The open and composable observability and data visualization platform. Visualize metrics, logs, and traces from multiple sources like Prometheus, Loki, Elasticsearch, InfluxDB, Postgres and many more.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
grafana/public/app/core/specs/logs_model.test.ts

564 lines
14 KiB

import {
DataFrame,
FieldType,
LogsModel,
LogsMetaKind,
LogsDedupStrategy,
LogLevel,
DataFrameHelper,
toDataFrame,
} from '@grafana/data';
import {
dedupLogRows,
calculateFieldStats,
calculateLogsLabelStats,
getParser,
LogsParsers,
dataFrameToLogsModel,
} from '../logs_model';
describe('dedupLogRows()', () => {
test('should return rows as is when dedup is set to none', () => {
const logs = {
rows: [
{
entry: 'WARN test 1.23 on [xxx]',
},
{
entry: 'WARN test 1.23 on [xxx]',
},
],
};
expect(dedupLogRows(logs as LogsModel, LogsDedupStrategy.none).rows).toMatchObject(logs.rows);
});
test('should dedup on exact matches', () => {
const logs = {
rows: [
{
entry: 'WARN test 1.23 on [xxx]',
},
{
entry: 'WARN test 1.23 on [xxx]',
},
{
entry: 'INFO test 2.44 on [xxx]',
},
{
entry: 'WARN test 1.23 on [xxx]',
},
],
};
expect(dedupLogRows(logs as LogsModel, LogsDedupStrategy.exact).rows).toEqual([
{
duplicates: 1,
entry: 'WARN test 1.23 on [xxx]',
},
{
duplicates: 0,
entry: 'INFO test 2.44 on [xxx]',
},
{
duplicates: 0,
entry: 'WARN test 1.23 on [xxx]',
},
]);
});
test('should dedup on number matches', () => {
const logs = {
rows: [
{
entry: 'WARN test 1.2323423 on [xxx]',
},
{
entry: 'WARN test 1.23 on [xxx]',
},
{
entry: 'INFO test 2.44 on [xxx]',
},
{
entry: 'WARN test 1.23 on [xxx]',
},
],
};
expect(dedupLogRows(logs as LogsModel, LogsDedupStrategy.numbers).rows).toEqual([
{
duplicates: 1,
entry: 'WARN test 1.2323423 on [xxx]',
},
{
duplicates: 0,
entry: 'INFO test 2.44 on [xxx]',
},
{
duplicates: 0,
entry: 'WARN test 1.23 on [xxx]',
},
]);
});
test('should dedup on signature matches', () => {
const logs = {
rows: [
{
entry: 'WARN test 1.2323423 on [xxx]',
},
{
entry: 'WARN test 1.23 on [xxx]',
},
{
entry: 'INFO test 2.44 on [xxx]',
},
{
entry: 'WARN test 1.23 on [xxx]',
},
],
};
expect(dedupLogRows(logs as LogsModel, LogsDedupStrategy.signature).rows).toEqual([
{
duplicates: 3,
entry: 'WARN test 1.2323423 on [xxx]',
},
]);
});
test('should return to non-deduped state on same log result', () => {
const logs = {
rows: [
{
entry: 'INFO 123',
},
{
entry: 'WARN 123',
},
{
entry: 'WARN 123',
},
],
};
expect(dedupLogRows(logs as LogsModel, LogsDedupStrategy.exact).rows).toEqual([
{
duplicates: 0,
entry: 'INFO 123',
},
{
duplicates: 1,
entry: 'WARN 123',
},
]);
expect(dedupLogRows(logs as LogsModel, LogsDedupStrategy.none).rows).toEqual(logs.rows);
});
});
describe('calculateFieldStats()', () => {
test('should return no stats for empty rows', () => {
expect(calculateFieldStats([], /foo=(.*)/)).toEqual([]);
});
test('should return no stats if extractor does not match', () => {
const rows = [
{
entry: 'foo=bar',
},
];
expect(calculateFieldStats(rows as any, /baz=(.*)/)).toEqual([]);
});
test('should return stats for found field', () => {
const rows = [
{
entry: 'foo="42 + 1"',
},
{
entry: 'foo=503 baz=foo',
},
{
entry: 'foo="42 + 1"',
},
{
entry: 't=2018-12-05T07:44:59+0000 foo=503',
},
];
expect(calculateFieldStats(rows as any, /foo=("[^"]*"|\S+)/)).toMatchObject([
{
value: '"42 + 1"',
count: 2,
},
{
value: '503',
count: 2,
},
]);
});
});
describe('calculateLogsLabelStats()', () => {
test('should return no stats for empty rows', () => {
expect(calculateLogsLabelStats([], '')).toEqual([]);
});
test('should return no stats of label is not found', () => {
const rows = [
{
entry: 'foo 1',
labels: {
foo: 'bar',
},
},
];
expect(calculateLogsLabelStats(rows as any, 'baz')).toEqual([]);
});
test('should return stats for found labels', () => {
const rows = [
{
entry: 'foo 1',
labels: {
foo: 'bar',
},
},
{
entry: 'foo 0',
labels: {
foo: 'xxx',
},
},
{
entry: 'foo 2',
labels: {
foo: 'bar',
},
},
];
expect(calculateLogsLabelStats(rows as any, 'foo')).toMatchObject([
{
value: 'bar',
count: 2,
},
{
value: 'xxx',
count: 1,
},
]);
});
});
describe('getParser()', () => {
test('should return no parser on empty line', () => {
expect(getParser('')).toBeUndefined();
});
test('should return no parser on unknown line pattern', () => {
expect(getParser('To Be or not to be')).toBeUndefined();
});
test('should return logfmt parser on key value patterns', () => {
expect(getParser('foo=bar baz="41 + 1')).toEqual(LogsParsers.logfmt);
});
test('should return JSON parser on JSON log lines', () => {
// TODO implement other JSON value types than string
expect(getParser('{"foo": "bar", "baz": "41 + 1"}')).toEqual(LogsParsers.JSON);
});
});
describe('LogsParsers', () => {
describe('logfmt', () => {
const parser = LogsParsers.logfmt;
test('should detect format', () => {
expect(parser.test('foo')).toBeFalsy();
expect(parser.test('foo=bar')).toBeTruthy();
});
test('should return parsed fields', () => {
expect(parser.getFields('foo=bar baz="42 + 1"')).toEqual(['foo=bar', 'baz="42 + 1"']);
});
test('should return label for field', () => {
expect(parser.getLabelFromField('foo=bar')).toBe('foo');
});
test('should return value for field', () => {
expect(parser.getValueFromField('foo=bar')).toBe('bar');
});
test('should build a valid value matcher', () => {
const matcher = parser.buildMatcher('foo');
const match = 'foo=bar'.match(matcher);
expect(match).toBeDefined();
expect(match[1]).toBe('bar');
});
});
describe('JSON', () => {
const parser = LogsParsers.JSON;
test('should detect format', () => {
expect(parser.test('foo')).toBeFalsy();
expect(parser.test('{"foo":"bar"}')).toBeTruthy();
});
test('should return parsed fields', () => {
expect(parser.getFields('{ "foo" : "bar", "baz" : 42 }')).toEqual(['"foo" : "bar"', '"baz" : 42']);
});
test('should return parsed fields for nested quotes', () => {
expect(parser.getFields(`{"foo":"bar: '[value=\\"42\\"]'"}`)).toEqual([`"foo":"bar: '[value=\\"42\\"]'"`]);
});
test('should return label for field', () => {
expect(parser.getLabelFromField('"foo" : "bar"')).toBe('foo');
});
test('should return value for field', () => {
expect(parser.getValueFromField('"foo" : "bar"')).toBe('"bar"');
expect(parser.getValueFromField('"foo" : 42')).toBe('42');
expect(parser.getValueFromField('"foo" : 42.1')).toBe('42.1');
});
test('should build a valid value matcher for strings', () => {
const matcher = parser.buildMatcher('foo');
const match = '{"foo":"bar"}'.match(matcher);
expect(match).toBeDefined();
expect(match[1]).toBe('bar');
});
test('should build a valid value matcher for integers', () => {
const matcher = parser.buildMatcher('foo');
const match = '{"foo":42.1}'.match(matcher);
expect(match).toBeDefined();
expect(match[1]).toBe('42.1');
});
});
});
const emptyLogsModel: any = {
hasUniqueLabels: false,
rows: [],
meta: [],
series: [],
};
describe('dataFrameToLogsModel', () => {
it('given empty series should return empty logs model', () => {
expect(dataFrameToLogsModel([] as DataFrame[], 0)).toMatchObject(emptyLogsModel);
});
it('given series without correct series name should return empty logs model', () => {
const series: DataFrame[] = [
toDataFrame({
fields: [],
}),
];
expect(dataFrameToLogsModel(series, 0)).toMatchObject(emptyLogsModel);
});
it('given series without a time field should return empty logs model', () => {
const series: DataFrame[] = [
new DataFrameHelper({
fields: [
{
name: 'message',
type: FieldType.string,
values: [],
},
],
}),
];
expect(dataFrameToLogsModel(series, 0)).toMatchObject(emptyLogsModel);
});
it('given series without a string field should return empty logs model', () => {
const series: DataFrame[] = [
new DataFrameHelper({
fields: [
{
name: 'time',
type: FieldType.time,
values: [],
},
],
}),
];
expect(dataFrameToLogsModel(series, 0)).toMatchObject(emptyLogsModel);
});
it('given one series should return expected logs model', () => {
const series: DataFrame[] = [
new DataFrameHelper({
labels: {
filename: '/var/log/grafana/grafana.log',
job: 'grafana',
},
fields: [
{
name: 'time',
type: FieldType.time,
values: ['2019-04-26T09:28:11.352440161Z', '2019-04-26T14:42:50.991981292Z'],
},
{
name: 'message',
type: FieldType.string,
values: [
't=2019-04-26T11:05:28+0200 lvl=info msg="Initializing DatasourceCacheService" logger=server',
't=2019-04-26T16:42:50+0200 lvl=eror msg="new token…t unhashed token=56d9fdc5c8b7400bd51b060eea8ca9d7',
],
},
],
meta: {
limit: 1000,
},
}),
];
const logsModel = dataFrameToLogsModel(series, 0);
expect(logsModel.hasUniqueLabels).toBeFalsy();
expect(logsModel.rows).toHaveLength(2);
expect(logsModel.rows).toMatchObject([
{
timestamp: '2019-04-26T09:28:11.352440161Z',
entry: 't=2019-04-26T11:05:28+0200 lvl=info msg="Initializing DatasourceCacheService" logger=server',
labels: { filename: '/var/log/grafana/grafana.log', job: 'grafana' },
logLevel: 'info',
uniqueLabels: {},
},
{
timestamp: '2019-04-26T14:42:50.991981292Z',
entry: 't=2019-04-26T16:42:50+0200 lvl=eror msg="new token…t unhashed token=56d9fdc5c8b7400bd51b060eea8ca9d7',
labels: { filename: '/var/log/grafana/grafana.log', job: 'grafana' },
logLevel: 'error',
uniqueLabels: {},
},
]);
expect(logsModel.series).toHaveLength(2);
expect(logsModel.meta).toHaveLength(2);
expect(logsModel.meta[0]).toMatchObject({
label: 'Common labels',
value: series[0].labels,
kind: LogsMetaKind.LabelsMap,
});
expect(logsModel.meta[1]).toMatchObject({
label: 'Limit',
value: `1000 (2 returned)`,
kind: LogsMetaKind.String,
});
});
it('given one series without labels should return expected logs model', () => {
const series: DataFrame[] = [
new DataFrameHelper({
fields: [
{
name: 'time',
type: FieldType.time,
values: ['1970-01-01T00:00:01Z'],
},
{
name: 'message',
type: FieldType.string,
values: ['WARN boooo'],
},
{
name: 'level',
type: FieldType.string,
values: ['dbug'],
},
],
}),
];
const logsModel = dataFrameToLogsModel(series, 0);
expect(logsModel.rows).toHaveLength(1);
expect(logsModel.rows).toMatchObject([
{
entry: 'WARN boooo',
labels: undefined,
logLevel: LogLevel.debug,
uniqueLabels: {},
},
]);
});
it('given multiple series should return expected logs model', () => {
const series: DataFrame[] = [
toDataFrame({
labels: {
foo: 'bar',
baz: '1',
level: 'dbug',
},
fields: [
{
name: 'ts',
type: FieldType.time,
values: ['1970-01-01T00:00:01Z'],
},
{
name: 'line',
type: FieldType.string,
values: ['WARN boooo'],
},
],
}),
toDataFrame({
name: 'logs',
labels: {
foo: 'bar',
baz: '2',
level: 'err',
},
fields: [
{
name: 'time',
type: FieldType.time,
values: ['1970-01-01T00:00:00Z', '1970-01-01T00:00:02Z'],
},
{
name: 'message',
type: FieldType.string,
values: ['INFO 1', 'INFO 2'],
},
],
}),
];
const logsModel = dataFrameToLogsModel(series, 0);
expect(logsModel.hasUniqueLabels).toBeTruthy();
expect(logsModel.rows).toHaveLength(3);
expect(logsModel.rows).toMatchObject([
{
entry: 'WARN boooo',
labels: { foo: 'bar', baz: '1' },
logLevel: LogLevel.debug,
uniqueLabels: { baz: '1' },
},
{
entry: 'INFO 1',
labels: { foo: 'bar', baz: '2' },
logLevel: LogLevel.error,
uniqueLabels: { baz: '2' },
},
{
entry: 'INFO 2',
labels: { foo: 'bar', baz: '2' },
logLevel: LogLevel.error,
uniqueLabels: { baz: '2' },
},
]);
expect(logsModel.series).toHaveLength(2);
expect(logsModel.meta).toHaveLength(1);
expect(logsModel.meta[0]).toMatchObject({
label: 'Common labels',
value: {
foo: 'bar',
},
kind: LogsMetaKind.LabelsMap,
});
});
});