Like Prometheus, but for logs.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
loki/pkg/dataobj/builder.go

78 lines
2.2 KiB

package dataobj
import (
"bytes"
"fmt"
)
// A Builder builds data objects from a set of incoming log data. Log data is
// appended to a builder by calling [Builder.Append]. Buffered log data is
// flushed manually by calling [Builder.Flush].
//
// Methods on Builder are not goroutine-safe; callers are responsible for
// synchronizing calls.
type Builder struct {
refactor(dataobj): invert dependency between dataobj and sections (#17762) Originally, the dataobj package was a higher-level API around sections. This design caused it to become a bottleneck: * Implementing any new public behaviour for a section required bubbling it up to the dataobj API for it to be exposed, making it tedious to add new sections or update existing ones. * The `dataobj.Builder` pattern was focused on constructing dataobjs for storing log data, which will cause friction as we build objects around other use cases. This PR builds on top of the foundation laid out by #17704 and #17708, fully inverting the dependency between dataobj and sections: * The `dataobj` package has no knowledge of what sections exist, and can now be used for writing and reading generic sections. Section packages now create higher-level APIs around the abstractions provided by `dataobj`. * Section packages are now public, and callers interact directly with these packages for writing and reading section-specific data. * All logic for a section (encoding, decoding, buffering, reading) is now fully self-contained inside the section package. Previously, the implementation of each section was spread across three packages (`pkg/dataobj/internal/encoding`, `pkg/dataobj/internal/sections/SECTION`, `pkg/dataobj`). * Cutting a section is now a decision made by the caller rather than the section implementation. Previously, the logs section builder would create multiple sections. For the most part, this change is a no-op, with two exceptions: 1. Section cutting is now performed by the caller; however, this shouldn't result in any issues. 2. Removing the high-level `dataobj.Stream` and `dataobj.Record` types will temporarily reduce the allocation gains from #16988. I will address this after this PR is merged.
8 months ago
encoder *encoder
}
refactor(dataobj): invert dependency between dataobj and sections (#17762) Originally, the dataobj package was a higher-level API around sections. This design caused it to become a bottleneck: * Implementing any new public behaviour for a section required bubbling it up to the dataobj API for it to be exposed, making it tedious to add new sections or update existing ones. * The `dataobj.Builder` pattern was focused on constructing dataobjs for storing log data, which will cause friction as we build objects around other use cases. This PR builds on top of the foundation laid out by #17704 and #17708, fully inverting the dependency between dataobj and sections: * The `dataobj` package has no knowledge of what sections exist, and can now be used for writing and reading generic sections. Section packages now create higher-level APIs around the abstractions provided by `dataobj`. * Section packages are now public, and callers interact directly with these packages for writing and reading section-specific data. * All logic for a section (encoding, decoding, buffering, reading) is now fully self-contained inside the section package. Previously, the implementation of each section was spread across three packages (`pkg/dataobj/internal/encoding`, `pkg/dataobj/internal/sections/SECTION`, `pkg/dataobj`). * Cutting a section is now a decision made by the caller rather than the section implementation. Previously, the logs section builder would create multiple sections. For the most part, this change is a no-op, with two exceptions: 1. Section cutting is now performed by the caller; however, this shouldn't result in any issues. 2. Removing the high-level `dataobj.Stream` and `dataobj.Record` types will temporarily reduce the allocation gains from #16988. I will address this after this PR is merged.
8 months ago
// A Builder accumulates data from a set of in-progress sections. A Builder can
// be flushed into a data object by calling [Builder.Flush].
func NewBuilder() *Builder {
return &Builder{encoder: newEncoder()}
}
refactor(dataobj): invert dependency between dataobj and sections (#17762) Originally, the dataobj package was a higher-level API around sections. This design caused it to become a bottleneck: * Implementing any new public behaviour for a section required bubbling it up to the dataobj API for it to be exposed, making it tedious to add new sections or update existing ones. * The `dataobj.Builder` pattern was focused on constructing dataobjs for storing log data, which will cause friction as we build objects around other use cases. This PR builds on top of the foundation laid out by #17704 and #17708, fully inverting the dependency between dataobj and sections: * The `dataobj` package has no knowledge of what sections exist, and can now be used for writing and reading generic sections. Section packages now create higher-level APIs around the abstractions provided by `dataobj`. * Section packages are now public, and callers interact directly with these packages for writing and reading section-specific data. * All logic for a section (encoding, decoding, buffering, reading) is now fully self-contained inside the section package. Previously, the implementation of each section was spread across three packages (`pkg/dataobj/internal/encoding`, `pkg/dataobj/internal/sections/SECTION`, `pkg/dataobj`). * Cutting a section is now a decision made by the caller rather than the section implementation. Previously, the logs section builder would create multiple sections. For the most part, this change is a no-op, with two exceptions: 1. Section cutting is now performed by the caller; however, this shouldn't result in any issues. 2. Removing the high-level `dataobj.Stream` and `dataobj.Record` types will temporarily reduce the allocation gains from #16988. I will address this after this PR is merged.
8 months ago
// Append flushes a [SectionBuilder], buffering its data and metadata into b.
// Append does not enforce ordering; sections may be flushed to the dataobj in
// any order.
//
refactor(dataobj): invert dependency between dataobj and sections (#17762) Originally, the dataobj package was a higher-level API around sections. This design caused it to become a bottleneck: * Implementing any new public behaviour for a section required bubbling it up to the dataobj API for it to be exposed, making it tedious to add new sections or update existing ones. * The `dataobj.Builder` pattern was focused on constructing dataobjs for storing log data, which will cause friction as we build objects around other use cases. This PR builds on top of the foundation laid out by #17704 and #17708, fully inverting the dependency between dataobj and sections: * The `dataobj` package has no knowledge of what sections exist, and can now be used for writing and reading generic sections. Section packages now create higher-level APIs around the abstractions provided by `dataobj`. * Section packages are now public, and callers interact directly with these packages for writing and reading section-specific data. * All logic for a section (encoding, decoding, buffering, reading) is now fully self-contained inside the section package. Previously, the implementation of each section was spread across three packages (`pkg/dataobj/internal/encoding`, `pkg/dataobj/internal/sections/SECTION`, `pkg/dataobj`). * Cutting a section is now a decision made by the caller rather than the section implementation. Previously, the logs section builder would create multiple sections. For the most part, this change is a no-op, with two exceptions: 1. Section cutting is now performed by the caller; however, this shouldn't result in any issues. 2. Removing the high-level `dataobj.Stream` and `dataobj.Record` types will temporarily reduce the allocation gains from #16988. I will address this after this PR is merged.
8 months ago
// Append returns an error if the section failed to flush.
//
refactor(dataobj): invert dependency between dataobj and sections (#17762) Originally, the dataobj package was a higher-level API around sections. This design caused it to become a bottleneck: * Implementing any new public behaviour for a section required bubbling it up to the dataobj API for it to be exposed, making it tedious to add new sections or update existing ones. * The `dataobj.Builder` pattern was focused on constructing dataobjs for storing log data, which will cause friction as we build objects around other use cases. This PR builds on top of the foundation laid out by #17704 and #17708, fully inverting the dependency between dataobj and sections: * The `dataobj` package has no knowledge of what sections exist, and can now be used for writing and reading generic sections. Section packages now create higher-level APIs around the abstractions provided by `dataobj`. * Section packages are now public, and callers interact directly with these packages for writing and reading section-specific data. * All logic for a section (encoding, decoding, buffering, reading) is now fully self-contained inside the section package. Previously, the implementation of each section was spread across three packages (`pkg/dataobj/internal/encoding`, `pkg/dataobj/internal/sections/SECTION`, `pkg/dataobj`). * Cutting a section is now a decision made by the caller rather than the section implementation. Previously, the logs section builder would create multiple sections. For the most part, this change is a no-op, with two exceptions: 1. Section cutting is now performed by the caller; however, this shouldn't result in any issues. 2. Removing the high-level `dataobj.Stream` and `dataobj.Record` types will temporarily reduce the allocation gains from #16988. I will address this after this PR is merged.
8 months ago
// After successfully calling Append, sec is reset and can be reused.
func (b *Builder) Append(sec SectionBuilder) error {
w := builderSectionWriter{typ: sec.Type(), enc: b.encoder}
if _, err := sec.Flush(w); err != nil {
return err
}
refactor(dataobj): invert dependency between dataobj and sections (#17762) Originally, the dataobj package was a higher-level API around sections. This design caused it to become a bottleneck: * Implementing any new public behaviour for a section required bubbling it up to the dataobj API for it to be exposed, making it tedious to add new sections or update existing ones. * The `dataobj.Builder` pattern was focused on constructing dataobjs for storing log data, which will cause friction as we build objects around other use cases. This PR builds on top of the foundation laid out by #17704 and #17708, fully inverting the dependency between dataobj and sections: * The `dataobj` package has no knowledge of what sections exist, and can now be used for writing and reading generic sections. Section packages now create higher-level APIs around the abstractions provided by `dataobj`. * Section packages are now public, and callers interact directly with these packages for writing and reading section-specific data. * All logic for a section (encoding, decoding, buffering, reading) is now fully self-contained inside the section package. Previously, the implementation of each section was spread across three packages (`pkg/dataobj/internal/encoding`, `pkg/dataobj/internal/sections/SECTION`, `pkg/dataobj`). * Cutting a section is now a decision made by the caller rather than the section implementation. Previously, the logs section builder would create multiple sections. For the most part, this change is a no-op, with two exceptions: 1. Section cutting is now performed by the caller; however, this shouldn't result in any issues. 2. Removing the high-level `dataobj.Stream` and `dataobj.Record` types will temporarily reduce the allocation gains from #16988. I will address this after this PR is merged.
8 months ago
// SectionBuilder implementations are expected to automatically Reset after a
// Flush, but we'll call it again to be safe.
sec.Reset()
return nil
}
refactor(dataobj): invert dependency between dataobj and sections (#17762) Originally, the dataobj package was a higher-level API around sections. This design caused it to become a bottleneck: * Implementing any new public behaviour for a section required bubbling it up to the dataobj API for it to be exposed, making it tedious to add new sections or update existing ones. * The `dataobj.Builder` pattern was focused on constructing dataobjs for storing log data, which will cause friction as we build objects around other use cases. This PR builds on top of the foundation laid out by #17704 and #17708, fully inverting the dependency between dataobj and sections: * The `dataobj` package has no knowledge of what sections exist, and can now be used for writing and reading generic sections. Section packages now create higher-level APIs around the abstractions provided by `dataobj`. * Section packages are now public, and callers interact directly with these packages for writing and reading section-specific data. * All logic for a section (encoding, decoding, buffering, reading) is now fully self-contained inside the section package. Previously, the implementation of each section was spread across three packages (`pkg/dataobj/internal/encoding`, `pkg/dataobj/internal/sections/SECTION`, `pkg/dataobj`). * Cutting a section is now a decision made by the caller rather than the section implementation. Previously, the logs section builder would create multiple sections. For the most part, this change is a no-op, with two exceptions: 1. Section cutting is now performed by the caller; however, this shouldn't result in any issues. 2. Removing the high-level `dataobj.Stream` and `dataobj.Record` types will temporarily reduce the allocation gains from #16988. I will address this after this PR is merged.
8 months ago
type builderSectionWriter struct {
typ SectionType
enc *encoder
}
refactor(dataobj): invert dependency between dataobj and sections (#17762) Originally, the dataobj package was a higher-level API around sections. This design caused it to become a bottleneck: * Implementing any new public behaviour for a section required bubbling it up to the dataobj API for it to be exposed, making it tedious to add new sections or update existing ones. * The `dataobj.Builder` pattern was focused on constructing dataobjs for storing log data, which will cause friction as we build objects around other use cases. This PR builds on top of the foundation laid out by #17704 and #17708, fully inverting the dependency between dataobj and sections: * The `dataobj` package has no knowledge of what sections exist, and can now be used for writing and reading generic sections. Section packages now create higher-level APIs around the abstractions provided by `dataobj`. * Section packages are now public, and callers interact directly with these packages for writing and reading section-specific data. * All logic for a section (encoding, decoding, buffering, reading) is now fully self-contained inside the section package. Previously, the implementation of each section was spread across three packages (`pkg/dataobj/internal/encoding`, `pkg/dataobj/internal/sections/SECTION`, `pkg/dataobj`). * Cutting a section is now a decision made by the caller rather than the section implementation. Previously, the logs section builder would create multiple sections. For the most part, this change is a no-op, with two exceptions: 1. Section cutting is now performed by the caller; however, this shouldn't result in any issues. 2. Removing the high-level `dataobj.Stream` and `dataobj.Record` types will temporarily reduce the allocation gains from #16988. I will address this after this PR is merged.
8 months ago
func (w builderSectionWriter) WriteSection(data, metadata []byte) (n int64, err error) {
w.enc.AppendSection(w.typ, data, metadata)
return int64(len(data) + len(metadata)), nil
}
refactor(dataobj): invert dependency between dataobj and sections (#17762) Originally, the dataobj package was a higher-level API around sections. This design caused it to become a bottleneck: * Implementing any new public behaviour for a section required bubbling it up to the dataobj API for it to be exposed, making it tedious to add new sections or update existing ones. * The `dataobj.Builder` pattern was focused on constructing dataobjs for storing log data, which will cause friction as we build objects around other use cases. This PR builds on top of the foundation laid out by #17704 and #17708, fully inverting the dependency between dataobj and sections: * The `dataobj` package has no knowledge of what sections exist, and can now be used for writing and reading generic sections. Section packages now create higher-level APIs around the abstractions provided by `dataobj`. * Section packages are now public, and callers interact directly with these packages for writing and reading section-specific data. * All logic for a section (encoding, decoding, buffering, reading) is now fully self-contained inside the section package. Previously, the implementation of each section was spread across three packages (`pkg/dataobj/internal/encoding`, `pkg/dataobj/internal/sections/SECTION`, `pkg/dataobj`). * Cutting a section is now a decision made by the caller rather than the section implementation. Previously, the logs section builder would create multiple sections. For the most part, this change is a no-op, with two exceptions: 1. Section cutting is now performed by the caller; however, this shouldn't result in any issues. 2. Removing the high-level `dataobj.Stream` and `dataobj.Record` types will temporarily reduce the allocation gains from #16988. I will address this after this PR is merged.
8 months ago
// Bytes returns the current number of bytes buffered in b for all appended
// sections.
func (b *Builder) Bytes() int {
return b.encoder.Bytes()
}
refactor(dataobj): invert dependency between dataobj and sections (#17762) Originally, the dataobj package was a higher-level API around sections. This design caused it to become a bottleneck: * Implementing any new public behaviour for a section required bubbling it up to the dataobj API for it to be exposed, making it tedious to add new sections or update existing ones. * The `dataobj.Builder` pattern was focused on constructing dataobjs for storing log data, which will cause friction as we build objects around other use cases. This PR builds on top of the foundation laid out by #17704 and #17708, fully inverting the dependency between dataobj and sections: * The `dataobj` package has no knowledge of what sections exist, and can now be used for writing and reading generic sections. Section packages now create higher-level APIs around the abstractions provided by `dataobj`. * Section packages are now public, and callers interact directly with these packages for writing and reading section-specific data. * All logic for a section (encoding, decoding, buffering, reading) is now fully self-contained inside the section package. Previously, the implementation of each section was spread across three packages (`pkg/dataobj/internal/encoding`, `pkg/dataobj/internal/sections/SECTION`, `pkg/dataobj`). * Cutting a section is now a decision made by the caller rather than the section implementation. Previously, the logs section builder would create multiple sections. For the most part, this change is a no-op, with two exceptions: 1. Section cutting is now performed by the caller; however, this shouldn't result in any issues. 2. Removing the high-level `dataobj.Stream` and `dataobj.Record` types will temporarily reduce the allocation gains from #16988. I will address this after this PR is merged.
8 months ago
// Flush flushes all buffered data to the buffer provided. Calling Flush can
// result in a no-op if there is no buffered data to flush.
//
refactor(dataobj): invert dependency between dataobj and sections (#17762) Originally, the dataobj package was a higher-level API around sections. This design caused it to become a bottleneck: * Implementing any new public behaviour for a section required bubbling it up to the dataobj API for it to be exposed, making it tedious to add new sections or update existing ones. * The `dataobj.Builder` pattern was focused on constructing dataobjs for storing log data, which will cause friction as we build objects around other use cases. This PR builds on top of the foundation laid out by #17704 and #17708, fully inverting the dependency between dataobj and sections: * The `dataobj` package has no knowledge of what sections exist, and can now be used for writing and reading generic sections. Section packages now create higher-level APIs around the abstractions provided by `dataobj`. * Section packages are now public, and callers interact directly with these packages for writing and reading section-specific data. * All logic for a section (encoding, decoding, buffering, reading) is now fully self-contained inside the section package. Previously, the implementation of each section was spread across three packages (`pkg/dataobj/internal/encoding`, `pkg/dataobj/internal/sections/SECTION`, `pkg/dataobj`). * Cutting a section is now a decision made by the caller rather than the section implementation. Previously, the logs section builder would create multiple sections. For the most part, this change is a no-op, with two exceptions: 1. Section cutting is now performed by the caller; however, this shouldn't result in any issues. 2. Removing the high-level `dataobj.Stream` and `dataobj.Record` types will temporarily reduce the allocation gains from #16988. I will address this after this PR is merged.
8 months ago
// [Builder.Reset] is called after a successful Flush to discard any pending
// data and allow new data to be appended.
func (b *Builder) Flush(output *bytes.Buffer) (int64, error) {
sz, err := b.encoder.Flush(output)
if err != nil {
refactor(dataobj): invert dependency between dataobj and sections (#17762) Originally, the dataobj package was a higher-level API around sections. This design caused it to become a bottleneck: * Implementing any new public behaviour for a section required bubbling it up to the dataobj API for it to be exposed, making it tedious to add new sections or update existing ones. * The `dataobj.Builder` pattern was focused on constructing dataobjs for storing log data, which will cause friction as we build objects around other use cases. This PR builds on top of the foundation laid out by #17704 and #17708, fully inverting the dependency between dataobj and sections: * The `dataobj` package has no knowledge of what sections exist, and can now be used for writing and reading generic sections. Section packages now create higher-level APIs around the abstractions provided by `dataobj`. * Section packages are now public, and callers interact directly with these packages for writing and reading section-specific data. * All logic for a section (encoding, decoding, buffering, reading) is now fully self-contained inside the section package. Previously, the implementation of each section was spread across three packages (`pkg/dataobj/internal/encoding`, `pkg/dataobj/internal/sections/SECTION`, `pkg/dataobj`). * Cutting a section is now a decision made by the caller rather than the section implementation. Previously, the logs section builder would create multiple sections. For the most part, this change is a no-op, with two exceptions: 1. Section cutting is now performed by the caller; however, this shouldn't result in any issues. 2. Removing the high-level `dataobj.Stream` and `dataobj.Record` types will temporarily reduce the allocation gains from #16988. I will address this after this PR is merged.
8 months ago
return sz, fmt.Errorf("building object: %w", err)
}
b.Reset()
refactor(dataobj): invert dependency between dataobj and sections (#17762) Originally, the dataobj package was a higher-level API around sections. This design caused it to become a bottleneck: * Implementing any new public behaviour for a section required bubbling it up to the dataobj API for it to be exposed, making it tedious to add new sections or update existing ones. * The `dataobj.Builder` pattern was focused on constructing dataobjs for storing log data, which will cause friction as we build objects around other use cases. This PR builds on top of the foundation laid out by #17704 and #17708, fully inverting the dependency between dataobj and sections: * The `dataobj` package has no knowledge of what sections exist, and can now be used for writing and reading generic sections. Section packages now create higher-level APIs around the abstractions provided by `dataobj`. * Section packages are now public, and callers interact directly with these packages for writing and reading section-specific data. * All logic for a section (encoding, decoding, buffering, reading) is now fully self-contained inside the section package. Previously, the implementation of each section was spread across three packages (`pkg/dataobj/internal/encoding`, `pkg/dataobj/internal/sections/SECTION`, `pkg/dataobj`). * Cutting a section is now a decision made by the caller rather than the section implementation. Previously, the logs section builder would create multiple sections. For the most part, this change is a no-op, with two exceptions: 1. Section cutting is now performed by the caller; however, this shouldn't result in any issues. 2. Removing the high-level `dataobj.Stream` and `dataobj.Record` types will temporarily reduce the allocation gains from #16988. I will address this after this PR is merged.
8 months ago
return sz, nil
}
// Reset discards pending data and resets the builder to an empty state.
func (b *Builder) Reset() {
refactor(dataobj): invert dependency between dataobj and sections (#17762) Originally, the dataobj package was a higher-level API around sections. This design caused it to become a bottleneck: * Implementing any new public behaviour for a section required bubbling it up to the dataobj API for it to be exposed, making it tedious to add new sections or update existing ones. * The `dataobj.Builder` pattern was focused on constructing dataobjs for storing log data, which will cause friction as we build objects around other use cases. This PR builds on top of the foundation laid out by #17704 and #17708, fully inverting the dependency between dataobj and sections: * The `dataobj` package has no knowledge of what sections exist, and can now be used for writing and reading generic sections. Section packages now create higher-level APIs around the abstractions provided by `dataobj`. * Section packages are now public, and callers interact directly with these packages for writing and reading section-specific data. * All logic for a section (encoding, decoding, buffering, reading) is now fully self-contained inside the section package. Previously, the implementation of each section was spread across three packages (`pkg/dataobj/internal/encoding`, `pkg/dataobj/internal/sections/SECTION`, `pkg/dataobj`). * Cutting a section is now a decision made by the caller rather than the section implementation. Previously, the logs section builder would create multiple sections. For the most part, this change is a no-op, with two exceptions: 1. Section cutting is now performed by the caller; however, this shouldn't result in any issues. 2. Removing the high-level `dataobj.Stream` and `dataobj.Record` types will temporarily reduce the allocation gains from #16988. I will address this after this PR is merged.
8 months ago
b.encoder.Reset()
}