The open and composable observability and data visualization platform. Visualize metrics, logs, and traces from multiple sources like Prometheus, Loki, Elasticsearch, InfluxDB, Postgres and many more.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
grafana/public/app/plugins/datasource/loki/responseUtils.test.ts

121 lines
3.9 KiB

import { cloneDeep } from 'lodash';
import { ArrayVector, DataFrame, FieldType } from '@grafana/data';
import {
dataFrameHasLevelLabel,
dataFrameHasLokiError,
extractLevelLikeLabelFromDataFrame,
extractLogParserFromDataFrame,
extractLabelKeysFromDataFrame,
extractUnwrapLabelKeysFromDataFrame,
} from './responseUtils';
const frame: DataFrame = {
length: 1,
fields: [
{
name: 'Time',
config: {},
type: FieldType.time,
values: new ArrayVector([1]),
},
{
name: 'labels',
config: {},
type: FieldType.other,
values: new ArrayVector([{ level: 'info' }]),
},
{
name: 'Line',
config: {},
type: FieldType.string,
values: new ArrayVector(['line1']),
},
],
};
describe('dataFrameHasParsingError', () => {
it('handles frame with parsing error', () => {
const input = cloneDeep(frame);
input.fields[1].values = new ArrayVector([{ level: 'info', __error__: 'error' }]);
expect(dataFrameHasLokiError(input)).toBe(true);
});
it('handles frame without parsing error', () => {
const input = cloneDeep(frame);
expect(dataFrameHasLokiError(input)).toBe(false);
});
});
describe('dataFrameHasLevelLabel', () => {
it('returns true if level label is present', () => {
const input = cloneDeep(frame);
input.fields[1].values = new ArrayVector([{ level: 'info' }]);
expect(dataFrameHasLevelLabel(input)).toBe(true);
});
it('returns false if level label is present', () => {
const input = cloneDeep(frame);
input.fields[1].values = new ArrayVector([{ foo: 'bar' }]);
expect(dataFrameHasLevelLabel(input)).toBe(false);
});
});
describe('extractLevelLikeLabelFromDataFrame', () => {
it('returns label if lvl label is present', () => {
const input = cloneDeep(frame);
input.fields[1].values = new ArrayVector([{ lvl: 'info' }]);
expect(extractLevelLikeLabelFromDataFrame(input)).toBe('lvl');
});
it('returns label if level-like label is present', () => {
const input = cloneDeep(frame);
input.fields[1].values = new ArrayVector([{ error_level: 'info' }]);
expect(extractLevelLikeLabelFromDataFrame(input)).toBe('error_level');
});
it('returns undefined if no level-like label is present', () => {
const input = cloneDeep(frame);
input.fields[1].values = new ArrayVector([{ foo: 'info' }]);
expect(extractLevelLikeLabelFromDataFrame(input)).toBe(null);
});
});
describe('extractLogParserFromDataFrame', () => {
it('returns false by default', () => {
const input = cloneDeep(frame);
expect(extractLogParserFromDataFrame(input)).toEqual({ hasJSON: false, hasLogfmt: false });
});
it('identifies JSON', () => {
const input = cloneDeep(frame);
input.fields[2].values = new ArrayVector(['{"a":"b"}']);
expect(extractLogParserFromDataFrame(input)).toEqual({ hasJSON: true, hasLogfmt: false });
});
it('identifies logfmt', () => {
const input = cloneDeep(frame);
input.fields[2].values = new ArrayVector(['a=b']);
expect(extractLogParserFromDataFrame(input)).toEqual({ hasJSON: false, hasLogfmt: true });
});
});
describe('extractLabelKeysFromDataFrame', () => {
it('returns empty by default', () => {
const input = cloneDeep(frame);
input.fields[1].values = new ArrayVector([]);
expect(extractLabelKeysFromDataFrame(input)).toEqual([]);
});
it('extracts label keys', () => {
const input = cloneDeep(frame);
expect(extractLabelKeysFromDataFrame(input)).toEqual(['level']);
});
});
describe('extractUnwrapLabelKeysFromDataFrame', () => {
it('returns empty by default', () => {
const input = cloneDeep(frame);
input.fields[1].values = new ArrayVector([]);
expect(extractUnwrapLabelKeysFromDataFrame(input)).toEqual([]);
});
it('extracts possible unwrap label keys', () => {
const input = cloneDeep(frame);
input.fields[1].values = new ArrayVector([{ number: 13 }]);
expect(extractUnwrapLabelKeysFromDataFrame(input)).toEqual(['number']);
});
});