The open and composable observability and data visualization platform. Visualize metrics, logs, and traces from multiple sources like Prometheus, Loki, Elasticsearch, InfluxDB, Postgres and many more.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
grafana/public/app/features/logs/logsModel.ts

810 lines
25 KiB

import { groupBy, size } from 'lodash';
import { from, isObservable, Observable } from 'rxjs';
import {
AbsoluteTimeRange,
createDataFrame,
DataFrame,
DataQuery,
DataQueryRequest,
DataQueryResponse,
DataSourceApi,
DataSourceJsonData,
dateTimeFormat,
dateTimeFormatTimeAgo,
DateTimeInput,
Field,
FieldCache,
FieldColorModeId,
FieldType,
findCommonLabels,
findUniqueLabels,
getTimeField,
Labels,
LoadingState,
LogLevel,
LogRowModel,
LogsDedupStrategy,
LogsMetaItem,
LogsMetaKind,
LogsModel,
LogsVolumeCustomMetaData,
LogsVolumeType,
rangeUtil,
ScopedVars,
sortDataFrame,
textUtil,
TimeRange,
toDataFrame,
toUtc,
} from '@grafana/data';
import { SIPrefix } from '@grafana/data/src/valueFormats/symbolFormatters';
import { BarAlignment, GraphDrawStyle, StackingMode } from '@grafana/schema';
import { ansicolor, colors } from '@grafana/ui';
import { getThemeColor } from 'app/core/utils/colors';
import { LogsFrame, parseLogsFrame } from './logsFrame';
import { getLogLevel, getLogLevelFromKey, sortInAscendingOrder } from './utils';
export const LIMIT_LABEL = 'Line limit';
export const COMMON_LABELS = 'Common labels';
export const LogLevelColor = {
[LogLevel.critical]: colors[7],
[LogLevel.warning]: colors[1],
[LogLevel.error]: colors[4],
[LogLevel.info]: colors[0],
[LogLevel.debug]: colors[5],
[LogLevel.trace]: colors[2],
[LogLevel.unknown]: getThemeColor('#8e8e8e', '#bdc4cd'),
};
const MILLISECOND = 1;
const SECOND = 1000 * MILLISECOND;
const MINUTE = 60 * SECOND;
const HOUR = 60 * MINUTE;
const DAY = 24 * HOUR;
const isoDateRegexp = /\d{4}-[01]\d-[0-3]\dT[0-2]\d:[0-5]\d:[0-6]\d[,\.]\d+([+-][0-2]\d:[0-5]\d|Z)/g;
function isDuplicateRow(row: LogRowModel, other: LogRowModel, strategy?: LogsDedupStrategy): boolean {
switch (strategy) {
case LogsDedupStrategy.exact:
// Exact still strips dates
return row.entry.replace(isoDateRegexp, '') === other.entry.replace(isoDateRegexp, '');
case LogsDedupStrategy.numbers:
return row.entry.replace(/\d/g, '') === other.entry.replace(/\d/g, '');
case LogsDedupStrategy.signature:
return row.entry.replace(/\w/g, '') === other.entry.replace(/\w/g, '');
default:
return false;
}
}
export function dedupLogRows(rows: LogRowModel[], strategy?: LogsDedupStrategy): LogRowModel[] {
if (strategy === LogsDedupStrategy.none) {
return rows;
}
return rows.reduce((result: LogRowModel[], row: LogRowModel, index) => {
const rowCopy = { ...row };
const previous = result[result.length - 1];
if (index > 0 && isDuplicateRow(row, previous, strategy)) {
previous.duplicates!++;
} else {
rowCopy.duplicates = 0;
result.push(rowCopy);
}
return result;
}, []);
}
export function filterLogLevels(logRows: LogRowModel[], hiddenLogLevels: Set<LogLevel>): LogRowModel[] {
if (hiddenLogLevels.size === 0) {
return logRows;
}
return logRows.filter((row: LogRowModel) => {
return !hiddenLogLevels.has(row.logLevel);
});
}
interface Series {
lastTs: number | null;
datapoints: Array<[number, number]>;
target: LogLevel;
color: string;
}
export function makeDataFramesForLogs(sortedRows: LogRowModel[], bucketSize: number): DataFrame[] {
// currently interval is rangeMs / resolution, which is too low for showing series as bars.
// Should be solved higher up the chain when executing queries & interval calculated and not here but this is a temporary fix.
// Graph time series by log level
const seriesByLevel: Record<string, Series> = {};
const seriesList: Series[] = [];
for (const row of sortedRows) {
let series = seriesByLevel[row.logLevel];
if (!series) {
seriesByLevel[row.logLevel] = series = {
lastTs: null,
datapoints: [],
target: row.logLevel,
color: LogLevelColor[row.logLevel],
};
seriesList.push(series);
}
// align time to bucket size - used Math.floor for calculation as time of the bucket
// must be in the past (before Date.now()) to be displayed on the graph
const time = Math.floor(row.timeEpochMs / bucketSize) * bucketSize;
// Entry for time
if (time === series.lastTs) {
series.datapoints[series.datapoints.length - 1][0]++;
} else {
series.datapoints.push([1, time]);
series.lastTs = time;
}
// add zero to other levels to aid stacking so each level series has same number of points
for (const other of seriesList) {
if (other !== series && other.lastTs !== time) {
other.datapoints.push([0, time]);
other.lastTs = time;
}
}
}
return seriesList.map((series, i) => {
series.datapoints.sort((a: number[], b: number[]) => a[1] - b[1]);
const data = toDataFrame(series);
const fieldCache = new FieldCache(data);
const valueField = fieldCache.getFirstFieldOfType(FieldType.number)!;
data.fields[valueField.index].config.min = 0;
data.fields[valueField.index].config.decimals = 0;
data.fields[valueField.index].config.color = {
mode: FieldColorModeId.Fixed,
fixedColor: series.color,
};
data.fields[valueField.index].config.custom = {
drawStyle: GraphDrawStyle.Bars,
barAlignment: BarAlignment.Center,
barWidthFactor: 0.9,
barMaxWidth: 5,
lineColor: series.color,
pointColor: series.color,
fillColor: series.color,
lineWidth: 0,
fillOpacity: 100,
stacking: {
mode: StackingMode.Normal,
group: 'A',
},
};
return data;
});
}
function isLogsData(series: DataFrame) {
return series.fields.some((f) => f.type === FieldType.time) && series.fields.some((f) => f.type === FieldType.string);
}
/**
* Convert dataFrame into LogsModel which consists of creating separate array of log rows and metrics series. Metrics
* series can be either already included in the dataFrame or will be computed from the log rows.
* @param dataFrame
* @param intervalMs Optional. In case there are no metrics series, we use this for computing it from log rows.
* @param absoluteRange Optional. Used to store absolute range of executed queries in logs model. This is used for pagination.
* @param queries Optional. Used to store executed queries in logs model. This is used for pagination.
*/
export function dataFrameToLogsModel(
dataFrame: DataFrame[],
intervalMs?: number,
absoluteRange?: AbsoluteTimeRange,
queries?: DataQuery[]
): LogsModel {
const { logSeries } = separateLogsAndMetrics(dataFrame);
const logsModel = logSeriesToLogsModel(logSeries, queries);
if (logsModel) {
// Create histogram metrics from logs using the interval as bucket size for the line count
if (intervalMs && logsModel.rows.length > 0) {
const sortedRows = logsModel.rows.sort(sortInAscendingOrder);
const { visibleRange, bucketSize, visibleRangeMs, requestedRangeMs } = getSeriesProperties(
sortedRows,
intervalMs,
absoluteRange
);
logsModel.visibleRange = visibleRange;
logsModel.bucketSize = bucketSize;
logsModel.series = makeDataFramesForLogs(sortedRows, bucketSize);
if (logsModel.meta) {
logsModel.meta = adjustMetaInfo(logsModel, visibleRangeMs, requestedRangeMs);
}
} else {
logsModel.series = [];
}
logsModel.queries = queries;
return logsModel;
}
return {
hasUniqueLabels: false,
rows: [],
meta: [],
series: [],
queries,
};
}
/**
* Returns a clamped time range and interval based on the visible logs and the given range.
*
* @param sortedRows Log rows from the query response
* @param intervalMs Dynamic data interval based on available pixel width
* @param absoluteRange Requested time range
* @param pxPerBar Default: 20, buckets will be rendered as bars, assuming 10px per histogram bar plus some free space around it
*/
export function getSeriesProperties(
sortedRows: LogRowModel[],
intervalMs: number,
absoluteRange?: AbsoluteTimeRange,
pxPerBar = 20,
minimumBucketSize = 1000
) {
let visibleRange = absoluteRange;
let resolutionIntervalMs = intervalMs;
let bucketSize = Math.max(resolutionIntervalMs * pxPerBar, minimumBucketSize);
let visibleRangeMs;
let requestedRangeMs;
// Clamp time range to visible logs otherwise big parts of the graph might look empty
if (absoluteRange) {
const earliestTsLogs = sortedRows[0].timeEpochMs;
requestedRangeMs = absoluteRange.to - absoluteRange.from;
visibleRangeMs = absoluteRange.to - earliestTsLogs;
if (visibleRangeMs > 0) {
// Adjust interval bucket size for potentially shorter visible range
const clampingFactor = visibleRangeMs / requestedRangeMs;
resolutionIntervalMs *= clampingFactor;
// Minimum bucketsize of 1s for nicer graphing
bucketSize = Math.max(Math.ceil(resolutionIntervalMs * pxPerBar), minimumBucketSize);
// makeSeriesForLogs() aligns dataspoints with time buckets, so we do the same here to not cut off data
const adjustedEarliest = Math.floor(earliestTsLogs / bucketSize) * bucketSize;
visibleRange = { from: adjustedEarliest, to: absoluteRange.to };
} else {
// We use visibleRangeMs to calculate range coverage of received logs. However, some data sources are rounding up range in requests. This means that received logs
// can (in edge cases) be outside of the requested range and visibleRangeMs < 0. In that case, we want to change visibleRangeMs to be 1 so we can calculate coverage.
visibleRangeMs = 1;
}
}
return { bucketSize, visibleRange, visibleRangeMs, requestedRangeMs };
}
function separateLogsAndMetrics(dataFrames: DataFrame[]) {
const metricSeries: DataFrame[] = [];
const logSeries: DataFrame[] = [];
for (const dataFrame of dataFrames) {
// We want to show meta stats even if no result was returned. That's why we are pushing also data frames with no fields.
if (isLogsData(dataFrame) || !dataFrame.fields.length) {
logSeries.push(dataFrame);
continue;
}
if (dataFrame.length > 0) {
metricSeries.push(dataFrame);
}
}
return { logSeries, metricSeries };
}
interface LogInfo {
rawFrame: DataFrame;
logsFrame: LogsFrame;
frameLabels?: Labels[];
}
function parseTime(
timeField: Field,
timeNsField: Field | undefined,
index: number
): { ts: DateTimeInput; timeEpochMs: number; timeEpochNs: string } {
const ts = timeField.values[index];
const time = toUtc(ts);
const timeEpochMs = time.valueOf();
if (timeNsField) {
return { ts, timeEpochMs, timeEpochNs: timeNsField.values[index] };
}
if (timeField.nanos !== undefined) {
const ns = timeField.nanos[index].toString().padStart(6, '0');
const timeEpochNs = `${timeEpochMs}${ns}`;
return { ts, timeEpochMs, timeEpochNs };
}
return {
ts,
timeEpochMs,
timeEpochNs: timeEpochMs + '000000',
};
}
/**
* Converts dataFrames into LogsModel. This involves merging them into one list, sorting them and computing metadata
* like common labels.
*/
export function logSeriesToLogsModel(logSeries: DataFrame[], queries: DataQuery[] = []): LogsModel | undefined {
if (logSeries.length === 0) {
return undefined;
}
const allLabels: Labels[][] = [];
// Find the fields we care about and collect all labels
let allSeries: LogInfo[] = [];
// We are sometimes passing data frames with no fields because we want to calculate correct meta stats.
// Therefore we need to filter out series with no fields. These series are used only for meta stats calculation.
const seriesWithFields = logSeries.filter((series) => series.fields.length);
if (seriesWithFields.length) {
seriesWithFields.forEach((series) => {
const logsFrame = parseLogsFrame(series);
if (logsFrame != null) {
// for now we ignore the nested-ness of attributes, and just stringify-them
const frameLabels = logsFrame.getLogFrameLabelsAsLabels() ?? undefined;
const info = {
rawFrame: series,
logsFrame: logsFrame,
frameLabels,
};
allSeries.push(info);
if (frameLabels && frameLabels.length > 0) {
allLabels.push(frameLabels);
}
}
});
}
const flatAllLabels = allLabels.flat();
const commonLabels = flatAllLabels.length > 0 ? findCommonLabels(flatAllLabels) : {};
const rows: LogRowModel[] = [];
let hasUniqueLabels = false;
for (const info of allSeries) {
const { logsFrame, rawFrame: series, frameLabels } = info;
const { timeField, timeNanosecondField, bodyField: stringField, severityField: logLevelField, idField } = logsFrame;
for (let j = 0; j < series.length; j++) {
const { ts, timeEpochMs, timeEpochNs } = parseTime(timeField, timeNanosecondField ?? undefined, j);
// In edge cases, this can be undefined. If undefined, we want to replace it with empty string.
const messageValue: unknown = stringField.values[j] ?? '';
// This should be string but sometimes isn't (eg elastic) because the dataFrame is not strongly typed.
const message: string = typeof messageValue === 'string' ? messageValue : JSON.stringify(messageValue);
const hasAnsi = textUtil.hasAnsiCodes(message);
const hasUnescapedContent = !!message.match(/\\n|\\t|\\r/);
// Data sources that set up searchWords on backend use meta.custom.searchWords
// Data sources that set up searchWords through frontend can use meta.searchWords
const searchWords = series.meta?.custom?.searchWords ?? series.meta?.searchWords ?? [];
const entry = hasAnsi ? ansicolor.strip(message) : message;
const labels = frameLabels?.[j];
const uniqueLabels = findUniqueLabels(labels, commonLabels);
if (Object.keys(uniqueLabels).length > 0) {
hasUniqueLabels = true;
}
let logLevel = LogLevel.unknown;
const logLevelKey = (logLevelField && logLevelField.values[j]) || (labels && labels['level']);
if (logLevelKey) {
logLevel = getLogLevelFromKey(logLevelKey);
} else {
logLevel = getLogLevel(entry);
}
const datasourceType = queries.find((query) => query.refId === series.refId)?.datasource?.type;
const row: LogRowModel = {
entryFieldIndex: stringField.index,
rowIndex: j,
dataFrame: series,
logLevel,
timeFromNow: dateTimeFormatTimeAgo(ts),
timeEpochMs,
timeEpochNs,
timeLocal: dateTimeFormat(ts, { timeZone: 'browser' }),
timeUtc: dateTimeFormat(ts, { timeZone: 'utc' }),
uniqueLabels,
hasAnsi,
hasUnescapedContent,
searchWords,
entry,
raw: message,
labels: labels || {},
// prepend refId to uid to make it unique across all series in a case when series contain duplicates
uid: `${series.refId}_${idField ? idField.values[j] : j.toString()}`,
datasourceType,
};
if (idField !== null) {
row.rowId = idField.values[j];
}
rows.push(row);
}
}
// Meta data to display in status
const meta: LogsMetaItem[] = [];
if (size(commonLabels) > 0) {
meta.push({
label: COMMON_LABELS,
value: commonLabels,
kind: LogsMetaKind.LabelsMap,
});
}
// Data sources that set up searchWords on backend use meta.custom.limit.
// Data sources that set up searchWords through frontend can use meta.limit.
const limits = logSeries.filter((series) => series?.meta?.custom?.limit ?? series?.meta?.limit);
const lastLimitPerRef = limits.reduce<Record<string, number>>((acc, elem) => {
acc[elem.refId ?? ''] = elem.meta?.custom?.limit ?? elem.meta?.limit ?? 0;
return acc;
}, {});
const limitValue = Object.values(lastLimitPerRef).reduce((acc, elem) => (acc += elem), 0);
if (limitValue > 0) {
meta.push({
label: LIMIT_LABEL,
value: limitValue,
kind: LogsMetaKind.Number,
});
}
let totalBytes = 0;
const queriesVisited: { [refId: string]: boolean } = {};
// To add just 1 error message
let errorMetaAdded = false;
for (const series of logSeries) {
const totalBytesKey = series.meta?.custom?.lokiQueryStatKey;
const { refId } = series; // Stats are per query, keeping track by refId
if (!errorMetaAdded && series.meta?.custom?.error) {
meta.push({
label: '',
value: series.meta?.custom.error,
kind: LogsMetaKind.Error,
});
errorMetaAdded = true;
}
if (refId && !queriesVisited[refId]) {
if (totalBytesKey && series.meta?.stats) {
const byteStat = series.meta.stats.find((stat) => stat.displayName === totalBytesKey);
if (byteStat) {
totalBytes += byteStat.value;
}
}
queriesVisited[refId] = true;
}
}
if (totalBytes > 0) {
const { text, suffix } = SIPrefix('B')(totalBytes);
meta.push({
label: 'Total bytes processed',
value: `${text} ${suffix}`,
kind: LogsMetaKind.String,
});
}
return {
hasUniqueLabels,
meta,
rows,
};
}
// Used to add additional information to Line limit meta info
function adjustMetaInfo(logsModel: LogsModel, visibleRangeMs?: number, requestedRangeMs?: number): LogsMetaItem[] {
let logsModelMeta = [...logsModel.meta!];
const limitIndex = logsModelMeta.findIndex((meta) => meta.label === LIMIT_LABEL);
const limit = limitIndex >= 0 && logsModelMeta[limitIndex]?.value;
if (limit && typeof limit === 'number' && limit > 0) {
let metaLimitValue;
if (limit === logsModel.rows.length && visibleRangeMs && requestedRangeMs) {
const coverage = ((visibleRangeMs / requestedRangeMs) * 100).toFixed(2);
metaLimitValue = `${limit} reached, received logs cover ${coverage}% (${rangeUtil.msRangeToTimeString(
visibleRangeMs
)}) of your selected time range (${rangeUtil.msRangeToTimeString(requestedRangeMs)})`;
} else {
metaLimitValue = `${limit} (${logsModel.rows.length} returned)`;
}
logsModelMeta[limitIndex] = {
label: LIMIT_LABEL,
value: metaLimitValue,
kind: LogsMetaKind.String,
};
}
return logsModelMeta;
}
/**
* Returns field configuration used to render logs volume bars
*/
function getLogVolumeFieldConfig(level: LogLevel, oneLevelDetected: boolean) {
const name = oneLevelDetected && level === LogLevel.unknown ? 'logs' : level;
const color = LogLevelColor[level];
return {
displayNameFromDS: name,
color: {
mode: FieldColorModeId.Fixed,
fixedColor: color,
},
custom: {
drawStyle: GraphDrawStyle.Bars,
barAlignment: BarAlignment.Center,
lineColor: color,
pointColor: color,
fillColor: color,
lineWidth: 1,
fillOpacity: 100,
stacking: {
mode: StackingMode.Normal,
group: 'A',
},
},
};
}
const updateLogsVolumeConfig = (
dataFrame: DataFrame,
extractLevel: (dataFrame: DataFrame) => LogLevel,
oneLevelDetected: boolean
): DataFrame => {
dataFrame.fields = dataFrame.fields.map((field) => {
if (field.type === FieldType.number) {
field.config = {
...field.config,
...getLogVolumeFieldConfig(extractLevel(dataFrame), oneLevelDetected),
};
}
return field;
});
return dataFrame;
};
type LogsVolumeQueryOptions<T extends DataQuery> = {
extractLevel: (dataFrame: DataFrame) => LogLevel;
targets: T[];
range: TimeRange;
};
/**
* Creates an observable, which makes requests to get logs volume and aggregates results.
*/
export function queryLogsVolume<TQuery extends DataQuery, TOptions extends DataSourceJsonData>(
datasource: DataSourceApi<TQuery, TOptions>,
logsVolumeRequest: DataQueryRequest<TQuery>,
options: LogsVolumeQueryOptions<TQuery>
): Observable<DataQueryResponse> {
const timespan = options.range.to.valueOf() - options.range.from.valueOf();
const intervalInfo = getIntervalInfo(logsVolumeRequest.scopedVars, timespan);
logsVolumeRequest.interval = intervalInfo.interval;
logsVolumeRequest.scopedVars.__interval = { value: intervalInfo.interval, text: intervalInfo.interval };
if (intervalInfo.intervalMs !== undefined) {
logsVolumeRequest.intervalMs = intervalInfo.intervalMs;
logsVolumeRequest.scopedVars.__interval_ms = { value: intervalInfo.intervalMs, text: intervalInfo.intervalMs };
}
logsVolumeRequest.hideFromInspector = true;
return new Observable((observer) => {
let logsVolumeData: DataFrame[] = [];
observer.next({
state: LoadingState.Loading,
error: undefined,
data: [],
});
const queryResponse = datasource.query(logsVolumeRequest);
const queryObservable = isObservable(queryResponse) ? queryResponse : from(queryResponse);
const subscription = queryObservable.subscribe({
complete: () => {
observer.complete();
},
next: (dataQueryResponse: DataQueryResponse) => {
const { error } = dataQueryResponse;
if (error !== undefined) {
observer.next({
state: LoadingState.Error,
error,
data: [],
});
observer.error(error);
} else {
const framesByRefId = groupBy(dataQueryResponse.data, 'refId');
logsVolumeData = dataQueryResponse.data.map((dataFrame) => {
let sourceRefId = dataFrame.refId || '';
if (sourceRefId.startsWith('log-volume-')) {
sourceRefId = sourceRefId.substr('log-volume-'.length);
}
const logsVolumeCustomMetaData: LogsVolumeCustomMetaData = {
logsVolumeType: LogsVolumeType.FullRange,
absoluteRange: { from: options.range.from.valueOf(), to: options.range.to.valueOf() },
datasourceName: datasource.name,
sourceQuery: options.targets.find((dataQuery) => dataQuery.refId === sourceRefId)!,
};
dataFrame.meta = {
...dataFrame.meta,
custom: {
...dataFrame.meta?.custom,
...logsVolumeCustomMetaData,
},
};
return updateLogsVolumeConfig(dataFrame, options.extractLevel, framesByRefId[dataFrame.refId].length === 1);
});
observer.next({
state: dataQueryResponse.state,
error: undefined,
data: logsVolumeData,
});
}
},
error: (error) => {
observer.next({
state: LoadingState.Error,
error: error,
data: [],
});
observer.error(error);
},
});
return () => {
subscription?.unsubscribe();
};
});
}
/**
* Creates an observable, which makes requests to get logs sample.
*/
export function queryLogsSample<TQuery extends DataQuery, TOptions extends DataSourceJsonData>(
datasource: DataSourceApi<TQuery, TOptions>,
logsSampleRequest: DataQueryRequest<TQuery>
): Observable<DataQueryResponse> {
logsSampleRequest.hideFromInspector = true;
return new Observable((observer) => {
let rawLogsSample: DataFrame[] = [];
observer.next({
state: LoadingState.Loading,
error: undefined,
data: [],
});
const queryResponse = datasource.query(logsSampleRequest);
const queryObservable = isObservable(queryResponse) ? queryResponse : from(queryResponse);
const subscription = queryObservable.subscribe({
complete: () => {
observer.next({
state: LoadingState.Done,
error: undefined,
data: rawLogsSample,
});
observer.complete();
},
next: (dataQueryResponse: DataQueryResponse) => {
const { error } = dataQueryResponse;
if (error !== undefined) {
observer.next({
state: LoadingState.Error,
error,
data: [],
});
observer.error(error);
} else {
rawLogsSample = dataQueryResponse.data.map((dataFrame) => {
const frame = toDataFrame(dataFrame);
const { timeIndex } = getTimeField(frame);
return sortDataFrame(frame, timeIndex);
});
}
},
error: (error) => {
observer.next({
state: LoadingState.Error,
error: error,
data: [],
});
observer.error(error);
},
});
return () => {
subscription?.unsubscribe();
};
});
}
function getIntervalInfo(scopedVars: ScopedVars, timespanMs: number): { interval: string; intervalMs?: number } {
if (scopedVars.__interval_ms) {
let intervalMs: number = scopedVars.__interval_ms.value;
let interval = '';
// below 5 seconds we force the resolution to be per 1ms as interval in scopedVars is not less than 10ms
if (timespanMs < SECOND * 5) {
intervalMs = MILLISECOND;
interval = '1ms';
} else if (intervalMs > HOUR) {
intervalMs = DAY;
interval = '1d';
} else if (intervalMs > MINUTE) {
intervalMs = HOUR;
interval = '1h';
} else if (intervalMs > SECOND) {
intervalMs = MINUTE;
interval = '1m';
} else {
intervalMs = SECOND;
interval = '1s';
}
return { interval, intervalMs };
} else {
return { interval: '$__interval' };
}
}
/**
* Creates a new data frame containing only the single row from `logRow`.
*/
export function logRowToSingleRowDataFrame(logRow: LogRowModel): DataFrame | null {
const originFrame = logRow.dataFrame;
if (originFrame.length === 0 || originFrame.length <= logRow.rowIndex) {
return null;
}
// create a new data frame containing only the single row from `logRow`
const frame = createDataFrame({
fields: originFrame.fields.map((field) => ({ ...field, values: [field.values[logRow.rowIndex]] })),
});
return frame;
}