The open and composable observability and data visualization platform. Visualize metrics, logs, and traces from multiple sources like Prometheus, Loki, Elasticsearch, InfluxDB, Postgres and many more.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
grafana/public/app/plugins/datasource/prometheus/specs/result_transformer.test.ts

259 lines
7.7 KiB

import { ResultTransformer } from '../result_transformer';
describe('Prometheus Result Transformer', () => {
const ctx: any = {};
beforeEach(() => {
ctx.templateSrv = {
replace: str => str,
};
ctx.resultTransformer = new ResultTransformer(ctx.templateSrv);
});
describe('When nothing is returned', () => {
test('should return empty series', () => {
const response = {
status: 'success',
data: {
resultType: '',
result: null,
},
};
const series = ctx.resultTransformer.transform({ data: response }, {});
expect(series).toEqual([]);
});
test('should return empty table', () => {
const response = {
status: 'success',
data: {
resultType: '',
result: null,
},
};
const table = ctx.resultTransformer.transform({ data: response }, { format: 'table' });
expect(table).toMatchObject([{ type: 'table', rows: [] }]);
});
});
describe('When resultFormat is table', () => {
const response = {
status: 'success',
data: {
resultType: 'matrix',
result: [
{
metric: { __name__: 'test', job: 'testjob' },
values: [[1443454528, '3846']],
},
{
metric: {
__name__: 'test',
instance: 'localhost:8080',
job: 'otherjob',
},
values: [[1443454529, '3847']],
},
],
},
};
it('should return table model', () => {
const table = ctx.resultTransformer.transformMetricDataToTable(response.data.result);
expect(table.type).toBe('table');
expect(table.rows).toEqual([
[1443454528000, 'test', '', 'testjob', 3846],
[1443454529000, 'test', 'localhost:8080', 'otherjob', 3847],
]);
expect(table.columns).toMatchObject([
{ text: 'Time', type: 'time' },
{ text: '__name__' },
{ text: 'instance' },
{ text: 'job' },
{ text: 'Value' },
]);
});
it('should column title include refId if response count is more than 2', () => {
const table = ctx.resultTransformer.transformMetricDataToTable(response.data.result, 2, 'B');
expect(table.type).toBe('table');
expect(table.columns).toMatchObject([
{ text: 'Time', type: 'time' },
{ text: '__name__' },
{ text: 'instance' },
{ text: 'job' },
{ text: 'Value #B' },
]);
});
});
describe('When resultFormat is table and instant = true', () => {
const response = {
status: 'success',
data: {
resultType: 'vector',
result: [
{
metric: { __name__: 'test', job: 'testjob' },
value: [1443454528, '3846'],
},
],
},
};
it('should return table model', () => {
const table = ctx.resultTransformer.transformMetricDataToTable(response.data.result);
expect(table.type).toBe('table');
expect(table.rows).toEqual([[1443454528000, 'test', 'testjob', 3846]]);
expect(table.columns).toMatchObject([
{ text: 'Time', type: 'time' },
{ text: '__name__' },
{ text: 'job' },
{ text: 'Value' },
]);
});
});
describe('When resultFormat is heatmap', () => {
const response = {
status: 'success',
data: {
resultType: 'matrix',
result: [
{
metric: { __name__: 'test', job: 'testjob', le: '1' },
values: [[1445000010, '10'], [1445000020, '10'], [1445000030, '0']],
},
{
metric: { __name__: 'test', job: 'testjob', le: '2' },
values: [[1445000010, '20'], [1445000020, '10'], [1445000030, '30']],
},
{
metric: { __name__: 'test', job: 'testjob', le: '3' },
values: [[1445000010, '30'], [1445000020, '10'], [1445000030, '40']],
},
],
},
};
it('should convert cumulative histogram to regular', () => {
const options = {
format: 'heatmap',
start: 1445000010,
end: 1445000030,
legendFormat: '{{le}}',
};
const result = ctx.resultTransformer.transform({ data: response }, options);
expect(result).toEqual([
{ target: '1', datapoints: [[10, 1445000010000], [10, 1445000020000], [0, 1445000030000]] },
{ target: '2', datapoints: [[10, 1445000010000], [0, 1445000020000], [30, 1445000030000]] },
{ target: '3', datapoints: [[10, 1445000010000], [0, 1445000020000], [10, 1445000030000]] },
]);
});
it('should handle missing datapoints', () => {
const seriesList = [
{ datapoints: [[1, 1000], [2, 2000]] },
{ datapoints: [[2, 1000], [5, 2000], [1, 3000]] },
{ datapoints: [[3, 1000], [7, 2000]] },
];
const expected = [
{ datapoints: [[1, 1000], [2, 2000]] },
{ datapoints: [[1, 1000], [3, 2000], [1, 3000]] },
{ datapoints: [[1, 1000], [2, 2000]] },
];
const result = ctx.resultTransformer.transformToHistogramOverTime(seriesList);
expect(result).toEqual(expected);
});
it('should throw error when data in wrong format', () => {
const seriesList = [{ rows: [] }, { datapoints: [] }];
expect(() => {
ctx.resultTransformer.transformToHistogramOverTime(seriesList);
}).toThrow();
});
it('should throw error when prometheus returned non-timeseries', () => {
// should be { metric: {}, values: [] } for timeseries
const metricData = { metric: {}, value: [] };
expect(() => {
ctx.resultTransformer.transformMetricData(metricData, { step: 1 }, 1000, 2000);
}).toThrow();
});
});
describe('When resultFormat is time series', () => {
it('should transform matrix into timeseries', () => {
const response = {
status: 'success',
data: {
resultType: 'matrix',
result: [
{
metric: { __name__: 'test', job: 'testjob' },
values: [[0, '10'], [1, '10'], [2, '0']],
},
],
},
};
const options = {
format: 'timeseries',
start: 0,
end: 2,
};
const result = ctx.resultTransformer.transform({ data: response }, options);
expect(result).toEqual([{ target: 'test{job="testjob"}', datapoints: [[10, 0], [10, 1000], [0, 2000]] }]);
});
it('should fill timeseries with null values', () => {
const response = {
status: 'success',
data: {
resultType: 'matrix',
result: [
{
metric: { __name__: 'test', job: 'testjob' },
values: [[1, '10'], [2, '0']],
},
],
},
};
const options = {
format: 'timeseries',
step: 1,
start: 0,
end: 2,
};
const result = ctx.resultTransformer.transform({ data: response }, options);
expect(result).toEqual([{ target: 'test{job="testjob"}', datapoints: [[null, 0], [10, 1000], [0, 2000]] }]);
});
it('should align null values with step', () => {
const response = {
status: 'success',
data: {
resultType: 'matrix',
result: [
{
metric: { __name__: 'test', job: 'testjob' },
values: [[4, '10'], [8, '10']],
},
],
},
};
const options = {
format: 'timeseries',
step: 2,
start: 0,
end: 8,
};
const result = ctx.resultTransformer.transform({ data: response }, options);
expect(result).toEqual([
{ target: 'test{job="testjob"}', datapoints: [[null, 0], [null, 2000], [10, 4000], [null, 6000], [10, 8000]] },
]);
});
});
});