The open and composable observability and data visualization platform. Visualize metrics, logs, and traces from multiple sources like Prometheus, Loki, Elasticsearch, InfluxDB, Postgres and many more.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
grafana/public/app/features/transformers/regression/regression.test.ts

171 lines
5.3 KiB

import {
DataFrame,
DataFrameDTO,
DataTransformContext,
Field,
FieldType,
toDataFrame,
toDataFrameDTO,
} from '@grafana/data';
import { ModelType, RegressionTransformer, RegressionTransformerOptions } from './regression';
describe('Regression transformation', () => {
it('it should predict a linear regression to exactly fit the data when the data is f(x) = x', () => {
const source = [
toDataFrame({
name: 'data',
refId: 'A',
fields: [
{ name: 'time', type: FieldType.time, values: [0, 1, 2, 3, 4, 5] },
{ name: 'value', type: FieldType.number, values: [0, 1, 2, 3, 4, 5] },
],
}),
];
const config: RegressionTransformerOptions = {
modelType: ModelType.linear,
predictionCount: 6,
xFieldName: 'time',
yFieldName: 'value',
};
expect(toEquableDataFrames(RegressionTransformer.transformer(config, {} as DataTransformContext)(source))).toEqual(
toEquableDataFrames([
toEquableDataFrame({
name: 'data',
refId: 'A',
fields: [
{ name: 'time', type: FieldType.time, values: [0, 1, 2, 3, 4, 5], config: {} },
{ name: 'value', type: FieldType.number, values: [0, 1, 2, 3, 4, 5], config: {} },
],
length: 6,
}),
toEquableDataFrame({
name: 'linear regression',
fields: [
{ name: 'time', type: FieldType.time, values: [0, 1, 2, 3, 4, 5], config: {} },
{ name: 'value predicted', type: FieldType.number, values: [0, 1, 2, 3, 4, 5], config: {} },
],
length: 6,
}),
])
);
});
it('it should predict a linear regression where f(x) = 1', () => {
const source = [
toDataFrame({
name: 'data',
refId: 'A',
fields: [
{ name: 'time', type: FieldType.time, values: [0, 1, 2, 3, 4, 5] },
{ name: 'value', type: FieldType.number, values: [0, 1, 2, 2, 1, 0] },
],
}),
];
const config: RegressionTransformerOptions = {
modelType: ModelType.linear,
predictionCount: 6,
xFieldName: 'time',
yFieldName: 'value',
};
expect(toEquableDataFrames(RegressionTransformer.transformer(config, {} as DataTransformContext)(source))).toEqual(
toEquableDataFrames([
toEquableDataFrame({
name: 'data',
refId: 'A',
fields: [
{ name: 'time', type: FieldType.time, values: [0, 1, 2, 3, 4, 5], config: {} },
{ name: 'value', type: FieldType.number, values: [0, 1, 2, 2, 1, 0], config: {} },
],
length: 6,
}),
toEquableDataFrame({
name: 'linear regression',
fields: [
{ name: 'time', type: FieldType.time, values: [0, 1, 2, 3, 4, 5], config: {} },
{ name: 'value predicted', type: FieldType.number, values: [1, 1, 1, 1, 1, 1], config: {} },
],
length: 6,
}),
])
);
});
it('it should predict a quadratic function', () => {
const source = [
toDataFrame({
name: 'data',
refId: 'A',
fields: [
{ name: 'time', type: FieldType.time, values: [0, 1, 2, 3, 4, 5] },
{ name: 'value', type: FieldType.number, values: [0, 1, 2, 2, 1, 0] },
],
}),
];
const config: RegressionTransformerOptions = {
modelType: ModelType.polynomial,
degree: 2,
predictionCount: 6,
xFieldName: 'time',
yFieldName: 'value',
};
const result = RegressionTransformer.transformer(config, {} as DataTransformContext)(source);
expect(result[1].fields[1].values[0]).toBeCloseTo(-0.1, 1);
expect(result[1].fields[1].values[1]).toBeCloseTo(1.2, 1);
expect(result[1].fields[1].values[2]).toBeCloseTo(1.86, 1);
expect(result[1].fields[1].values[3]).toBeCloseTo(1.86, 1);
expect(result[1].fields[1].values[4]).toBeCloseTo(1.2, 1);
expect(result[1].fields[1].values[5]).toBeCloseTo(-0.1, 1);
});
it('should have the last x point be equal to the last x point of the data', () => {
const source = [
toDataFrame({
name: 'data',
refId: 'A',
fields: [
{ name: 'time', type: FieldType.time, values: [0, 1, 2, 3, 4] },
{ name: 'value', type: FieldType.number, values: [1, 1, 1, 1, 1] },
],
}),
];
const config: RegressionTransformerOptions = {
modelType: ModelType.polynomial,
degree: 2,
predictionCount: 10,
xFieldName: 'time',
yFieldName: 'value',
};
const result = RegressionTransformer.transformer(config, {} as DataTransformContext)(source);
expect(result[1].fields[0].values[0]).toBe(0);
expect(result[1].fields[0].values[1]).toBeCloseTo(0.44, 1);
expect(result[1].fields[0].values[4]).toBeCloseTo(1.76, 1);
expect(result[1].fields[0].values[8]).toBeCloseTo(3.55, 1);
expect(result[1].fields[0].values[9]).toBe(4);
});
});
function toEquableDataFrame(source: DataFrame): DataFrame {
return toDataFrame({
...source,
fields: source.fields.map((field: Field) => {
return {
...field,
config: {},
};
}),
});
}
function toEquableDataFrames(data: DataFrame[]): DataFrameDTO[] {
return data.map((frame) => toDataFrameDTO(frame));
}