Like Prometheus, but for logs.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
loki/pkg/engine/executor/executor.go

156 lines
3.9 KiB

package executor
import (
"context"
"errors"
"fmt"
"github.com/apache/arrow-go/v18/arrow"
"github.com/grafana/loki/v3/pkg/engine/planner/physical"
)
type Config struct {
BatchSize int64 `yaml:"batch_size"`
}
func Run(ctx context.Context, cfg Config, plan *physical.Plan) Pipeline {
c := &Context{
plan: plan,
batchSize: cfg.BatchSize,
}
if plan == nil {
return errorPipeline(errors.New("plan is nil"))
}
node, err := plan.Root()
if err != nil {
return errorPipeline(err)
}
return c.execute(ctx, node)
}
// Context is the execution context
type Context struct {
batchSize int64
plan *physical.Plan
}
func (c *Context) execute(ctx context.Context, node physical.Node) Pipeline {
children := c.plan.Children(node)
inputs := make([]Pipeline, 0, len(children))
for _, child := range children {
inputs = append(inputs, c.execute(ctx, child))
}
switch n := node.(type) {
case *physical.DataObjScan:
return c.executeDataObjScan(ctx, n)
case *physical.SortMerge:
return c.executeSortMerge(ctx, n, inputs)
case *physical.Limit:
return c.executeLimit(ctx, n, inputs)
case *physical.Filter:
return c.executeFilter(ctx, n, inputs)
case *physical.Projection:
return c.executeProjection(ctx, n, inputs)
default:
return errorPipeline(fmt.Errorf("invalid node type: %T", node))
}
}
func (c *Context) executeDataObjScan(_ context.Context, _ *physical.DataObjScan) Pipeline {
return errorPipeline(errNotImplemented)
}
func (c *Context) executeSortMerge(_ context.Context, _ *physical.SortMerge, inputs []Pipeline) Pipeline {
if len(inputs) == 0 {
return emptyPipeline()
}
return errorPipeline(errNotImplemented)
}
func (c *Context) executeLimit(_ context.Context, limit *physical.Limit, inputs []Pipeline) Pipeline {
if len(inputs) == 0 {
return emptyPipeline()
}
if len(inputs) > 1 {
return errorPipeline(fmt.Errorf("limit expects exactly one input, got %d", len(inputs)))
}
// We gradually reduce offsetRemaining and limitRemaining as we process more records, as the
// offsetRemaining and limitRemaining may cross record boundaries.
var (
offsetRemaining = int64(limit.Skip)
limitRemaining = int64(limit.Fetch)
)
return newGenericPipeline(Local, func(inputs []Pipeline) state {
var length int64
var start, end int64
var batch arrow.Record
// We skip yielding zero-length batches while offsetRemainig > 0
for length == 0 {
// Stop once we reached the limit
if limitRemaining <= 0 {
return Exhausted
}
// Pull the next item from downstream
input := inputs[0]
err := input.Read()
if err != nil {
return newState(input.Value())
}
batch, _ = input.Value()
// We want to slice batch so it only contains the rows we're looking for
// accounting for both the limit and offset.
// We constrain the start and end to be within the bounds of the record.
start = min(offsetRemaining, batch.NumRows())
end = min(start+limitRemaining, batch.NumRows())
length = end - start
offsetRemaining -= start
limitRemaining -= length
}
if length <= 0 && offsetRemaining <= 0 {
return Exhausted
}
rec := batch.NewSlice(start, end)
return successState(rec)
}, inputs...)
}
func (c *Context) executeFilter(_ context.Context, _ *physical.Filter, inputs []Pipeline) Pipeline {
if len(inputs) == 0 {
return emptyPipeline()
}
if len(inputs) > 1 {
return errorPipeline(fmt.Errorf("filter expects exactly one input, got %d", len(inputs)))
}
return errorPipeline(errNotImplemented)
}
func (c *Context) executeProjection(_ context.Context, proj *physical.Projection, inputs []Pipeline) Pipeline {
if len(inputs) == 0 {
return emptyPipeline()
}
if len(inputs) > 1 {
return errorPipeline(fmt.Errorf("projection expects exactly one input, got %d", len(inputs)))
}
if len(proj.Columns) == 0 {
return errorPipeline(fmt.Errorf("projection expects at least one column, got 0"))
}
return errorPipeline(errNotImplemented)
}