
case model.Vector:
nextFrames = vectorToDataFrames(v, query, nextFrames)
case *model.Scalar:
nextFrames = scalarToDataFrames(v, query, nextFrames)
case []apiv1.ExemplarQueryResult:
nextFrames = exemplarToDataFrames(v, query, nextFrames)
default:
plog.Error("Query returned unexpected result type", "type", v, "query", query.Expr)
continue
}
frames = append(frames, nextFrames...)
}
return frames, nil
}
func calculatePrometheusInterval(model *QueryModel, dsInfo *DatasourceInfo, query backend.DataQuery, intervalCalculator intervalv2.Calculator) (time.Duration, error) {
queryInterval := model.Interval
//If we are using variable for interval/step, we will replace it with calculated interval
if isVariableInterval(queryInterval) {
queryInterval = ""
}
minInterval, err := intervalv2.GetIntervalFrom(dsInfo.TimeInterval, queryInterval, model.IntervalMS, 15*time.Second)
if err != nil {
return time.Duration(0), err
}
calculatedInterval := intervalCalculator.Calculate(query.TimeRange, minInterval, query.MaxDataPoints)
safeInterval := intervalCalculator.CalculateSafeInterval(query.TimeRange, int64(safeRes))
adjustedInterval := safeInterval.Value
if calculatedInterval.Value > safeInterval.Value {
adjustedInterval = calculatedInterval.Value
}
if model.Interval == varRateInterval || model.Interval == varRateIntervalAlt {
// Rate interval is final and is not affected by resolution
return calculateRateInterval(adjustedInterval, dsInfo.TimeInterval, intervalCalculator), nil
} else {
intervalFactor := model.IntervalFactor
if intervalFactor == 0 {
intervalFactor = 1
}
return time.Duration(int64(adjustedInterval) * intervalFactor), nil
}
}
func calculateRateInterval(interval time.Duration, scrapeInterval string, intervalCalculator intervalv2.Calculator) time.Duration {
scrape := scrapeInterval
if scrape == "" {
scrape = "15s"
}
scrapeIntervalDuration, err := intervalv2.ParseIntervalStringToTimeDuration(scrape)
if err != nil {
return time.Duration(0)
}
rateInterval := time.Duration(int(math.Max(float64(interval+scrapeIntervalDuration), float64(4)*float64(scrapeIntervalDuration))))
return rateInterval
}
func interpolateVariables(model *QueryModel, interval time.Duration, timeRange time.Duration, intervalCalculator intervalv2.Calculator, timeInterval string) string {
expr := model.Expr
rangeMs := timeRange.Milliseconds()
rangeSRounded := int64(math.Round(float64(rangeMs) / 1000.0))
var rateInterval time.Duration
if model.Interval == varRateInterval || model.Interval == varRateIntervalAlt {
rateInterval = interval
} else {
rateInterval = calculateRateInterval(interval, timeInterval, intervalCalculator)
}
expr = strings.ReplaceAll(expr, varIntervalMs, strconv.FormatInt(int64(interval/time.Millisecond), 10))
expr = strings.ReplaceAll(expr, varInterval, intervalv2.FormatDuration(interval))
expr = strings.ReplaceAll(expr, varRangeMs, strconv.FormatInt(rangeMs, 10))
expr = strings.ReplaceAll(expr, varRangeS, strconv.FormatInt(rangeSRounded, 10))
expr = strings.ReplaceAll(expr, varRange, strconv.FormatInt(rangeSRounded, 10)+"s")
expr = strings.ReplaceAll(expr, varRateInterval, rateInterval.String())
// Repetitive code, we should have functionality to unify these
expr = strings.ReplaceAll(expr, varIntervalMsAlt, strconv.FormatInt(int64(interval/time.Millisecond), 10))
expr = strings.ReplaceAll(expr, varIntervalAlt, intervalv2.FormatDuration(interval))
expr = strings.ReplaceAll(expr, varRangeMsAlt, strconv.FormatInt(rangeMs, 10))
expr = strings.ReplaceAll(expr, varRangeSAlt, strconv.FormatInt(rangeSRounded, 10))
expr = strings.ReplaceAll(expr, varRangeAlt, strconv.FormatInt(rangeSRounded, 10)+"s")
expr = strings.ReplaceAll(expr, varRateIntervalAlt, rateInterval.String())
return expr
}
func matrixToDataFrames(matrix model.Matrix, query *PrometheusQuery, frames data.Frames) data.Frames {
for _, v := range matrix {
tags := make(map[string]string, len(v.Metric))
for k, v := range v.Metric {
tags[string(k)] = string(v)
}
timeField := data.NewFieldFromFieldType(data.FieldTypeTime, len(v.Values))
valueField := data.NewFieldFromFieldType(data.FieldTypeNullableFloat64, len(v.Values))
for i, k := range v.Values {
timeField.Set(i, k.Timestamp.Time().UTC())
value := float64(k.Value)
if !math.IsNaN(value) {
valueField.Set(i, &value)
}
}
name := formatLegend(v.Metric, query)
timeField.Name = data.TimeSeriesTimeFieldName
timeField.Config = &data.FieldConfig{Interval: float64(query.Step.Milliseconds())}
valueField.Name = data.TimeSeriesValueFieldName
valueField.Labels = tags
if name != "" {
valueField.Config = &data.FieldConfig{DisplayNameFromDS: name}
}
frames = append(frames, newDataFrame(name, "matrix", timeField, valueField))
}
return frames
}
func scalarToDataFrames(scalar *model.Scalar, query *PrometheusQuery, frames data.Frames) data.Frames {
timeVector := []time.Time{scalar.Timestamp.Time().UTC()}
values := []float64{float64(scalar.Value)}
name := fmt.Sprintf("%g", values[0])
return append(
frames,
newDataFrame(
name,
"scalar",
data.NewField("Time", nil, timeVector),
data.NewField("Value", nil, values).SetConfig(&data.FieldConfig{DisplayNameFromDS: name}),
),
)
}
func vectorToDataFrames(vector model.Vector, query *PrometheusQuery, frames data.Frames) data.Frames {
for _, v := range vector {
name := formatLegend(v.Metric, query)
tags := make(map[string]string, len(v.Metric))
timeVector := []time.Time{v.Timestamp.Time().UTC()}
values := []float64{float64(v.Value)}
for k, v := range v.Metric {
tags[string(k)] = string(v)
}
frames = append(
frames,
newDataFrame(
name,
"vector",
data.NewField("Time", nil, timeVector),
data.NewField("Value", tags, values).SetConfig(&data.FieldConfig{DisplayNameFromDS: name}),
),
)
}
return frames
}
func exemplarToDataFrames(response []apiv1.ExemplarQueryResult, query *PrometheusQuery, frames data.Frames) data.Frames {
// TODO: this preallocation is very naive.
// We should figure out a better approximation here.
events := make([]ExemplarEvent, 0, len(response)*2)
for _, exemplarData := range response {
for _, exemplar := range exemplarData.Exemplars {
event := ExemplarEvent{}
exemplarTime := exemplar.Timestamp.Time().UTC()
event.Time = exemplarTime
event.Value = float64(exemplar.Value)
event.Labels = make(map[string]string)
for label, value := range exemplar.Labels {
event.Labels[string(label)] = string(value)
}
for seriesLabel, seriesValue := range exemplarData.SeriesLabels {
event.Labels[string(seriesLabel)] = string(seriesValue)
}
events = append(events, event)
}
}
// Sampling of exemplars
bucketedExemplars := make(map[string][]ExemplarEvent)
values := make([]float64, 0, len(events))
// Create bucketed exemplars based on aligned timestamp
for _, event := range events {
alignedTs := fmt.Sprintf("%.0f", math.Floor(float64(event.Time.Unix())/query.Step.Seconds())*query.Step.Seconds())
_, ok := bucketedExemplars[alignedTs]
if !ok {
bucketedExemplars[alignedTs] = make([]ExemplarEvent, 0)
}
bucketedExemplars[alignedTs] = append(bucketedExemplars[alignedTs], event)
values = append(values, event.Value)
}
// Calculate standard deviation
standardDeviation := deviation(values)
// Create slice with all of the bucketed exemplars
sampledBuckets := make([]string, len(bucketedExemplars))
for bucketTimes := range bucketedExemplars {
sampledBuckets = append(sampledBuckets, bucketTimes)
}
sort.Strings(sampledBuckets)
// Sample exemplars based ona value, so we are not showing too many of them
sampleExemplars := make([]ExemplarEvent, 0, len(sampledBuckets))
for _, bucket := range sampledBuckets {
exemplarsInBucket := bucketedExemplars[bucket]
if len(exemplarsInBucket) == 1 {
sampleExemplars = append(sampleExemplars, exemplarsInBucket[0])
} else {
bucketValues := make([]float64, len(exemplarsInBucket))
for _, exemplar := range exemplarsInBucket {
bucketValues = append(bucketValues, exemplar.Value)
}
sort.Slice(bucketValues, func(i, j int) bool {
return bucketValues[i] > bucketValues[j]
})
sampledBucketValues := make([]float64, 0)
for _, value := range bucketValues {
if len(sampledBucketValues) == 0 {
sampledBucketValues = append(sampledBucketValues, value)
} else {
// Then take values only when at least 2 standard deviation distance to previously taken value
prev := sampledBucketValues[len(sampledBucketValues)-1]
if standardDeviation != 0 && prev-value >= float64(2)*standardDeviation {
sampledBucketValues = append(sampledBucketValues, value)
}
}
}
for _, valueBucket := range sampledBucketValues {
for _, exemplar := range exemplarsInBucket {
if exemplar.Value == valueBucket {
sampleExemplars = append(sampleExemplars, exemplar)
}
}
}
}
}
// Create DF from sampled exemplars
timeField := data.NewFieldFromFieldType(data.FieldTypeTime, len(sampleExemplars))
timeField.Name = "Time"
valueField := data.NewFieldFromFieldType(data.FieldTypeFloat64, len(sampleExemplars))
valueField.Name = "Value"
labelsVector := make(map[string][]string, len(sampleExemplars))
for i, exemplar := range sampleExemplars {
timeField.Set(i, exemplar.Time)
valueField.Set(i, exemplar.Value)
for label, value := range exemplar.Labels {
if labelsVector[label] == nil {
labelsVector[label] = make([]string, 0)
}
labelsVector[label] = append(labelsVector[label], value)
}
}
dataFields := make([]*data.Field, 0, len(labelsVector)+2)
dataFields = append(dataFields, timeField, valueField)
for label, vector := range labelsVector {
dataFields = append(dataFields, data.NewField(label, nil, vector))
}
return append(frames, newDataFrame("exemplar", "exemplar", dataFields...))
}
func deviation(values []float64) float64 {
var sum, mean, sd float64
valuesLen := float64(len(values))
for _, value := range values {
sum += value
}
mean = sum / valuesLen
for j := 0; j < len(values); j++ {
sd += math.Pow(values[j]-mean, 2)
}
return math.Sqrt(sd / (valuesLen - 1))
}
func newDataFrame(name string, typ string, fields ...*data.Field) *data.Frame {
frame := data.NewFrame(name, fields...)
frame.Meta = &data.FrameMeta{
Custom: map[string]string{
"resultType": typ,
},
}
return frame
}
func alignTimeRange(t time.Time, step time.Duration, offset int64) time.Time {
return time.Unix(int64(math.Floor((float64(t.Unix()+offset)/step.Seconds()))*step.Seconds()-float64(offset)), 0)
}
func isVariableInterval(interval string) bool {
if interval == varInterval || interval == varIntervalMs || interval == varRateInterval {
return true
}
//Repetitive code, we should have functionality to unify these
if interval == varIntervalAlt || interval == varIntervalMsAlt || interval == varRateIntervalAlt {
return true
}
return false
}