Like Prometheus, but for logs.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
loki/pkg/dataobj/sections/streams/stats.go

147 lines
4.1 KiB

refactor(dataobj): invert dependency between dataobj and sections (#17762) Originally, the dataobj package was a higher-level API around sections. This design caused it to become a bottleneck: * Implementing any new public behaviour for a section required bubbling it up to the dataobj API for it to be exposed, making it tedious to add new sections or update existing ones. * The `dataobj.Builder` pattern was focused on constructing dataobjs for storing log data, which will cause friction as we build objects around other use cases. This PR builds on top of the foundation laid out by #17704 and #17708, fully inverting the dependency between dataobj and sections: * The `dataobj` package has no knowledge of what sections exist, and can now be used for writing and reading generic sections. Section packages now create higher-level APIs around the abstractions provided by `dataobj`. * Section packages are now public, and callers interact directly with these packages for writing and reading section-specific data. * All logic for a section (encoding, decoding, buffering, reading) is now fully self-contained inside the section package. Previously, the implementation of each section was spread across three packages (`pkg/dataobj/internal/encoding`, `pkg/dataobj/internal/sections/SECTION`, `pkg/dataobj`). * Cutting a section is now a decision made by the caller rather than the section implementation. Previously, the logs section builder would create multiple sections. For the most part, this change is a no-op, with two exceptions: 1. Section cutting is now performed by the caller; however, this shouldn't result in any issues. 2. Removing the high-level `dataobj.Stream` and `dataobj.Record` types will temporarily reduce the allocation gains from #16988. I will address this after this PR is merged.
8 months ago
package streams
import (
"context"
"fmt"
"time"
"github.com/grafana/loki/v3/pkg/dataobj/internal/dataset"
"github.com/grafana/loki/v3/pkg/dataobj/internal/result"
)
type (
// Stats provides statistics about a streams section.
Stats struct {
UncompressedSize uint64
CompressedSize uint64
MinTimestamp time.Time
MaxTimestamp time.Time
TimestampDistribution []uint64 // Stream count per hour.
Columns []ColumnStats
}
// ColumnStats provides statistics about a column in a section.
ColumnStats struct {
Name string
Type string
ValueType string
RowsCount uint64
Compression string
UncompressedSize uint64
CompressedSize uint64
MetadataOffset uint64
MetadataSize uint64
ValuesCount uint64
Cardinality uint64
Pages []PageStats
}
// PageStats provides statistics about a page in a column.
PageStats struct {
UncompressedSize uint64
CompressedSize uint64
CRC32 uint32
RowsCount uint64
Encoding string
DataOffset uint64
DataSize uint64
ValuesCount uint64
}
)
// ReadStats returns statistics about the streams section. ReadStats returns an
// error if the streams section couldn't be inspected or if the provided ctx is
// canceled.
func ReadStats(ctx context.Context, section *Section) (Stats, error) {
var stats Stats
dec := section.inner.Decoder()
metadata, err := dec.SectionMetadata(ctx)
refactor(dataobj): invert dependency between dataobj and sections (#17762) Originally, the dataobj package was a higher-level API around sections. This design caused it to become a bottleneck: * Implementing any new public behaviour for a section required bubbling it up to the dataobj API for it to be exposed, making it tedious to add new sections or update existing ones. * The `dataobj.Builder` pattern was focused on constructing dataobjs for storing log data, which will cause friction as we build objects around other use cases. This PR builds on top of the foundation laid out by #17704 and #17708, fully inverting the dependency between dataobj and sections: * The `dataobj` package has no knowledge of what sections exist, and can now be used for writing and reading generic sections. Section packages now create higher-level APIs around the abstractions provided by `dataobj`. * Section packages are now public, and callers interact directly with these packages for writing and reading section-specific data. * All logic for a section (encoding, decoding, buffering, reading) is now fully self-contained inside the section package. Previously, the implementation of each section was spread across three packages (`pkg/dataobj/internal/encoding`, `pkg/dataobj/internal/sections/SECTION`, `pkg/dataobj`). * Cutting a section is now a decision made by the caller rather than the section implementation. Previously, the logs section builder would create multiple sections. For the most part, this change is a no-op, with two exceptions: 1. Section cutting is now performed by the caller; however, this shouldn't result in any issues. 2. Removing the high-level `dataobj.Stream` and `dataobj.Record` types will temporarily reduce the allocation gains from #16988. I will address this after this PR is merged.
8 months ago
if err != nil {
return stats, fmt.Errorf("reading metadata: %w", err)
refactor(dataobj): invert dependency between dataobj and sections (#17762) Originally, the dataobj package was a higher-level API around sections. This design caused it to become a bottleneck: * Implementing any new public behaviour for a section required bubbling it up to the dataobj API for it to be exposed, making it tedious to add new sections or update existing ones. * The `dataobj.Builder` pattern was focused on constructing dataobjs for storing log data, which will cause friction as we build objects around other use cases. This PR builds on top of the foundation laid out by #17704 and #17708, fully inverting the dependency between dataobj and sections: * The `dataobj` package has no knowledge of what sections exist, and can now be used for writing and reading generic sections. Section packages now create higher-level APIs around the abstractions provided by `dataobj`. * Section packages are now public, and callers interact directly with these packages for writing and reading section-specific data. * All logic for a section (encoding, decoding, buffering, reading) is now fully self-contained inside the section package. Previously, the implementation of each section was spread across three packages (`pkg/dataobj/internal/encoding`, `pkg/dataobj/internal/sections/SECTION`, `pkg/dataobj`). * Cutting a section is now a decision made by the caller rather than the section implementation. Previously, the logs section builder would create multiple sections. For the most part, this change is a no-op, with two exceptions: 1. Section cutting is now performed by the caller; however, this shouldn't result in any issues. 2. Removing the high-level `dataobj.Stream` and `dataobj.Record` types will temporarily reduce the allocation gains from #16988. I will address this after this PR is merged.
8 months ago
}
// Collect all the page descriptions at once for quick stats calculation.
pageSets, err := result.Collect(dec.Pages(ctx, metadata.GetColumns()))
refactor(dataobj): invert dependency between dataobj and sections (#17762) Originally, the dataobj package was a higher-level API around sections. This design caused it to become a bottleneck: * Implementing any new public behaviour for a section required bubbling it up to the dataobj API for it to be exposed, making it tedious to add new sections or update existing ones. * The `dataobj.Builder` pattern was focused on constructing dataobjs for storing log data, which will cause friction as we build objects around other use cases. This PR builds on top of the foundation laid out by #17704 and #17708, fully inverting the dependency between dataobj and sections: * The `dataobj` package has no knowledge of what sections exist, and can now be used for writing and reading generic sections. Section packages now create higher-level APIs around the abstractions provided by `dataobj`. * Section packages are now public, and callers interact directly with these packages for writing and reading section-specific data. * All logic for a section (encoding, decoding, buffering, reading) is now fully self-contained inside the section package. Previously, the implementation of each section was spread across three packages (`pkg/dataobj/internal/encoding`, `pkg/dataobj/internal/sections/SECTION`, `pkg/dataobj`). * Cutting a section is now a decision made by the caller rather than the section implementation. Previously, the logs section builder would create multiple sections. For the most part, this change is a no-op, with two exceptions: 1. Section cutting is now performed by the caller; however, this shouldn't result in any issues. 2. Removing the high-level `dataobj.Stream` and `dataobj.Record` types will temporarily reduce the allocation gains from #16988. I will address this after this PR is merged.
8 months ago
if err != nil {
return stats, fmt.Errorf("reading pages: %w", err)
}
for i, col := range section.Columns() {
md := col.inner.Metadata()
stats.CompressedSize += md.CompressedSize
stats.UncompressedSize += md.UncompressedSize
refactor(dataobj): invert dependency between dataobj and sections (#17762) Originally, the dataobj package was a higher-level API around sections. This design caused it to become a bottleneck: * Implementing any new public behaviour for a section required bubbling it up to the dataobj API for it to be exposed, making it tedious to add new sections or update existing ones. * The `dataobj.Builder` pattern was focused on constructing dataobjs for storing log data, which will cause friction as we build objects around other use cases. This PR builds on top of the foundation laid out by #17704 and #17708, fully inverting the dependency between dataobj and sections: * The `dataobj` package has no knowledge of what sections exist, and can now be used for writing and reading generic sections. Section packages now create higher-level APIs around the abstractions provided by `dataobj`. * Section packages are now public, and callers interact directly with these packages for writing and reading section-specific data. * All logic for a section (encoding, decoding, buffering, reading) is now fully self-contained inside the section package. Previously, the implementation of each section was spread across three packages (`pkg/dataobj/internal/encoding`, `pkg/dataobj/internal/sections/SECTION`, `pkg/dataobj`). * Cutting a section is now a decision made by the caller rather than the section implementation. Previously, the logs section builder would create multiple sections. For the most part, this change is a no-op, with two exceptions: 1. Section cutting is now performed by the caller; however, this shouldn't result in any issues. 2. Removing the high-level `dataobj.Stream` and `dataobj.Record` types will temporarily reduce the allocation gains from #16988. I will address this after this PR is merged.
8 months ago
switch {
case col.Type == ColumnTypeMinTimestamp && md.Statistics != nil:
refactor(dataobj): invert dependency between dataobj and sections (#17762) Originally, the dataobj package was a higher-level API around sections. This design caused it to become a bottleneck: * Implementing any new public behaviour for a section required bubbling it up to the dataobj API for it to be exposed, making it tedious to add new sections or update existing ones. * The `dataobj.Builder` pattern was focused on constructing dataobjs for storing log data, which will cause friction as we build objects around other use cases. This PR builds on top of the foundation laid out by #17704 and #17708, fully inverting the dependency between dataobj and sections: * The `dataobj` package has no knowledge of what sections exist, and can now be used for writing and reading generic sections. Section packages now create higher-level APIs around the abstractions provided by `dataobj`. * Section packages are now public, and callers interact directly with these packages for writing and reading section-specific data. * All logic for a section (encoding, decoding, buffering, reading) is now fully self-contained inside the section package. Previously, the implementation of each section was spread across three packages (`pkg/dataobj/internal/encoding`, `pkg/dataobj/internal/sections/SECTION`, `pkg/dataobj`). * Cutting a section is now a decision made by the caller rather than the section implementation. Previously, the logs section builder would create multiple sections. For the most part, this change is a no-op, with two exceptions: 1. Section cutting is now performed by the caller; however, this shouldn't result in any issues. 2. Removing the high-level `dataobj.Stream` and `dataobj.Record` types will temporarily reduce the allocation gains from #16988. I will address this after this PR is merged.
8 months ago
var ts dataset.Value
if err := ts.UnmarshalBinary(md.Statistics.MinValue); err != nil {
refactor(dataobj): invert dependency between dataobj and sections (#17762) Originally, the dataobj package was a higher-level API around sections. This design caused it to become a bottleneck: * Implementing any new public behaviour for a section required bubbling it up to the dataobj API for it to be exposed, making it tedious to add new sections or update existing ones. * The `dataobj.Builder` pattern was focused on constructing dataobjs for storing log data, which will cause friction as we build objects around other use cases. This PR builds on top of the foundation laid out by #17704 and #17708, fully inverting the dependency between dataobj and sections: * The `dataobj` package has no knowledge of what sections exist, and can now be used for writing and reading generic sections. Section packages now create higher-level APIs around the abstractions provided by `dataobj`. * Section packages are now public, and callers interact directly with these packages for writing and reading section-specific data. * All logic for a section (encoding, decoding, buffering, reading) is now fully self-contained inside the section package. Previously, the implementation of each section was spread across three packages (`pkg/dataobj/internal/encoding`, `pkg/dataobj/internal/sections/SECTION`, `pkg/dataobj`). * Cutting a section is now a decision made by the caller rather than the section implementation. Previously, the logs section builder would create multiple sections. For the most part, this change is a no-op, with two exceptions: 1. Section cutting is now performed by the caller; however, this shouldn't result in any issues. 2. Removing the high-level `dataobj.Stream` and `dataobj.Record` types will temporarily reduce the allocation gains from #16988. I will address this after this PR is merged.
8 months ago
return stats, fmt.Errorf("unmarshalling min timestamp: %w", err)
}
stats.MinTimestamp = time.Unix(0, ts.Int64())
case col.Type == ColumnTypeMaxTimestamp && md.Statistics != nil:
refactor(dataobj): invert dependency between dataobj and sections (#17762) Originally, the dataobj package was a higher-level API around sections. This design caused it to become a bottleneck: * Implementing any new public behaviour for a section required bubbling it up to the dataobj API for it to be exposed, making it tedious to add new sections or update existing ones. * The `dataobj.Builder` pattern was focused on constructing dataobjs for storing log data, which will cause friction as we build objects around other use cases. This PR builds on top of the foundation laid out by #17704 and #17708, fully inverting the dependency between dataobj and sections: * The `dataobj` package has no knowledge of what sections exist, and can now be used for writing and reading generic sections. Section packages now create higher-level APIs around the abstractions provided by `dataobj`. * Section packages are now public, and callers interact directly with these packages for writing and reading section-specific data. * All logic for a section (encoding, decoding, buffering, reading) is now fully self-contained inside the section package. Previously, the implementation of each section was spread across three packages (`pkg/dataobj/internal/encoding`, `pkg/dataobj/internal/sections/SECTION`, `pkg/dataobj`). * Cutting a section is now a decision made by the caller rather than the section implementation. Previously, the logs section builder would create multiple sections. For the most part, this change is a no-op, with two exceptions: 1. Section cutting is now performed by the caller; however, this shouldn't result in any issues. 2. Removing the high-level `dataobj.Stream` and `dataobj.Record` types will temporarily reduce the allocation gains from #16988. I will address this after this PR is merged.
8 months ago
var ts dataset.Value
if err := ts.UnmarshalBinary(md.Statistics.MaxValue); err != nil {
refactor(dataobj): invert dependency between dataobj and sections (#17762) Originally, the dataobj package was a higher-level API around sections. This design caused it to become a bottleneck: * Implementing any new public behaviour for a section required bubbling it up to the dataobj API for it to be exposed, making it tedious to add new sections or update existing ones. * The `dataobj.Builder` pattern was focused on constructing dataobjs for storing log data, which will cause friction as we build objects around other use cases. This PR builds on top of the foundation laid out by #17704 and #17708, fully inverting the dependency between dataobj and sections: * The `dataobj` package has no knowledge of what sections exist, and can now be used for writing and reading generic sections. Section packages now create higher-level APIs around the abstractions provided by `dataobj`. * Section packages are now public, and callers interact directly with these packages for writing and reading section-specific data. * All logic for a section (encoding, decoding, buffering, reading) is now fully self-contained inside the section package. Previously, the implementation of each section was spread across three packages (`pkg/dataobj/internal/encoding`, `pkg/dataobj/internal/sections/SECTION`, `pkg/dataobj`). * Cutting a section is now a decision made by the caller rather than the section implementation. Previously, the logs section builder would create multiple sections. For the most part, this change is a no-op, with two exceptions: 1. Section cutting is now performed by the caller; however, this shouldn't result in any issues. 2. Removing the high-level `dataobj.Stream` and `dataobj.Record` types will temporarily reduce the allocation gains from #16988. I will address this after this PR is merged.
8 months ago
return stats, fmt.Errorf("unmarshalling max timestamp: %w", err)
}
stats.MaxTimestamp = time.Unix(0, ts.Int64())
}
columnStats := ColumnStats{
Name: col.Name,
refactor(dataobj): invert dependency between dataobj and sections (#17762) Originally, the dataobj package was a higher-level API around sections. This design caused it to become a bottleneck: * Implementing any new public behaviour for a section required bubbling it up to the dataobj API for it to be exposed, making it tedious to add new sections or update existing ones. * The `dataobj.Builder` pattern was focused on constructing dataobjs for storing log data, which will cause friction as we build objects around other use cases. This PR builds on top of the foundation laid out by #17704 and #17708, fully inverting the dependency between dataobj and sections: * The `dataobj` package has no knowledge of what sections exist, and can now be used for writing and reading generic sections. Section packages now create higher-level APIs around the abstractions provided by `dataobj`. * Section packages are now public, and callers interact directly with these packages for writing and reading section-specific data. * All logic for a section (encoding, decoding, buffering, reading) is now fully self-contained inside the section package. Previously, the implementation of each section was spread across three packages (`pkg/dataobj/internal/encoding`, `pkg/dataobj/internal/sections/SECTION`, `pkg/dataobj`). * Cutting a section is now a decision made by the caller rather than the section implementation. Previously, the logs section builder would create multiple sections. For the most part, this change is a no-op, with two exceptions: 1. Section cutting is now performed by the caller; however, this shouldn't result in any issues. 2. Removing the high-level `dataobj.Stream` and `dataobj.Record` types will temporarily reduce the allocation gains from #16988. I will address this after this PR is merged.
8 months ago
Type: col.Type.String(),
ValueType: col.inner.Type.Physical.String(),
RowsCount: md.RowsCount,
Compression: md.Compression.String(),
UncompressedSize: md.UncompressedSize,
CompressedSize: md.CompressedSize,
MetadataOffset: md.ColumnMetadataOffset,
MetadataSize: md.ColumnMetadataLength,
ValuesCount: md.ValuesCount,
Cardinality: md.Statistics.GetCardinalityCount(),
refactor(dataobj): invert dependency between dataobj and sections (#17762) Originally, the dataobj package was a higher-level API around sections. This design caused it to become a bottleneck: * Implementing any new public behaviour for a section required bubbling it up to the dataobj API for it to be exposed, making it tedious to add new sections or update existing ones. * The `dataobj.Builder` pattern was focused on constructing dataobjs for storing log data, which will cause friction as we build objects around other use cases. This PR builds on top of the foundation laid out by #17704 and #17708, fully inverting the dependency between dataobj and sections: * The `dataobj` package has no knowledge of what sections exist, and can now be used for writing and reading generic sections. Section packages now create higher-level APIs around the abstractions provided by `dataobj`. * Section packages are now public, and callers interact directly with these packages for writing and reading section-specific data. * All logic for a section (encoding, decoding, buffering, reading) is now fully self-contained inside the section package. Previously, the implementation of each section was spread across three packages (`pkg/dataobj/internal/encoding`, `pkg/dataobj/internal/sections/SECTION`, `pkg/dataobj`). * Cutting a section is now a decision made by the caller rather than the section implementation. Previously, the logs section builder would create multiple sections. For the most part, this change is a no-op, with two exceptions: 1. Section cutting is now performed by the caller; however, this shouldn't result in any issues. 2. Removing the high-level `dataobj.Stream` and `dataobj.Record` types will temporarily reduce the allocation gains from #16988. I will address this after this PR is merged.
8 months ago
}
for _, pages := range pageSets[i] {
columnStats.Pages = append(columnStats.Pages, PageStats{
UncompressedSize: pages.UncompressedSize,
CompressedSize: pages.CompressedSize,
CRC32: pages.Crc32,
RowsCount: pages.RowsCount,
Encoding: pages.Encoding.String(),
DataOffset: pages.DataOffset,
DataSize: pages.DataSize,
ValuesCount: pages.ValuesCount,
refactor(dataobj): invert dependency between dataobj and sections (#17762) Originally, the dataobj package was a higher-level API around sections. This design caused it to become a bottleneck: * Implementing any new public behaviour for a section required bubbling it up to the dataobj API for it to be exposed, making it tedious to add new sections or update existing ones. * The `dataobj.Builder` pattern was focused on constructing dataobjs for storing log data, which will cause friction as we build objects around other use cases. This PR builds on top of the foundation laid out by #17704 and #17708, fully inverting the dependency between dataobj and sections: * The `dataobj` package has no knowledge of what sections exist, and can now be used for writing and reading generic sections. Section packages now create higher-level APIs around the abstractions provided by `dataobj`. * Section packages are now public, and callers interact directly with these packages for writing and reading section-specific data. * All logic for a section (encoding, decoding, buffering, reading) is now fully self-contained inside the section package. Previously, the implementation of each section was spread across three packages (`pkg/dataobj/internal/encoding`, `pkg/dataobj/internal/sections/SECTION`, `pkg/dataobj`). * Cutting a section is now a decision made by the caller rather than the section implementation. Previously, the logs section builder would create multiple sections. For the most part, this change is a no-op, with two exceptions: 1. Section cutting is now performed by the caller; however, this shouldn't result in any issues. 2. Removing the high-level `dataobj.Stream` and `dataobj.Record` types will temporarily reduce the allocation gains from #16988. I will address this after this PR is merged.
8 months ago
})
}
stats.Columns = append(stats.Columns, columnStats)
}
if stats.MinTimestamp.IsZero() || stats.MaxTimestamp.IsZero() {
// Short sircuit if there's no timestamps.
return stats, nil
}
width := int(stats.MaxTimestamp.Add(1 * time.Hour).Truncate(time.Hour).Sub(stats.MinTimestamp.Truncate(time.Hour)).Hours())
counts := make([]uint64, width)
for streamVal := range IterSection(ctx, section) {
stream, err := streamVal.Value()
if err != nil {
return stats, err
}
for i := stream.MinTimestamp; !i.After(stream.MaxTimestamp); i = i.Add(time.Hour) {
hoursBeforeMax := int(stats.MaxTimestamp.Sub(i).Hours())
counts[hoursBeforeMax]++
}
}
stats.TimestampDistribution = counts
return stats, nil
}