The open and composable observability and data visualization platform. Visualize metrics, logs, and traces from multiple sources like Prometheus, Loki, Elasticsearch, InfluxDB, Postgres and many more.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
grafana/pkg/tsdb/parca/query.go

379 lines
12 KiB

package parca
import (
"bytes"
"context"
"encoding/json"
"fmt"
"strconv"
"strings"
"time"
v1alpha1 "buf.build/gen/go/parca-dev/parca/protocolbuffers/go/parca/query/v1alpha1"
"connectrpc.com/connect"
"github.com/apache/arrow-go/v18/arrow"
"github.com/apache/arrow-go/v18/arrow/array"
"github.com/apache/arrow-go/v18/arrow/ipc"
"github.com/grafana/grafana-plugin-sdk-go/backend"
"github.com/grafana/grafana-plugin-sdk-go/backend/tracing"
"github.com/grafana/grafana-plugin-sdk-go/data"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/codes"
"go.opentelemetry.io/otel/trace"
"google.golang.org/protobuf/types/known/timestamppb"
"github.com/grafana/grafana/pkg/tsdb/parca/kinds/dataquery"
)
type queryModel struct {
dataquery.ParcaDataQuery
}
const (
queryTypeProfile = string(dataquery.ParcaQueryTypeProfile)
queryTypeMetrics = string(dataquery.ParcaQueryTypeMetrics)
queryTypeBoth = string(dataquery.ParcaQueryTypeBoth)
)
// query processes single Parca query transforming the response to data.Frame packaged in DataResponse
func (d *ParcaDatasource) query(ctx context.Context, pCtx backend.PluginContext, query backend.DataQuery) backend.DataResponse {
ctxLogger := logger.FromContext(ctx)
ctx, span := tracing.DefaultTracer().Start(ctx, "datasource.parca.query", trace.WithAttributes(attribute.String("query_type", query.QueryType)))
defer span.End()
var qm queryModel
response := backend.DataResponse{}
err := json.Unmarshal(query.JSON, &qm)
if err != nil {
response.Error = err
ctxLogger.Error("Failed to unmarshall query", "error", err, "function", logEntrypoint())
span.RecordError(response.Error)
span.SetStatus(codes.Error, response.Error.Error())
return response
}
if query.QueryType == queryTypeMetrics || query.QueryType == queryTypeBoth {
seriesResp, err := d.client.QueryRange(ctx, makeMetricRequest(qm, query))
if err != nil {
response.Error = err
ctxLogger.Error("Failed to process query", "error", err, "queryType", query.QueryType, "function", logEntrypoint())
span.RecordError(response.Error)
span.SetStatus(codes.Error, response.Error.Error())
return response
}
response.Frames = append(response.Frames, seriesToDataFrame(seriesResp, qm.ProfileTypeId)...)
}
if query.QueryType == queryTypeProfile || query.QueryType == queryTypeBoth {
ctxLogger.Debug("Querying SelectMergeStacktraces()", "queryModel", qm, "function", logEntrypoint())
resp, err := d.client.Query(ctx, makeProfileRequest(qm, query))
if err != nil {
if strings.Contains(err.Error(), "invalid report type") {
response.Error = fmt.Errorf("try updating Parca to v0.19+: %v", err)
} else {
response.Error = err
}
ctxLogger.Error("Failed to process query", "error", err, "queryType", query.QueryType, "function", logEntrypoint())
span.RecordError(response.Error)
span.SetStatus(codes.Error, response.Error.Error())
return response
}
frame, err := responseToDataFrames(resp)
if err != nil {
response.Error = err
ctxLogger.Error("Failed to convert the response to a data frame", "error", err, "queryType", query.QueryType)
span.RecordError(response.Error)
span.SetStatus(codes.Error, response.Error.Error())
return response
}
response.Frames = append(response.Frames, frame)
}
return response
}
func makeProfileRequest(qm queryModel, query backend.DataQuery) *connect.Request[v1alpha1.QueryRequest] {
return &connect.Request[v1alpha1.QueryRequest]{
Msg: &v1alpha1.QueryRequest{
Mode: v1alpha1.QueryRequest_MODE_MERGE,
Options: &v1alpha1.QueryRequest_Merge{
Merge: &v1alpha1.MergeProfile{
Query: fmt.Sprintf("%s%s", qm.ProfileTypeId, qm.LabelSelector),
Start: &timestamppb.Timestamp{
Seconds: query.TimeRange.From.Unix(),
},
End: &timestamppb.Timestamp{
Seconds: query.TimeRange.To.Unix(),
},
},
},
// nolint:staticcheck
ReportType: v1alpha1.QueryRequest_REPORT_TYPE_FLAMEGRAPH_ARROW,
},
}
}
func makeMetricRequest(qm queryModel, query backend.DataQuery) *connect.Request[v1alpha1.QueryRangeRequest] {
return &connect.Request[v1alpha1.QueryRangeRequest]{
Msg: &v1alpha1.QueryRangeRequest{
Query: fmt.Sprintf("%s%s", qm.ProfileTypeId, qm.LabelSelector),
Start: &timestamppb.Timestamp{
Seconds: query.TimeRange.From.Unix(),
},
End: &timestamppb.Timestamp{
Seconds: query.TimeRange.To.Unix(),
},
Limit: uint32(query.MaxDataPoints),
},
}
}
type CustomMeta struct {
ProfileTypeID string
}
// responseToDataFrames turns Parca response to data.Frame. We encode the data into a nested set format where we have
// [level, value, label] columns and by ordering the items in a depth first traversal order we can recreate the whole
// tree back.
func responseToDataFrames(resp *connect.Response[v1alpha1.QueryResponse]) (*data.Frame, error) {
if flameResponse, ok := resp.Msg.Report.(*v1alpha1.QueryResponse_FlamegraphArrow); ok {
return arrowToNestedSetDataFrame(flameResponse.FlamegraphArrow)
} else {
return nil, fmt.Errorf("unknown report type returned from query. update parca")
}
}
func seriesToDataFrame(seriesResp *connect.Response[v1alpha1.QueryRangeResponse], profileTypeID string) []*data.Frame {
frames := make([]*data.Frame, 0, len(seriesResp.Msg.Series))
for _, series := range seriesResp.Msg.Series {
frame := data.NewFrame("series")
frame.Meta = &data.FrameMeta{PreferredVisualization: "graph"}
frames = append(frames, frame)
fields := data.Fields{}
timeField := data.NewField("time", nil, []time.Time{})
fields = append(fields, timeField)
labels := data.Labels{}
for _, label := range series.Labelset.Labels {
labels[label.Name] = label.Value
}
valueField := data.NewField(strings.Split(profileTypeID, ":")[1], labels, []int64{})
for _, sample := range series.Samples {
timeField.Append(sample.Timestamp.AsTime())
valueField.Append(sample.Value)
}
fields = append(fields, valueField)
frame.Fields = fields
}
return frames
}
func arrowToNestedSetDataFrame(flamegraph *v1alpha1.FlamegraphArrow) (*data.Frame, error) {
frame := data.NewFrame("response")
frame.Meta = &data.FrameMeta{PreferredVisualization: "flamegraph"}
levelField := data.NewField("level", nil, []int64{})
valueField := data.NewField("value", nil, []int64{})
valueField.Config = &data.FieldConfig{Unit: normalizeUnit(flamegraph.Unit)}
selfField := data.NewField("self", nil, []int64{})
selfField.Config = &data.FieldConfig{Unit: normalizeUnit(flamegraph.Unit)}
labelField := data.NewField("label", nil, []string{})
frame.Fields = data.Fields{levelField, valueField, selfField, labelField}
arrowReader, err := ipc.NewReader(bytes.NewBuffer(flamegraph.GetRecord()))
if err != nil {
return nil, err
}
defer arrowReader.Release()
arrowReader.Next()
rec := arrowReader.Record()
fi, err := newFlamegraphIterator(rec)
if err != nil {
return nil, fmt.Errorf("failed to create flamegraph iterator: %w", err)
}
fi.iterate(func(name string, level, value, self int64) {
labelField.Append(name)
levelField.Append(level)
valueField.Append(value)
selfField.Append(self)
})
return frame, nil
}
const (
FlamegraphFieldMappingFile = "mapping_file"
FlamegraphFieldLocationAddress = "location_address"
FlamegraphFieldFunctionName = "function_name"
FlamegraphFieldChildren = "children"
FlamegraphFieldCumulative = "cumulative"
FlamegraphFieldFlat = "flat"
)
type flamegraphIterator struct {
columnChildren *array.List
columnChildrenValues *array.Uint32
columnCumulative func(i int) int64
columnMappingFile *array.Dictionary
columnMappingFileDict *array.Binary
columnFunctionName *array.Dictionary
columnFunctionNameDict *array.Binary
columnLocationAddress *array.Uint64
nameBuilder *bytes.Buffer
addressBuilder *bytes.Buffer
}
func newFlamegraphIterator(rec arrow.Record) (*flamegraphIterator, error) {
schema := rec.Schema()
columnChildren := rec.Column(schema.FieldIndices(FlamegraphFieldChildren)[0]).(*array.List)
columnChildrenValues := columnChildren.ListValues().(*array.Uint32)
columnCumulative := uintValue(rec.Column(schema.FieldIndices(FlamegraphFieldCumulative)[0]))
columnMappingFile := rec.Column(schema.FieldIndices(FlamegraphFieldMappingFile)[0]).(*array.Dictionary)
columnMappingFileDict := columnMappingFile.Dictionary().(*array.Binary)
columnFunctionName := rec.Column(schema.FieldIndices(FlamegraphFieldFunctionName)[0]).(*array.Dictionary)
columnFunctionNameDict := columnFunctionName.Dictionary().(*array.Binary)
columnLocationAddress := rec.Column(schema.FieldIndices(FlamegraphFieldLocationAddress)[0]).(*array.Uint64)
return &flamegraphIterator{
columnChildren: columnChildren,
columnChildrenValues: columnChildrenValues,
columnCumulative: columnCumulative,
columnMappingFile: columnMappingFile,
columnMappingFileDict: columnMappingFileDict,
columnFunctionName: columnFunctionName,
columnFunctionNameDict: columnFunctionNameDict,
columnLocationAddress: columnLocationAddress,
nameBuilder: &bytes.Buffer{},
addressBuilder: &bytes.Buffer{},
}, nil
}
func (fi *flamegraphIterator) iterate(fn func(name string, level, value, self int64)) {
type rowNode struct {
row int
level int64
}
childrenStart, childrenEnd := fi.columnChildren.ValueOffsets(0)
stack := make([]rowNode, 0, childrenEnd-childrenStart)
var childrenValue int64 = 0
for i := int(childrenStart); i < int(childrenEnd); i++ {
child := int(fi.columnChildrenValues.Value(i))
childrenValue += fi.columnCumulative(child)
stack = append(stack, rowNode{row: child, level: 1})
}
cumulative := fi.columnCumulative(0)
fn("total", 0, cumulative, cumulative-childrenValue)
for len(stack) != 0 {
// shift stack
node := stack[0]
stack = stack[1:]
childrenValue = 0
// Get the children for this node and add them to the stack if they exist.
start, end := fi.columnChildren.ValueOffsets(node.row)
children := make([]rowNode, 0, end-start)
for i := start; i < end; i++ {
child := fi.columnChildrenValues.Value(int(i))
if fi.columnChildrenValues.IsValid(int(child)) {
childrenValue += fi.columnCumulative(int(child))
children = append(children, rowNode{row: int(child), level: node.level + 1})
}
}
// prepend the new children to the top of the stack
stack = append(children, stack...)
cumulative := fi.columnCumulative(node.row)
name := fi.nodeName(node.row)
fn(name, node.level, cumulative, cumulative-childrenValue)
}
}
func (fi *flamegraphIterator) nodeName(row int) string {
fi.nameBuilder.Reset()
fi.addressBuilder.Reset()
if fi.columnMappingFile.IsValid(row) {
m := fi.columnMappingFileDict.ValueString(fi.columnMappingFile.GetValueIndex(row))
fi.nameBuilder.WriteString("[")
fi.nameBuilder.WriteString(getLastItem(m))
fi.nameBuilder.WriteString("]")
fi.nameBuilder.WriteString(" ")
}
if fi.columnFunctionName.IsValid(row) {
if f := fi.columnFunctionNameDict.ValueString(fi.columnFunctionName.GetValueIndex(row)); f != "" {
fi.nameBuilder.WriteString(f)
return fi.nameBuilder.String()
}
}
if fi.columnLocationAddress.IsValid(row) {
a := fi.columnLocationAddress.Value(row)
fi.addressBuilder.WriteString("0x")
fi.addressBuilder.WriteString(strconv.FormatUint(a, 16))
}
if fi.nameBuilder.Len() == 0 && fi.addressBuilder.Len() == 0 {
return "<unknown>"
} else {
return fi.nameBuilder.String() + fi.addressBuilder.String()
}
}
// uintValue is a wrapper to read different uint sizes.
// Parca returns values encoded depending on the max value in an array.
func uintValue(arr arrow.Array) func(i int) int64 {
switch b := arr.(type) {
case *array.Uint64:
return func(i int) int64 {
return int64(b.Value(i))
}
case *array.Uint32:
return func(i int) int64 {
return int64(b.Value(i))
}
case *array.Uint16:
return func(i int) int64 {
return int64(b.Value(i))
}
case *array.Uint8:
return func(i int) int64 {
return int64(b.Value(i))
}
default:
panic(fmt.Errorf("unsupported type %T", b))
}
}
func getLastItem(path string) string {
parts := strings.Split(path, "/")
return parts[len(parts)-1]
}
func normalizeUnit(unit string) string {
if unit == "nanoseconds" {
return "ns"
}
if unit == "count" {
return "short"
}
return unit
}