The open and composable observability and data visualization platform. Visualize metrics, logs, and traces from multiple sources like Prometheus, Loki, Elasticsearch, InfluxDB, Postgres and many more.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
grafana/pkg/expr/converter.go

361 lines
11 KiB

package expr
import (
"context"
"fmt"
"github.com/grafana/grafana-plugin-sdk-go/backend"
"github.com/grafana/grafana-plugin-sdk-go/data"
"github.com/grafana/grafana/pkg/expr/mathexp"
"github.com/grafana/grafana/pkg/infra/tracing"
"github.com/grafana/grafana/pkg/services/datasources"
"github.com/grafana/grafana/pkg/services/featuremgmt"
)
type ResultConverter struct {
Features featuremgmt.FeatureToggles
Tracer tracing.Tracer
}
func (c *ResultConverter) Convert(ctx context.Context,
datasourceType string,
frames data.Frames,
allowLongFrames bool,
) (string, mathexp.Results, error) {
if len(frames) == 0 {
return "no-data", mathexp.Results{Values: mathexp.Values{mathexp.NewNoData()}}, nil
}
var dt data.FrameType
dt, useDataplane, _ := shouldUseDataplane(frames, logger, c.Features.IsEnabled(ctx, featuremgmt.FlagDisableSSEDataplane))
if useDataplane {
logger.Debug("Handling SSE data source query through dataplane", "datatype", dt)
result, err := handleDataplaneFrames(ctx, c.Tracer, c.Features, dt, frames)
return fmt.Sprintf("dataplane-%s", dt), result, err
}
if isAllFrameVectors(datasourceType, frames) { // Prometheus Specific Handling
vals, err := framesToNumbers(frames)
if err != nil {
return "", mathexp.Results{}, fmt.Errorf("failed to read frames as numbers: %w", err)
}
return "vector", mathexp.Results{Values: vals}, nil
}
if len(frames) == 1 {
frame := frames[0]
// Handle Untyped NoData
if len(frame.Fields) == 0 {
return "no-data", mathexp.Results{Values: mathexp.Values{mathexp.NoData{Frame: frame}}}, nil
}
// Handle Numeric Table
if frame.TimeSeriesSchema().Type == data.TimeSeriesTypeNot && isNumberTable(frame) {
numberSet, err := extractNumberSet(frame)
if err != nil {
return "", mathexp.Results{}, err
}
vals := make([]mathexp.Value, 0, len(numberSet))
for _, n := range numberSet {
vals = append(vals, n)
}
return "number set", mathexp.Results{
Values: vals,
}, nil
}
}
filtered := make([]*data.Frame, 0, len(frames))
totalLen := 0
for _, frame := range frames {
schema := frame.TimeSeriesSchema()
// Check for TimeSeriesTypeNot in InfluxDB queries. A data frame of this type will cause
// the WideToMany() function to error out, which results in unhealthy alerts.
// This check should be removed once inconsistencies in data source responses are solved.
if schema.Type == data.TimeSeriesTypeNot && datasourceType == datasources.DS_INFLUXDB {
logger.Warn("Ignoring InfluxDB data frame due to missing numeric fields")
continue
}
if schema.Type != data.TimeSeriesTypeWide && !allowLongFrames {
return "", mathexp.Results{}, fmt.Errorf("%w but got type %s (input refid)", ErrSeriesMustBeWide, schema.Type)
}
filtered = append(filtered, frame)
totalLen += len(schema.ValueIndices)
}
if len(filtered) == 0 {
return "no data", mathexp.Results{Values: mathexp.Values{mathexp.NoData{Frame: frames[0]}}}, nil
}
maybeFixerFn := checkIfSeriesNeedToBeFixed(filtered, datasourceType)
dataType := "single frame series"
if len(filtered) > 1 {
dataType = "multi frame series"
}
vals := make([]mathexp.Value, 0, totalLen)
for _, frame := range filtered {
schema := frame.TimeSeriesSchema()
if schema.Type == data.TimeSeriesTypeWide {
series, err := WideToMany(frame, maybeFixerFn)
if err != nil {
return "", mathexp.Results{}, err
}
for _, ser := range series {
vals = append(vals, ser)
}
} else {
v := mathexp.TableData{Frame: frame}
vals = append(vals, v)
dataType = "single frame"
}
}
return dataType, mathexp.Results{
Values: vals,
}, nil
}
func getResponseFrame(resp *backend.QueryDataResponse, refID string) (data.Frames, error) {
response, ok := resp.Responses[refID]
if !ok {
// This indicates that the RefID of the request was not included to the response, i.e. some problem in the data source plugin
keys := make([]string, 0, len(resp.Responses))
for refID := range resp.Responses {
keys = append(keys, refID)
}
logger.Warn("Can't find response by refID. Return nodata", "responseRefIds", keys)
return nil, nil
}
if response.Error != nil {
return nil, response.Error
}
return response.Frames, nil
}
func isAllFrameVectors(datasourceType string, frames data.Frames) bool {
if datasourceType != datasources.DS_PROMETHEUS {
return false
}
allVector := false
for i, frame := range frames {
if frame.Meta != nil && frame.Meta.Custom != nil {
if sMap, ok := frame.Meta.Custom.(map[string]string); ok {
if sMap != nil {
if sMap["resultType"] == "vector" {
if i != 0 && !allVector {
break
}
allVector = true
}
}
}
}
}
return allVector
}
func framesToNumbers(frames data.Frames) ([]mathexp.Value, error) {
vals := make([]mathexp.Value, 0, len(frames))
for _, frame := range frames {
if frame == nil {
continue
}
if len(frame.Fields) == 2 && frame.Fields[0].Len() == 1 {
// Can there be zero Len Field results that are being skipped?
valueField := frame.Fields[1]
if valueField.Type().Numeric() { // should be []float64
val, err := valueField.FloatAt(0) // FloatAt should not err if numeric
if err != nil {
return nil, fmt.Errorf("failed to read value of frame [%v] (RefID %v) of type [%v] as float: %w", frame.Name, frame.RefID, valueField.Type(), err)
}
n := mathexp.NewNumber(frame.Name, valueField.Labels)
n.SetValue(&val)
vals = append(vals, n)
}
}
}
return vals, nil
}
func isNumberTable(frame *data.Frame) bool {
if frame == nil || frame.Fields == nil {
return false
}
numericCount := 0
stringCount := 0
otherCount := 0
for _, field := range frame.Fields {
fType := field.Type()
switch {
case fType.Numeric():
numericCount++
case fType == data.FieldTypeString || fType == data.FieldTypeNullableString:
stringCount++
default:
otherCount++
}
}
return numericCount == 1 && otherCount == 0
}
func extractNumberSet(frame *data.Frame) ([]mathexp.Number, error) {
numericField := 0
stringFieldIdxs := []int{}
stringFieldNames := []string{}
for i, field := range frame.Fields {
fType := field.Type()
switch {
case fType.Numeric():
numericField = i
case fType == data.FieldTypeString || fType == data.FieldTypeNullableString:
stringFieldIdxs = append(stringFieldIdxs, i)
stringFieldNames = append(stringFieldNames, field.Name)
}
}
numbers := make([]mathexp.Number, frame.Rows())
for rowIdx := 0; rowIdx < frame.Rows(); rowIdx++ {
val, _ := frame.FloatAt(numericField, rowIdx)
var labels data.Labels
for i := 0; i < len(stringFieldIdxs); i++ {
if i == 0 {
labels = make(data.Labels)
}
key := stringFieldNames[i] // TODO check for duplicate string column names
val, _ := frame.ConcreteAt(stringFieldIdxs[i], rowIdx)
labels[key] = val.(string) // TODO check assertion / return error
}
n := mathexp.NewNumber(frame.Fields[numericField].Name, labels)
// The new value fields' configs gets pointed to the one in the original frame
n.Frame.Fields[0].Config = frame.Fields[numericField].Config
n.SetValue(&val)
numbers[rowIdx] = n
}
return numbers, nil
}
// WideToMany converts a data package wide type Frame to one or multiple Series. A series
// is created for each value type column of wide frame.
//
// This might not be a good idea long term, but works now as an adapter/shim.
func WideToMany(frame *data.Frame, fixSeries func(series mathexp.Series, valueField *data.Field)) ([]mathexp.Series, error) {
tsSchema := frame.TimeSeriesSchema()
if tsSchema.Type != data.TimeSeriesTypeWide {
return nil, fmt.Errorf("%w but got type %s", ErrSeriesMustBeWide, tsSchema.Type)
}
if len(tsSchema.ValueIndices) == 1 {
s, err := mathexp.SeriesFromFrame(frame)
if err != nil {
return nil, err
}
if fixSeries != nil {
fixSeries(s, frame.Fields[tsSchema.ValueIndices[0]])
}
return []mathexp.Series{s}, nil
}
series := make([]mathexp.Series, 0, len(tsSchema.ValueIndices))
for _, valIdx := range tsSchema.ValueIndices {
l := frame.Rows()
f := data.NewFrameOfFieldTypes(frame.Name, l, frame.Fields[tsSchema.TimeIndex].Type(), frame.Fields[valIdx].Type())
f.Fields[0].Name = frame.Fields[tsSchema.TimeIndex].Name
f.Fields[1].Name = frame.Fields[valIdx].Name
// The new value fields' configs gets pointed to the one in the original frame
f.Fields[1].Config = frame.Fields[valIdx].Config
if frame.Fields[valIdx].Labels != nil {
f.Fields[1].Labels = frame.Fields[valIdx].Labels.Copy()
}
for i := 0; i < l; i++ {
f.SetRow(i, frame.Fields[tsSchema.TimeIndex].CopyAt(i), frame.Fields[valIdx].CopyAt(i))
}
s, err := mathexp.SeriesFromFrame(f)
if err != nil {
return nil, err
}
if fixSeries != nil {
fixSeries(s, frame.Fields[valIdx])
}
series = append(series, s)
}
return series, nil
}
// checkIfSeriesNeedToBeFixed scans all value fields of all provided frames and determines whether the resulting mathexp.Series
// needs to be updated so each series could be identifiable by labels.
// NOTE: applicable only to only datasources.DS_GRAPHITE and datasources.DS_TESTDATA data sources
// returns a function that patches the mathexp.Series with information from data.Field from which it was created if the all series need to be fixed. Otherwise, returns nil
func checkIfSeriesNeedToBeFixed(frames []*data.Frame, datasourceType string) func(series mathexp.Series, valueField *data.Field) {
if !(datasourceType == datasources.DS_GRAPHITE || datasourceType == datasources.DS_TESTDATA) {
return nil
}
// get all value fields
var valueFields []*data.Field
for _, frame := range frames {
tsSchema := frame.TimeSeriesSchema()
for _, index := range tsSchema.ValueIndices {
field := frame.Fields[index]
// if at least one value field contains labels, the result does not need to be fixed.
if len(field.Labels) > 0 {
return nil
}
if valueFields == nil {
valueFields = make([]*data.Field, 0, len(frames)*len(tsSchema.ValueIndices))
}
valueFields = append(valueFields, field)
}
}
// selectors are in precedence order.
nameSelectors := []func(f *data.Field) string{
func(f *data.Field) string {
if f == nil || f.Config == nil {
return ""
}
return f.Config.DisplayNameFromDS
},
func(f *data.Field) string {
if f == nil || f.Config == nil {
return ""
}
return f.Config.DisplayName
},
func(f *data.Field) string {
return f.Name
},
}
// now look for the first selector that would make all value fields be unique
for _, selector := range nameSelectors {
names := make(map[string]struct{}, len(valueFields))
good := true
for _, field := range valueFields {
name := selector(field)
if _, ok := names[name]; ok || name == "" {
good = false
break
}
names[name] = struct{}{}
}
if good {
return func(series mathexp.Series, valueField *data.Field) {
series.SetLabels(data.Labels{
nameLabelName: selector(valueField),
})
}
}
}
return nil
}