The open and composable observability and data visualization platform. Visualize metrics, logs, and traces from multiple sources like Prometheus, Loki, Elasticsearch, InfluxDB, Postgres and many more.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
grafana/pkg/tsdb/elasticsearch/data_query.go

510 lines
17 KiB

package elasticsearch
import (
"context"
"encoding/json"
"fmt"
"regexp"
"slices"
"strconv"
"time"
"github.com/grafana/grafana-plugin-sdk-go/backend"
"github.com/grafana/grafana-plugin-sdk-go/experimental/errorsource"
"github.com/grafana/grafana/pkg/components/simplejson"
"github.com/grafana/grafana/pkg/infra/log"
"github.com/grafana/grafana/pkg/infra/tracing"
es "github.com/grafana/grafana/pkg/tsdb/elasticsearch/client"
)
const (
defaultSize = 500
)
type elasticsearchDataQuery struct {
client es.Client
dataQueries []backend.DataQuery
logger log.Logger
ctx context.Context
tracer tracing.Tracer
keepLabelsInResponse bool
}
var newElasticsearchDataQuery = func(ctx context.Context, client es.Client, req *backend.QueryDataRequest, logger log.Logger, tracer tracing.Tracer) *elasticsearchDataQuery {
_, fromAlert := req.Headers[headerFromAlert]
fromExpression := req.GetHTTPHeader(headerFromExpression) != ""
return &elasticsearchDataQuery{
client: client,
dataQueries: req.Queries,
logger: logger,
ctx: ctx,
tracer: tracer,
// To maintain backward compatibility, it is necessary to keep labels in responses for alerting and expressions queries.
// Historically, these labels have been used in alerting rules and transformations.
keepLabelsInResponse: fromAlert || fromExpression,
}
}
func (e *elasticsearchDataQuery) execute() (*backend.QueryDataResponse, error) {
start := time.Now()
response := backend.NewQueryDataResponse()
e.logger.Debug("Parsing queries", "queriesLength", len(e.dataQueries))
queries, err := parseQuery(e.dataQueries, e.logger)
if err != nil {
mq, _ := json.Marshal(e.dataQueries)
e.logger.Error("Failed to parse queries", "error", err, "queries", string(mq), "queriesLength", len(queries), "duration", time.Since(start), "stage", es.StagePrepareRequest)
return errorsource.AddPluginErrorToResponse(e.dataQueries[0].RefID, response, err), nil
}
ms := e.client.MultiSearch()
for _, q := range queries {
from := q.TimeRange.From.UnixNano() / int64(time.Millisecond)
to := q.TimeRange.To.UnixNano() / int64(time.Millisecond)
if err := e.processQuery(q, ms, from, to); err != nil {
mq, _ := json.Marshal(q)
e.logger.Error("Failed to process query to multisearch request builder", "error", err, "query", string(mq), "queriesLength", len(queries), "duration", time.Since(start), "stage", es.StagePrepareRequest)
return errorsource.AddPluginErrorToResponse(q.RefID, response, err), nil
}
}
req, err := ms.Build()
if err != nil {
mqs, _ := json.Marshal(e.dataQueries)
e.logger.Error("Failed to build multisearch request", "error", err, "queriesLength", len(queries), "queries", string(mqs), "duration", time.Since(start), "stage", es.StagePrepareRequest)
return errorsource.AddPluginErrorToResponse(e.dataQueries[0].RefID, response, err), nil
}
e.logger.Info("Prepared request", "queriesLength", len(queries), "duration", time.Since(start), "stage", es.StagePrepareRequest)
res, err := e.client.ExecuteMultisearch(req)
if err != nil {
// We are returning error containing the source that was added trough errorsource.Middleware
return errorsource.AddErrorToResponse(e.dataQueries[0].RefID, response, err), nil
}
return parseResponse(e.ctx, res.Responses, queries, e.client.GetConfiguredFields(), e.keepLabelsInResponse, e.logger, e.tracer)
}
func (e *elasticsearchDataQuery) processQuery(q *Query, ms *es.MultiSearchRequestBuilder, from, to int64) error {
err := isQueryWithError(q)
if err != nil {
err = fmt.Errorf("received invalid query. %w", err)
return err
}
defaultTimeField := e.client.GetConfiguredFields().TimeField
b := ms.Search(q.Interval, q.TimeRange)
b.Size(0)
filters := b.Query().Bool().Filter()
filters.AddDateRangeFilter(defaultTimeField, to, from, es.DateFormatEpochMS)
filters.AddQueryStringFilter(q.RawQuery, true)
if isLogsQuery(q) {
processLogsQuery(q, b, from, to, defaultTimeField)
} else if isDocumentQuery(q) {
processDocumentQuery(q, b, from, to, defaultTimeField)
} else {
// Otherwise, it is a time series query and we process it
processTimeSeriesQuery(q, b, from, to, defaultTimeField)
}
return nil
}
func setFloatPath(settings *simplejson.Json, path ...string) {
if stringValue, err := settings.GetPath(path...).String(); err == nil {
if value, err := strconv.ParseFloat(stringValue, 64); err == nil {
settings.SetPath(path, value)
}
}
}
func setIntPath(settings *simplejson.Json, path ...string) {
if stringValue, err := settings.GetPath(path...).String(); err == nil {
if value, err := strconv.ParseInt(stringValue, 10, 64); err == nil {
settings.SetPath(path, value)
}
}
}
// Casts values to float when required by Elastic's query DSL
func (metricAggregation MetricAgg) generateSettingsForDSL() map[string]any {
switch metricAggregation.Type {
case "moving_avg":
setFloatPath(metricAggregation.Settings, "window")
setFloatPath(metricAggregation.Settings, "predict")
setFloatPath(metricAggregation.Settings, "settings", "alpha")
setFloatPath(metricAggregation.Settings, "settings", "beta")
setFloatPath(metricAggregation.Settings, "settings", "gamma")
setFloatPath(metricAggregation.Settings, "settings", "period")
case "serial_diff":
setFloatPath(metricAggregation.Settings, "lag")
}
if isMetricAggregationWithInlineScriptSupport(metricAggregation.Type) {
scriptValue, err := metricAggregation.Settings.GetPath("script").String()
if err != nil {
// the script is stored using the old format : `script:{inline: "value"}` or is not set
scriptValue, err = metricAggregation.Settings.GetPath("script", "inline").String()
}
if err == nil {
metricAggregation.Settings.SetPath([]string{"script"}, scriptValue)
}
}
return metricAggregation.Settings.MustMap()
}
func (bucketAgg BucketAgg) generateSettingsForDSL() map[string]any {
setIntPath(bucketAgg.Settings, "min_doc_count")
return bucketAgg.Settings.MustMap()
}
func addDateHistogramAgg(aggBuilder es.AggBuilder, bucketAgg *BucketAgg, timeFrom, timeTo int64, timeField string) es.AggBuilder {
// If no field is specified, use the time field
field := bucketAgg.Field
if field == "" {
field = timeField
}
aggBuilder.DateHistogram(bucketAgg.ID, field, func(a *es.DateHistogramAgg, b es.AggBuilder) {
var interval = bucketAgg.Settings.Get("interval").MustString("auto")
if slices.Contains(es.GetCalendarIntervals(), interval) {
a.CalendarInterval = interval
} else {
if interval == "auto" {
// note this is not really a valid grafana-variable-handling,
// because normally this would not match `$__interval_ms`,
// but because how we apply these in the go-code, this will work
// correctly, and becomes something like `500ms`.
// a nicer way would be to use `${__interval_ms}ms`, but
// that format is not recognized where we apply these variables
// in the elasticsearch datasource
a.FixedInterval = "$__interval_msms"
} else {
a.FixedInterval = interval
}
}
a.MinDocCount = bucketAgg.Settings.Get("min_doc_count").MustInt(0)
a.ExtendedBounds = &es.ExtendedBounds{Min: timeFrom, Max: timeTo}
a.Format = bucketAgg.Settings.Get("format").MustString(es.DateFormatEpochMS)
if offset, err := bucketAgg.Settings.Get("offset").String(); err == nil {
a.Offset = offset
}
if missing, err := bucketAgg.Settings.Get("missing").String(); err == nil {
a.Missing = &missing
}
if timezone, err := bucketAgg.Settings.Get("timeZone").String(); err == nil {
if timezone != "utc" {
a.TimeZone = timezone
}
}
aggBuilder = b
})
return aggBuilder
}
func addHistogramAgg(aggBuilder es.AggBuilder, bucketAgg *BucketAgg) es.AggBuilder {
aggBuilder.Histogram(bucketAgg.ID, bucketAgg.Field, func(a *es.HistogramAgg, b es.AggBuilder) {
a.Interval = stringToIntWithDefaultValue(bucketAgg.Settings.Get("interval").MustString(), 1000)
a.MinDocCount = bucketAgg.Settings.Get("min_doc_count").MustInt(0)
if missing, err := bucketAgg.Settings.Get("missing").Int(); err == nil {
a.Missing = &missing
}
aggBuilder = b
})
return aggBuilder
}
func addTermsAgg(aggBuilder es.AggBuilder, bucketAgg *BucketAgg, metrics []*MetricAgg) es.AggBuilder {
aggBuilder.Terms(bucketAgg.ID, bucketAgg.Field, func(a *es.TermsAggregation, b es.AggBuilder) {
if size, err := bucketAgg.Settings.Get("size").Int(); err == nil {
a.Size = size
} else {
a.Size = stringToIntWithDefaultValue(bucketAgg.Settings.Get("size").MustString(), defaultSize)
}
if minDocCount, err := bucketAgg.Settings.Get("min_doc_count").Int(); err == nil {
a.MinDocCount = &minDocCount
}
if missing, err := bucketAgg.Settings.Get("missing").String(); err == nil {
a.Missing = &missing
}
if orderBy, err := bucketAgg.Settings.Get("orderBy").String(); err == nil {
/*
The format for extended stats and percentiles is {metricId}[bucket_path]
for everything else it's just {metricId}, _count, _term, or _key
*/
metricIdRegex := regexp.MustCompile(`^(\d+)`)
metricId := metricIdRegex.FindString(orderBy)
if len(metricId) > 0 {
for _, m := range metrics {
if m.ID == metricId {
if m.Type == "count" {
a.Order["_count"] = bucketAgg.Settings.Get("order").MustString("desc")
} else {
a.Order[orderBy] = bucketAgg.Settings.Get("order").MustString("desc")
b.Metric(m.ID, m.Type, m.Field, nil)
}
break
}
}
} else {
a.Order[orderBy] = bucketAgg.Settings.Get("order").MustString("desc")
}
}
aggBuilder = b
})
return aggBuilder
}
func addNestedAgg(aggBuilder es.AggBuilder, bucketAgg *BucketAgg) es.AggBuilder {
aggBuilder.Nested(bucketAgg.ID, bucketAgg.Field, func(a *es.NestedAggregation, b es.AggBuilder) {
aggBuilder = b
})
return aggBuilder
}
func addFiltersAgg(aggBuilder es.AggBuilder, bucketAgg *BucketAgg) es.AggBuilder {
filters := make(map[string]any)
for _, filter := range bucketAgg.Settings.Get("filters").MustArray() {
json := simplejson.NewFromAny(filter)
query := json.Get("query").MustString()
label := json.Get("label").MustString()
if label == "" {
label = query
}
filters[label] = &es.QueryStringFilter{Query: query, AnalyzeWildcard: true}
}
if len(filters) > 0 {
aggBuilder.Filters(bucketAgg.ID, func(a *es.FiltersAggregation, b es.AggBuilder) {
a.Filters = filters
aggBuilder = b
})
}
return aggBuilder
}
func addGeoHashGridAgg(aggBuilder es.AggBuilder, bucketAgg *BucketAgg) es.AggBuilder {
aggBuilder.GeoHashGrid(bucketAgg.ID, bucketAgg.Field, func(a *es.GeoHashGridAggregation, b es.AggBuilder) {
a.Precision = stringToIntWithDefaultValue(bucketAgg.Settings.Get("precision").MustString(), es.DefaultGeoHashPrecision)
aggBuilder = b
})
return aggBuilder
}
func getPipelineAggField(m *MetricAgg) string {
// In frontend we are using Field as pipelineAggField
// There might be historical reason why in backend we were using PipelineAggregate as pipelineAggField
// So for now let's check Field first and then PipelineAggregate to ensure that we are not breaking anything
// TODO: Investigate, if we can remove check for PipelineAggregate
pipelineAggField := m.Field
if pipelineAggField == "" {
pipelineAggField = m.PipelineAggregate
}
return pipelineAggField
}
func isQueryWithError(query *Query) error {
if len(query.BucketAggs) == 0 {
// If no aggregations, only document and logs queries are valid
if len(query.Metrics) == 0 || !(isLogsQuery(query) || isDocumentQuery(query)) {
return fmt.Errorf("invalid query, missing metrics and aggregations")
}
}
return nil
}
func isLogsQuery(query *Query) bool {
return query.Metrics[0].Type == logsType
}
func isDocumentQuery(query *Query) bool {
return isRawDataQuery(query) || isRawDocumentQuery(query)
}
func isRawDataQuery(query *Query) bool {
return query.Metrics[0].Type == rawDataType
}
func isRawDocumentQuery(query *Query) bool {
return query.Metrics[0].Type == rawDocumentType
}
func processLogsQuery(q *Query, b *es.SearchRequestBuilder, from, to int64, defaultTimeField string) {
metric := q.Metrics[0]
sort := es.SortOrderDesc
if metric.Settings.Get("sortDirection").MustString() == "asc" {
// This is currently used only for log context query
sort = es.SortOrderAsc
}
b.Sort(sort, defaultTimeField, "boolean")
b.Sort(sort, "_doc", "")
b.AddDocValueField(defaultTimeField)
// We need to add timeField as field with standardized time format to not receive
// invalid formats that elasticsearch can parse, but our frontend can't (e.g. yyyy_MM_dd_HH_mm_ss)
b.AddTimeFieldWithStandardizedFormat(defaultTimeField)
b.Size(stringToIntWithDefaultValue(metric.Settings.Get("limit").MustString(), defaultSize))
b.AddHighlight()
// This is currently used only for log context query to get
// log lines before and after the selected log line
searchAfter := metric.Settings.Get("searchAfter").MustArray()
for _, value := range searchAfter {
b.AddSearchAfter(value)
}
// For log query, we add a date histogram aggregation
aggBuilder := b.Agg()
q.BucketAggs = append(q.BucketAggs, &BucketAgg{
Type: dateHistType,
Field: defaultTimeField,
ID: "1",
Settings: simplejson.NewFromAny(map[string]any{
"interval": "auto",
}),
})
bucketAgg := q.BucketAggs[0]
bucketAgg.Settings = simplejson.NewFromAny(
bucketAgg.generateSettingsForDSL(),
)
_ = addDateHistogramAgg(aggBuilder, bucketAgg, from, to, defaultTimeField)
}
func processDocumentQuery(q *Query, b *es.SearchRequestBuilder, from, to int64, defaultTimeField string) {
metric := q.Metrics[0]
b.Sort(es.SortOrderDesc, defaultTimeField, "boolean")
b.Sort(es.SortOrderDesc, "_doc", "")
b.AddDocValueField(defaultTimeField)
if isRawDataQuery(q) {
// For raw_data queries we need to add timeField as field with standardized time format to not receive
// invalid formats that elasticsearch can parse, but our frontend can't (e.g. yyyy_MM_dd_HH_mm_ss)
b.AddTimeFieldWithStandardizedFormat(defaultTimeField)
}
b.Size(stringToIntWithDefaultValue(metric.Settings.Get("size").MustString(), defaultSize))
}
func processTimeSeriesQuery(q *Query, b *es.SearchRequestBuilder, from, to int64, defaultTimeField string) {
aggBuilder := b.Agg()
// Process buckets
// iterate backwards to create aggregations bottom-down
for _, bucketAgg := range q.BucketAggs {
bucketAgg.Settings = simplejson.NewFromAny(
bucketAgg.generateSettingsForDSL(),
)
switch bucketAgg.Type {
case dateHistType:
aggBuilder = addDateHistogramAgg(aggBuilder, bucketAgg, from, to, defaultTimeField)
case histogramType:
aggBuilder = addHistogramAgg(aggBuilder, bucketAgg)
case filtersType:
aggBuilder = addFiltersAgg(aggBuilder, bucketAgg)
case termsType:
aggBuilder = addTermsAgg(aggBuilder, bucketAgg, q.Metrics)
case geohashGridType:
aggBuilder = addGeoHashGridAgg(aggBuilder, bucketAgg)
case nestedType:
aggBuilder = addNestedAgg(aggBuilder, bucketAgg)
}
}
// Process metrics
for _, m := range q.Metrics {
m := m
if m.Type == countType {
continue
}
if isPipelineAgg(m.Type) {
if isPipelineAggWithMultipleBucketPaths(m.Type) {
if len(m.PipelineVariables) > 0 {
bucketPaths := map[string]any{}
for name, pipelineAgg := range m.PipelineVariables {
if _, err := strconv.Atoi(pipelineAgg); err == nil {
var appliedAgg *MetricAgg
for _, pipelineMetric := range q.Metrics {
if pipelineMetric.ID == pipelineAgg {
appliedAgg = pipelineMetric
break
}
}
if appliedAgg != nil {
if appliedAgg.Type == countType {
bucketPaths[name] = "_count"
} else {
bucketPaths[name] = pipelineAgg
}
}
}
}
aggBuilder.Pipeline(m.ID, m.Type, bucketPaths, func(a *es.PipelineAggregation) {
a.Settings = m.generateSettingsForDSL()
})
} else {
continue
}
} else {
pipelineAggField := getPipelineAggField(m)
if _, err := strconv.Atoi(pipelineAggField); err == nil {
var appliedAgg *MetricAgg
for _, pipelineMetric := range q.Metrics {
if pipelineMetric.ID == pipelineAggField {
appliedAgg = pipelineMetric
break
}
}
if appliedAgg != nil {
bucketPath := pipelineAggField
if appliedAgg.Type == countType {
bucketPath = "_count"
}
aggBuilder.Pipeline(m.ID, m.Type, bucketPath, func(a *es.PipelineAggregation) {
a.Settings = m.generateSettingsForDSL()
})
}
} else {
continue
}
}
} else {
aggBuilder.Metric(m.ID, m.Type, m.Field, func(a *es.MetricAggregation) {
a.Settings = m.generateSettingsForDSL()
})
}
}
}
func stringToIntWithDefaultValue(valueStr string, defaultValue int) int {
value, err := strconv.Atoi(valueStr)
if err != nil {
value = defaultValue
}
// In our case, 0 is not a valid value and in this case we default to defaultValue
if value == 0 {
value = defaultValue
}
return value
}