The open and composable observability and data visualization platform. Visualize metrics, logs, and traces from multiple sources like Prometheus, Loki, Elasticsearch, InfluxDB, Postgres and many more.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
grafana/public/app/plugins/datasource/prometheus/result_transformer.test.ts

869 lines
27 KiB

import { DataFrame, FieldType, DataQueryRequest, DataQueryResponse, MutableDataFrame } from '@grafana/data';
import { transform, transformV2, transformDFToTable } from './result_transformer';
import { PromQuery } from './types';
jest.mock('@grafana/runtime', () => ({
getTemplateSrv: () => ({
replace: (str: string) => str,
}),
getDataSourceSrv: () => {
return {
getInstanceSettings: () => {
return { name: 'Tempo' };
},
};
},
}));
const matrixResponse = {
status: 'success',
data: {
resultType: 'matrix',
result: [
{
metric: { __name__: 'test', job: 'testjob' },
values: [
[1, '10'],
[2, '0'],
],
},
],
},
};
describe('Prometheus Result Transformer', () => {
describe('transformV2', () => {
it('results with time_series format should be enriched with preferredVisualisationType', () => {
const request = ({
targets: [
{
format: 'time_series',
refId: 'A',
},
],
} as unknown) as DataQueryRequest<PromQuery>;
const response = ({
state: 'Done',
data: [
{
fields: [],
length: 2,
name: 'ALERTS',
refId: 'A',
},
],
} as unknown) as DataQueryResponse;
const series = transformV2(response, request, {});
expect(series).toEqual({
data: [{ fields: [], length: 2, meta: { preferredVisualisationType: 'graph' }, name: 'ALERTS', refId: 'A' }],
state: 'Done',
});
});
it('results with table format should be transformed to table dataFrames', () => {
const request = ({
targets: [
{
format: 'table',
refId: 'A',
},
],
} as unknown) as DataQueryRequest<PromQuery>;
const response = ({
state: 'Done',
data: [
new MutableDataFrame({
refId: 'A',
fields: [
{ name: 'time', type: FieldType.time, values: [6, 5, 4] },
{
name: 'value',
type: FieldType.number,
values: [6, 5, 4],
labels: { label1: 'value1', label2: 'value2' },
},
],
}),
],
} as unknown) as DataQueryResponse;
const series = transformV2(response, request, {});
expect(series.data[0].fields[0].name).toEqual('Time');
expect(series.data[0].fields[1].name).toEqual('label1');
expect(series.data[0].fields[2].name).toEqual('label2');
expect(series.data[0].fields[3].name).toEqual('Value');
expect(series.data[0].meta?.preferredVisualisationType).toEqual('table');
});
it('results with table format and multiple data frames should be transformed to 1 table dataFrame', () => {
const request = ({
targets: [
{
format: 'table',
refId: 'A',
},
],
} as unknown) as DataQueryRequest<PromQuery>;
const response = ({
state: 'Done',
data: [
new MutableDataFrame({
refId: 'A',
fields: [
{ name: 'time', type: FieldType.time, values: [6, 5, 4] },
{
name: 'value',
type: FieldType.number,
values: [6, 5, 4],
labels: { label1: 'value1', label2: 'value2' },
},
],
}),
new MutableDataFrame({
refId: 'A',
fields: [
{ name: 'time', type: FieldType.time, values: [2, 3, 7] },
{
name: 'value',
type: FieldType.number,
values: [2, 3, 7],
labels: { label3: 'value3', label4: 'value4' },
},
],
}),
],
} as unknown) as DataQueryResponse;
const series = transformV2(response, request, {});
expect(series.data.length).toEqual(1);
expect(series.data[0].fields[0].name).toEqual('Time');
expect(series.data[0].fields[1].name).toEqual('label1');
expect(series.data[0].fields[2].name).toEqual('label2');
expect(series.data[0].fields[3].name).toEqual('label3');
expect(series.data[0].fields[4].name).toEqual('label4');
expect(series.data[0].fields[5].name).toEqual('Value');
expect(series.data[0].meta?.preferredVisualisationType).toEqual('table');
});
it('results with table and time_series format should be correctly transformed', () => {
const options = ({
targets: [
{
format: 'table',
refId: 'A',
},
{
format: 'time_series',
refId: 'B',
},
],
} as unknown) as DataQueryRequest<PromQuery>;
const response = ({
state: 'Done',
data: [
new MutableDataFrame({
refId: 'A',
fields: [
{ name: 'time', type: FieldType.time, values: [6, 5, 4] },
{
name: 'value',
type: FieldType.number,
values: [6, 5, 4],
labels: { label1: 'value1', label2: 'value2' },
},
],
}),
new MutableDataFrame({
refId: 'B',
fields: [
{ name: 'time', type: FieldType.time, values: [6, 5, 4] },
{
name: 'value',
type: FieldType.number,
values: [6, 5, 4],
labels: { label1: 'value1', label2: 'value2' },
},
],
}),
],
} as unknown) as DataQueryResponse;
const series = transformV2(response, options, {});
expect(series.data[0].fields.length).toEqual(2);
expect(series.data[0].meta?.preferredVisualisationType).toEqual('graph');
expect(series.data[1].fields.length).toEqual(4);
expect(series.data[1].meta?.preferredVisualisationType).toEqual('table');
});
it('results with heatmap format should be correctly transformed', () => {
const options = ({
targets: [
{
format: 'heatmap',
refId: 'A',
},
],
} as unknown) as DataQueryRequest<PromQuery>;
const response = ({
state: 'Done',
data: [
new MutableDataFrame({
refId: 'A',
fields: [
{ name: 'Time', type: FieldType.time, values: [6, 5, 4] },
{
name: 'Value',
type: FieldType.number,
values: [10, 10, 0],
labels: { le: '1' },
},
],
}),
new MutableDataFrame({
refId: 'A',
fields: [
{ name: 'Time', type: FieldType.time, values: [6, 5, 4] },
{
name: 'Value',
type: FieldType.number,
values: [20, 10, 30],
labels: { le: '2' },
},
],
}),
new MutableDataFrame({
refId: 'A',
fields: [
{ name: 'Time', type: FieldType.time, values: [6, 5, 4] },
{
name: 'Value',
type: FieldType.number,
values: [30, 10, 40],
labels: { le: '3' },
},
],
}),
],
} as unknown) as DataQueryResponse;
const series = transformV2(response, options, {});
expect(series.data[0].fields.length).toEqual(2);
expect(series.data[0].fields[1].values.toArray()).toEqual([10, 10, 0]);
expect(series.data[1].fields[1].values.toArray()).toEqual([10, 0, 30]);
expect(series.data[2].fields[1].values.toArray()).toEqual([10, 0, 10]);
});
});
describe('transformDFToTable', () => {
it('transforms dataFrame with response length 1 to table dataFrame', () => {
const df = new MutableDataFrame({
refId: 'A',
fields: [
{ name: 'time', type: FieldType.time, values: [6, 5, 4] },
{
name: 'value',
type: FieldType.number,
values: [6, 5, 4],
labels: { label1: 'value1', label2: 'value2' },
},
],
});
const tableDf = transformDFToTable([df])[0];
expect(tableDf.fields.length).toBe(4);
expect(tableDf.fields[0].name).toBe('Time');
expect(tableDf.fields[1].name).toBe('label1');
expect(tableDf.fields[1].values.get(0)).toBe('value1');
expect(tableDf.fields[2].name).toBe('label2');
expect(tableDf.fields[2].values.get(0)).toBe('value2');
expect(tableDf.fields[3].name).toBe('Value');
});
it('transforms dataFrame with response length 2 to table dataFrame', () => {
const df = new MutableDataFrame({
refId: 'A',
fields: [
{ name: 'time', type: FieldType.time, values: [6, 5, 4] },
{
name: 'value',
type: FieldType.number,
values: [6, 5, 4],
labels: { label1: 'value1', label2: 'value2' },
},
],
});
const tableDf = transformDFToTable([df])[0];
expect(tableDf.fields.length).toBe(4);
expect(tableDf.fields[0].name).toBe('Time');
expect(tableDf.fields[1].name).toBe('label1');
expect(tableDf.fields[1].values.get(0)).toBe('value1');
expect(tableDf.fields[2].name).toBe('label2');
expect(tableDf.fields[2].values.get(0)).toBe('value2');
expect(tableDf.fields[3].name).toBe('Value');
});
});
describe('transform', () => {
const options: any = { target: {}, query: {} };
describe('When nothing is returned', () => {
it('should return empty array', () => {
const response = {
status: 'success',
data: {
resultType: '',
result: null,
},
};
const series = transform({ data: response } as any, options);
expect(series).toEqual([]);
});
it('should return empty array', () => {
const response = {
status: 'success',
data: {
resultType: '',
result: null,
},
};
const result = transform({ data: response } as any, { ...options, target: { format: 'table' } });
expect(result).toHaveLength(0);
});
});
describe('When resultFormat is table', () => {
const response = {
status: 'success',
data: {
resultType: 'matrix',
result: [
{
metric: { __name__: 'test', job: 'testjob' },
values: [
[1443454528, '3846'],
[1443454530, '3848'],
],
},
{
metric: {
__name__: 'test2',
instance: 'localhost:8080',
job: 'otherjob',
},
values: [
[1443454529, '3847'],
[1443454531, '3849'],
],
},
],
},
};
it('should return data frame', () => {
const result = transform({ data: response } as any, {
...options,
target: {
responseListLength: 0,
refId: 'A',
format: 'table',
},
});
expect(result[0].fields[0].values.toArray()).toEqual([
1443454528000,
1443454530000,
1443454529000,
1443454531000,
]);
expect(result[0].fields[0].name).toBe('Time');
expect(result[0].fields[0].type).toBe(FieldType.time);
expect(result[0].fields[1].values.toArray()).toEqual(['test', 'test', 'test2', 'test2']);
expect(result[0].fields[1].name).toBe('__name__');
expect(result[0].fields[1].config.filterable).toBe(true);
expect(result[0].fields[1].type).toBe(FieldType.string);
expect(result[0].fields[2].values.toArray()).toEqual(['', '', 'localhost:8080', 'localhost:8080']);
expect(result[0].fields[2].name).toBe('instance');
expect(result[0].fields[2].type).toBe(FieldType.string);
expect(result[0].fields[3].values.toArray()).toEqual(['testjob', 'testjob', 'otherjob', 'otherjob']);
expect(result[0].fields[3].name).toBe('job');
expect(result[0].fields[3].type).toBe(FieldType.string);
expect(result[0].fields[4].values.toArray()).toEqual([3846, 3848, 3847, 3849]);
expect(result[0].fields[4].name).toEqual('Value');
expect(result[0].fields[4].type).toBe(FieldType.number);
expect(result[0].refId).toBe('A');
});
it('should include refId if response count is more than 2', () => {
const result = transform({ data: response } as any, {
...options,
target: {
refId: 'B',
format: 'table',
},
responseListLength: 2,
});
expect(result[0].fields[4].name).toEqual('Value #B');
});
});
describe('When resultFormat is table and instant = true', () => {
const response = {
status: 'success',
data: {
resultType: 'vector',
result: [
{
metric: { __name__: 'test', job: 'testjob' },
value: [1443454528, '3846'],
},
],
},
};
it('should return data frame', () => {
const result = transform({ data: response } as any, { ...options, target: { format: 'table' } });
expect(result[0].fields[0].values.toArray()).toEqual([1443454528000]);
expect(result[0].fields[0].name).toBe('Time');
expect(result[0].fields[1].values.toArray()).toEqual(['test']);
expect(result[0].fields[1].name).toBe('__name__');
expect(result[0].fields[2].values.toArray()).toEqual(['testjob']);
expect(result[0].fields[2].name).toBe('job');
expect(result[0].fields[3].values.toArray()).toEqual([3846]);
expect(result[0].fields[3].name).toEqual('Value');
});
it('should return le label values parsed as numbers', () => {
const response = {
status: 'success',
data: {
resultType: 'vector',
result: [
{
metric: { le: '102' },
value: [1594908838, '0'],
},
],
},
};
const result = transform({ data: response } as any, { ...options, target: { format: 'table' } });
expect(result[0].fields[1].values.toArray()).toEqual([102]);
expect(result[0].fields[1].type).toEqual(FieldType.number);
});
});
describe('When instant = true', () => {
const response = {
status: 'success',
data: {
resultType: 'vector',
result: [
{
metric: { __name__: 'test', job: 'testjob' },
value: [1443454528, '3846'],
},
],
},
};
it('should return data frame', () => {
const result: DataFrame[] = transform({ data: response } as any, { ...options, query: { instant: true } });
expect(result[0].name).toBe('test{job="testjob"}');
});
});
describe('When resultFormat is heatmap', () => {
const getResponse = (result: any) => ({
status: 'success',
data: {
resultType: 'matrix',
result,
},
});
const options = {
format: 'heatmap',
start: 1445000010,
end: 1445000030,
legendFormat: '{{le}}',
};
it('should convert cumulative histogram to regular', () => {
const response = getResponse([
{
metric: { __name__: 'test', job: 'testjob', le: '1' },
values: [
[1445000010, '10'],
[1445000020, '10'],
[1445000030, '0'],
],
},
{
metric: { __name__: 'test', job: 'testjob', le: '2' },
values: [
[1445000010, '20'],
[1445000020, '10'],
[1445000030, '30'],
],
},
{
metric: { __name__: 'test', job: 'testjob', le: '3' },
values: [
[1445000010, '30'],
[1445000020, '10'],
[1445000030, '40'],
],
},
]);
const result = transform({ data: response } as any, { query: options, target: options } as any);
expect(result[0].fields[0].values.toArray()).toEqual([1445000010000, 1445000020000, 1445000030000]);
expect(result[0].fields[1].values.toArray()).toEqual([10, 10, 0]);
expect(result[1].fields[0].values.toArray()).toEqual([1445000010000, 1445000020000, 1445000030000]);
expect(result[1].fields[1].values.toArray()).toEqual([10, 0, 30]);
expect(result[2].fields[0].values.toArray()).toEqual([1445000010000, 1445000020000, 1445000030000]);
expect(result[2].fields[1].values.toArray()).toEqual([10, 0, 10]);
});
it('should handle missing datapoints', () => {
const response = getResponse([
{
metric: { __name__: 'test', job: 'testjob', le: '1' },
values: [
[1445000010, '1'],
[1445000020, '2'],
],
},
{
metric: { __name__: 'test', job: 'testjob', le: '2' },
values: [
[1445000010, '2'],
[1445000020, '5'],
[1445000030, '1'],
],
},
{
metric: { __name__: 'test', job: 'testjob', le: '3' },
values: [
[1445000010, '3'],
[1445000020, '7'],
],
},
]);
const result = transform({ data: response } as any, { query: options, target: options } as any);
expect(result[0].fields[1].values.toArray()).toEqual([1, 2]);
expect(result[1].fields[1].values.toArray()).toEqual([1, 3, 1]);
expect(result[2].fields[1].values.toArray()).toEqual([1, 2]);
});
});
describe('When the response is a matrix', () => {
it('should have labels with the value field', () => {
const response = {
status: 'success',
data: {
resultType: 'matrix',
result: [
{
metric: { __name__: 'test', job: 'testjob', instance: 'testinstance' },
values: [
[0, '10'],
[1, '10'],
[2, '0'],
],
},
],
},
};
const result: DataFrame[] = transform({ data: response } as any, {
...options,
});
expect(result[0].fields[1].labels).toBeDefined();
expect(result[0].fields[1].labels?.instance).toBe('testinstance');
expect(result[0].fields[1].labels?.job).toBe('testjob');
});
it('should transform into a data frame', () => {
const response = {
status: 'success',
data: {
resultType: 'matrix',
result: [
{
metric: { __name__: 'test', job: 'testjob' },
values: [
[0, '10'],
[1, '10'],
[2, '0'],
],
},
],
},
};
const result: DataFrame[] = transform({ data: response } as any, {
...options,
query: {
start: 0,
end: 2,
},
});
expect(result[0].fields[0].values.toArray()).toEqual([0, 1000, 2000]);
expect(result[0].fields[1].values.toArray()).toEqual([10, 10, 0]);
expect(result[0].name).toBe('test{job="testjob"}');
});
it('should fill null values', () => {
const result = transform({ data: matrixResponse } as any, {
...options,
query: { step: 1, start: 0, end: 2 },
});
expect(result[0].fields[0].values.toArray()).toEqual([0, 1000, 2000]);
expect(result[0].fields[1].values.toArray()).toEqual([null, 10, 0]);
});
it('should use __name__ label as series name', () => {
const result = transform({ data: matrixResponse } as any, {
...options,
query: {
step: 1,
start: 0,
end: 2,
},
});
expect(result[0].name).toEqual('test{job="testjob"}');
});
it('should use query as series name when __name__ is not available and metric is empty', () => {
const response = {
status: 'success',
data: {
resultType: 'matrix',
result: [
{
metric: {},
values: [[0, '10']],
},
],
},
};
const expr = 'histogram_quantile(0.95, sum(rate(tns_request_duration_seconds_bucket[5m])) by (le))';
const result = transform({ data: response } as any, {
...options,
query: {
step: 1,
start: 0,
end: 2,
expr,
},
});
expect(result[0].name).toEqual(expr);
});
it('should set frame name to undefined if no __name__ label but there are other labels', () => {
const response = {
status: 'success',
data: {
resultType: 'matrix',
result: [
{
metric: { job: 'testjob' },
values: [
[1, '10'],
[2, '0'],
],
},
],
},
};
const result = transform({ data: response } as any, {
...options,
query: {
step: 1,
start: 0,
end: 2,
},
});
expect(result[0].name).toBe('{job="testjob"}');
});
it('should not set displayName for ValueFields', () => {
const result = transform({ data: matrixResponse } as any, options);
expect(result[0].fields[1].config.displayName).toBeUndefined();
expect(result[0].fields[1].config.displayNameFromDS).toBe('test{job="testjob"}');
});
it('should align null values with step', () => {
const response = {
status: 'success',
data: {
resultType: 'matrix',
result: [
{
metric: { __name__: 'test', job: 'testjob' },
values: [
[4, '10'],
[8, '10'],
],
},
],
},
};
const result = transform({ data: response } as any, { ...options, query: { step: 2, start: 0, end: 8 } });
expect(result[0].fields[0].values.toArray()).toEqual([0, 2000, 4000, 6000, 8000]);
expect(result[0].fields[1].values.toArray()).toEqual([null, null, 10, null, 10]);
});
});
describe('When infinity values are returned', () => {
describe('When resultType is scalar', () => {
const response = {
status: 'success',
data: {
resultType: 'scalar',
result: [1443454528, '+Inf'],
},
};
it('should correctly parse values', () => {
const result: DataFrame[] = transform({ data: response } as any, {
...options,
target: { format: 'table' },
});
expect(result[0].fields[1].values.toArray()).toEqual([Number.POSITIVE_INFINITY]);
});
});
describe('When resultType is vector', () => {
const response = {
status: 'success',
data: {
resultType: 'vector',
result: [
{
metric: { __name__: 'test', job: 'testjob' },
value: [1443454528, '+Inf'],
},
{
metric: { __name__: 'test', job: 'testjob' },
value: [1443454528, '-Inf'],
},
],
},
};
describe('When format is table', () => {
it('should correctly parse values', () => {
const result: DataFrame[] = transform({ data: response } as any, {
...options,
target: { format: 'table' },
});
expect(result[0].fields[3].values.toArray()).toEqual([Number.POSITIVE_INFINITY, Number.NEGATIVE_INFINITY]);
});
});
});
});
const exemplarsResponse = {
status: 'success',
data: [
{
seriesLabels: { __name__: 'test' },
exemplars: [
{
timestamp: 1610449069.957,
labels: { traceID: '5020b5bc45117f07' },
value: 0.002074123,
},
],
},
],
};
describe('When the response is exemplar data', () => {
it('should return as an data frame with a dataTopic annotations', () => {
const result = transform({ data: exemplarsResponse } as any, options);
expect(result[0].meta?.dataTopic).toBe('annotations');
expect(result[0].fields.length).toBe(4); // __name__, traceID, Time, Value
expect(result[0].length).toBe(1);
});
it('should return with an empty array when data is empty', () => {
const result = transform(
{
data: {
status: 'success',
data: [],
},
} as any,
options
);
expect(result).toHaveLength(0);
});
it('should remove exemplars that are too close to each other', () => {
const response = {
status: 'success',
data: [
{
exemplars: [
{
timestamp: 1610449070.0,
value: 5,
},
{
timestamp: 1610449070.0,
value: 1,
},
{
timestamp: 1610449070.5,
value: 13,
},
{
timestamp: 1610449070.3,
value: 20,
},
],
},
],
};
/**
* the standard deviation for the above values is 8.4 this means that we show the highest
* value (20) and then the next value should be 2 times the standard deviation which is 1
**/
const result = transform({ data: response } as any, options);
expect(result[0].length).toBe(2);
});
describe('data link', () => {
it('should be added to the field if found with url', () => {
const result = transform({ data: exemplarsResponse } as any, {
...options,
exemplarTraceIdDestinations: [{ name: 'traceID', url: 'http://localhost' }],
});
expect(result[0].fields.some((f) => f.config.links?.length)).toBe(true);
});
it('should be added to the field if found with internal link', () => {
const result = transform({ data: exemplarsResponse } as any, {
...options,
exemplarTraceIdDestinations: [{ name: 'traceID', datasourceUid: 'jaeger' }],
});
expect(result[0].fields.some((f) => f.config.links?.length)).toBe(true);
});
it('should not add link if exemplarTraceIdDestinations is not configured', () => {
const result = transform({ data: exemplarsResponse } as any, options);
expect(result[0].fields.some((f) => f.config.links?.length)).toBe(false);
});
});
});
});
});