The open and composable observability and data visualization platform. Visualize metrics, logs, and traces from multiple sources like Prometheus, Loki, Elasticsearch, InfluxDB, Postgres and many more.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
grafana/public/app/features/explore/utils/ResultProcessor.ts

118 lines
3.5 KiB

import { LogsModel, GraphSeriesXY, DataFrame, FieldType } from '@grafana/data';
import { ExploreItemState, ExploreMode } from 'app/types/explore';
import TableModel, { mergeTablesIntoModel } from 'app/core/table_model';
import { sortLogsResult, refreshIntervalToSortOrder } from 'app/core/utils/explore';
import { dataFrameToLogsModel } from 'app/core/logs_model';
import { getGraphSeriesModel } from 'app/plugins/panel/graph2/getGraphSeriesModel';
export class ResultProcessor {
constructor(
private state: ExploreItemState,
private replacePreviousResults: boolean,
private dataFrames: DataFrame[]
) {}
getGraphResult(): GraphSeriesXY[] {
if (this.state.mode !== ExploreMode.Metrics) {
return [];
}
const onlyTimeSeries = this.dataFrames.filter(isTimeSeries);
return getGraphSeriesModel(
onlyTimeSeries,
{},
{ showBars: false, showLines: true, showPoints: false },
{ asTable: false, isVisible: true, placement: 'under' }
);
}
getTableResult(): TableModel {
if (this.state.mode !== ExploreMode.Metrics) {
return new TableModel();
}
// For now ignore time series
// We can change this later, just need to figure out how to
// Ignore time series only for prometheus
const onlyTables = this.dataFrames.filter(frame => !isTimeSeries(frame));
const tables = onlyTables.map(frame => {
const { fields } = frame;
const fieldCount = fields.length;
const rowCount = fields[0].values.length;
const columns = fields.map(field => ({
text: field.name,
type: field.type,
filterable: field.config.filterable,
}));
const rows: any[][] = [];
for (let i = 0; i < rowCount; i++) {
const row: any[] = [];
for (let j = 0; j < fieldCount; j++) {
row.push(frame.fields[j].values.get(i));
}
rows.push(row);
}
return new TableModel({
columns,
rows,
meta: frame.meta,
});
});
return mergeTablesIntoModel(new TableModel(), ...tables);
}
getLogsResult(): LogsModel {
if (this.state.mode !== ExploreMode.Logs) {
return null;
}
const graphInterval = this.state.queryIntervals.intervalMs;
const newResults = dataFrameToLogsModel(this.dataFrames, graphInterval);
const sortOrder = refreshIntervalToSortOrder(this.state.refreshInterval);
const sortedNewResults = sortLogsResult(newResults, sortOrder);
if (this.replacePreviousResults) {
const slice = 1000;
const rows = sortedNewResults.rows.slice(0, slice);
const series = sortedNewResults.series;
return { ...sortedNewResults, rows, series };
}
const prevLogsResult: LogsModel = this.state.logsResult || { hasUniqueLabels: false, rows: [] };
const sortedLogResult = sortLogsResult(prevLogsResult, sortOrder);
const rowsInState = sortedLogResult.rows;
const processedRows = [];
for (const row of rowsInState) {
processedRows.push({ ...row, fresh: false });
}
for (const row of sortedNewResults.rows) {
processedRows.push({ ...row, fresh: true });
}
const slice = -1000;
const rows = processedRows.slice(slice);
const series = sortedNewResults.series.slice(slice);
return { ...sortedNewResults, rows, series };
}
}
export function isTimeSeries(frame: DataFrame): boolean {
if (frame.fields.length === 2) {
if (frame.fields[1].type === FieldType.time) {
return true;
}
}
return false;
}