Like Prometheus, but for logs.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
loki/pkg/engine/internal/executor/executor.go

444 lines
13 KiB

package executor
import (
"context"
"errors"
"fmt"
"github.com/apache/arrow-go/v18/arrow/memory"
"github.com/go-kit/log"
"github.com/grafana/dskit/user"
"github.com/thanos-io/objstore"
"go.opentelemetry.io/otel"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/trace"
"github.com/grafana/loki/v3/pkg/dataobj"
refactor(dataobj): invert dependency between dataobj and sections (#17762) Originally, the dataobj package was a higher-level API around sections. This design caused it to become a bottleneck: * Implementing any new public behaviour for a section required bubbling it up to the dataobj API for it to be exposed, making it tedious to add new sections or update existing ones. * The `dataobj.Builder` pattern was focused on constructing dataobjs for storing log data, which will cause friction as we build objects around other use cases. This PR builds on top of the foundation laid out by #17704 and #17708, fully inverting the dependency between dataobj and sections: * The `dataobj` package has no knowledge of what sections exist, and can now be used for writing and reading generic sections. Section packages now create higher-level APIs around the abstractions provided by `dataobj`. * Section packages are now public, and callers interact directly with these packages for writing and reading section-specific data. * All logic for a section (encoding, decoding, buffering, reading) is now fully self-contained inside the section package. Previously, the implementation of each section was spread across three packages (`pkg/dataobj/internal/encoding`, `pkg/dataobj/internal/sections/SECTION`, `pkg/dataobj`). * Cutting a section is now a decision made by the caller rather than the section implementation. Previously, the logs section builder would create multiple sections. For the most part, this change is a no-op, with two exceptions: 1. Section cutting is now performed by the caller; however, this shouldn't result in any issues. 2. Removing the high-level `dataobj.Stream` and `dataobj.Record` types will temporarily reduce the allocation gains from #16988. I will address this after this PR is merged.
7 months ago
"github.com/grafana/loki/v3/pkg/dataobj/sections/logs"
"github.com/grafana/loki/v3/pkg/dataobj/sections/streams"
"github.com/grafana/loki/v3/pkg/engine/internal/planner/physical"
)
var tracer = otel.Tracer("pkg/engine/internal/executor")
type Config struct {
BatchSize int64
Bucket objstore.Bucket
MergePrefetchCount int
}
func Run(ctx context.Context, cfg Config, plan *physical.Plan, logger log.Logger) Pipeline {
c := &Context{
plan: plan,
batchSize: cfg.BatchSize,
mergePrefetchCount: cfg.MergePrefetchCount,
bucket: cfg.Bucket,
logger: logger,
}
if plan == nil {
return errorPipeline(ctx, errors.New("plan is nil"))
}
node, err := plan.Root()
if err != nil {
return errorPipeline(ctx, err)
}
return c.execute(ctx, node)
}
// Context is the execution context
type Context struct {
batchSize int64
logger log.Logger
plan *physical.Plan
evaluator expressionEvaluator
bucket objstore.Bucket
mergePrefetchCount int
}
func (c *Context) execute(ctx context.Context, node physical.Node) Pipeline {
children := c.plan.Children(node)
inputs := make([]Pipeline, 0, len(children))
for _, child := range children {
inputs = append(inputs, c.execute(ctx, child))
}
switch n := node.(type) {
case *physical.DataObjScan:
// DataObjScan reads from object storage to determine the full pipeline to
// construct, making it expensive to call during planning time.
//
// TODO(rfratto): find a way to remove the logic from executeDataObjScan
// which wraps the pipeline with a topk/limit without reintroducing
// planning cost for thousands of scan nodes.
return newLazyPipeline(func(ctx context.Context, _ []Pipeline) Pipeline {
return tracePipeline("physical.DataObjScan", c.executeDataObjScan(ctx, n))
}, inputs)
case *physical.SortMerge:
return tracePipeline("physical.SortMerge", c.executeSortMerge(ctx, n, inputs))
case *physical.TopK:
return tracePipeline("physical.TopK", c.executeTopK(ctx, n, inputs))
case *physical.Limit:
return tracePipeline("physical.Limit", c.executeLimit(ctx, n, inputs))
case *physical.Filter:
return tracePipeline("physical.Filter", c.executeFilter(ctx, n, inputs))
case *physical.Merge:
return tracePipeline("physical.Merge", c.executeMerge(ctx, n, inputs))
case *physical.Projection:
return tracePipeline("physical.Projection", c.executeProjection(ctx, n, inputs))
case *physical.RangeAggregation:
return tracePipeline("physical.RangeAggregation", c.executeRangeAggregation(ctx, n, inputs))
case *physical.VectorAggregation:
return tracePipeline("physical.VectorAggregation", c.executeVectorAggregation(ctx, n, inputs))
case *physical.ParseNode:
return tracePipeline("physical.ParseNode", c.executeParse(ctx, n, inputs))
case *physical.ColumnCompat:
return tracePipeline("physical.ColumnCompat", c.executeColumnCompat(ctx, n, inputs))
case *physical.Parallelize:
return tracePipeline("physical.Parallelize", c.executeParallelize(ctx, n, inputs))
default:
return errorPipeline(ctx, fmt.Errorf("invalid node type: %T", node))
}
}
func (c *Context) executeDataObjScan(ctx context.Context, node *physical.DataObjScan) Pipeline {
ctx, span := tracer.Start(ctx, "Context.executeDataObjScan", trace.WithAttributes(
attribute.String("location", string(node.Location)),
attribute.Int("section", node.Section),
attribute.Int("num_stream_ids", len(node.StreamIDs)),
attribute.Int("num_predicates", len(node.Predicates)),
attribute.Int("num_projections", len(node.Projections)),
))
defer span.End()
if c.bucket == nil {
return errorPipeline(ctx, errors.New("no object store bucket configured"))
}
obj, err := dataobj.FromBucket(ctx, c.bucket, string(node.Location))
if err != nil {
return errorPipeline(ctx, fmt.Errorf("creating data object: %w", err))
}
span.AddEvent("opened dataobj")
var (
streamsSection *streams.Section
logsSection *logs.Section
)
tenant, err := user.ExtractOrgID(ctx)
if err != nil {
return errorPipeline(ctx, fmt.Errorf("missing org ID: %w", err))
}
for _, sec := range obj.Sections().Filter(streams.CheckSection) {
if sec.Tenant != tenant {
continue
}
if streamsSection != nil {
return errorPipeline(ctx, fmt.Errorf("multiple streams sections found in data object %q", node.Location))
}
var err error
streamsSection, err = streams.Open(ctx, sec)
if err != nil {
return errorPipeline(ctx, fmt.Errorf("opening streams section %q: %w", sec.Type, err))
}
span.AddEvent("opened streams section")
break
}
if streamsSection == nil {
return errorPipeline(ctx, fmt.Errorf("streams section not found in data object %q", node.Location))
}
for i, sec := range obj.Sections().Filter(logs.CheckSection) {
if i != node.Section {
continue
}
var err error
logsSection, err = logs.Open(ctx, sec)
if err != nil {
return errorPipeline(ctx, fmt.Errorf("opening logs section %q: %w", sec.Type, err))
}
span.AddEvent("opened logs section")
break
}
if logsSection == nil {
return errorPipeline(ctx, fmt.Errorf("logs section %d not found in data object %q", node.Section, node.Location))
}
predicates := make([]logs.Predicate, 0, len(node.Predicates))
for _, p := range node.Predicates {
conv, err := buildLogsPredicate(p, logsSection.Columns())
if err != nil {
return errorPipeline(ctx, err)
}
predicates = append(predicates, conv)
}
span.AddEvent("constructed predicate")
var pipeline Pipeline = newDataobjScanPipeline(dataobjScanOptions{
// TODO(rfratto): passing the streams section means that each DataObjScan
// will read the entire streams section (for IDs being loaded), which is
// going to be quite a bit of wasted effort.
//
// Longer term, there should be a dedicated plan node which handles joining
// streams and log records based on StreamID, which is shared between all
// sections in the same object.
StreamsSection: streamsSection,
LogsSection: logsSection,
StreamIDs: node.StreamIDs,
Predicates: predicates,
Projections: node.Projections,
// TODO(rfratto): pass custom allocator
Allocator: memory.DefaultAllocator,
BatchSize: c.batchSize,
}, log.With(c.logger, "location", string(node.Location), "section", node.Section))
return pipeline
}
func logsSortOrder(dir logs.SortDirection) physical.SortOrder {
switch dir {
case logs.SortDirectionAscending:
return physical.ASC
case logs.SortDirectionDescending:
return physical.DESC
}
return physical.UNSORTED
}
func (c *Context) executeTopK(ctx context.Context, topK *physical.TopK, inputs []Pipeline) Pipeline {
ctx, span := tracer.Start(ctx, "Context.executeTopK", trace.WithAttributes(
attribute.Int("k", topK.K),
attribute.Bool("ascending", topK.Ascending),
))
defer span.End()
if topK.SortBy != nil {
span.SetAttributes(attribute.Stringer("sort_by", topK.SortBy))
}
if len(inputs) == 0 {
return emptyPipeline()
}
pipeline, err := newTopkPipeline(topkOptions{
Inputs: inputs,
SortBy: []physical.ColumnExpression{topK.SortBy},
Ascending: topK.Ascending,
NullsFirst: topK.NullsFirst,
K: topK.K,
MaxUnused: int(c.batchSize) * 2,
})
if err != nil {
return errorPipeline(ctx, err)
}
return pipeline
}
func (c *Context) executeSortMerge(ctx context.Context, sortmerge *physical.SortMerge, inputs []Pipeline) Pipeline {
ctx, span := tracer.Start(ctx, "Context.executeSortMerge", trace.WithAttributes(
attribute.Stringer("order", sortmerge.Order),
attribute.Int("num_inputs", len(inputs)),
))
if sortmerge.Column != nil {
span.SetAttributes(attribute.Stringer("column", sortmerge.Column))
}
defer span.End()
if len(inputs) == 0 {
return emptyPipeline()
}
chore(engine): Implement execution pipeline for SortMerge operator (#17406) This PR contains an implementation of the k-way merge operation without using a heap, like @rfratto described [here](https://github.com/grafana/loki/pull/17280). The SortMerge is implemented only using slices: * Maintain the following invariant: * For each input pipeline, we store the next record to process. (this already exists as `HeapSortMerge.batches`) * Additionally for each record, track the starting slice offset (which resets to zero whenever a new record is loaded in). * Iteration stops when all input pipelines have been exhausted (no change from how this is now). * To get the next record: * Iterate through each record, looking at the value from their starting slice offset. * Track the top _two_ winners (e.g., the record whose next value is the smallest and the record whose next value is the next smallest). * Find the largest offset in the starting record whose value is still less than the value of the runner-up record from the previous step. * Return the slice of that record using the two offsets, and update the stored offset of the returned record for the next call to `Read`. This approach, like the one with heap, still requires to concatenate (coalesce) the single row records - which is not implemented in this PR yet. On that note, single row records are the worst case scenario with this implementation, not necessarily the regular case. **Update:** After an offline discussion, @owen-d and I agreed on ignoring the worst-case scenario of single-row records for now. Signed-off-by: Christian Haudum <christian.haudum@gmail.com>
8 months ago
pipeline, err := NewSortMergePipeline(inputs, sortmerge.Order, sortmerge.Column, c.evaluator)
if err != nil {
return errorPipeline(ctx, err)
chore(engine): Implement execution pipeline for SortMerge operator (#17406) This PR contains an implementation of the k-way merge operation without using a heap, like @rfratto described [here](https://github.com/grafana/loki/pull/17280). The SortMerge is implemented only using slices: * Maintain the following invariant: * For each input pipeline, we store the next record to process. (this already exists as `HeapSortMerge.batches`) * Additionally for each record, track the starting slice offset (which resets to zero whenever a new record is loaded in). * Iteration stops when all input pipelines have been exhausted (no change from how this is now). * To get the next record: * Iterate through each record, looking at the value from their starting slice offset. * Track the top _two_ winners (e.g., the record whose next value is the smallest and the record whose next value is the next smallest). * Find the largest offset in the starting record whose value is still less than the value of the runner-up record from the previous step. * Return the slice of that record using the two offsets, and update the stored offset of the returned record for the next call to `Read`. This approach, like the one with heap, still requires to concatenate (coalesce) the single row records - which is not implemented in this PR yet. On that note, single row records are the worst case scenario with this implementation, not necessarily the regular case. **Update:** After an offline discussion, @owen-d and I agreed on ignoring the worst-case scenario of single-row records for now. Signed-off-by: Christian Haudum <christian.haudum@gmail.com>
8 months ago
}
return pipeline
}
func (c *Context) executeLimit(ctx context.Context, limit *physical.Limit, inputs []Pipeline) Pipeline {
ctx, span := tracer.Start(ctx, "Context.executeLimit", trace.WithAttributes(
attribute.Int("skip", int(limit.Skip)),
attribute.Int("fetch", int(limit.Fetch)),
attribute.Int("num_inputs", len(inputs)),
))
defer span.End()
if len(inputs) == 0 {
return emptyPipeline()
}
if len(inputs) > 1 {
return errorPipeline(ctx, fmt.Errorf("limit expects exactly one input, got %d", len(inputs)))
}
return NewLimitPipeline(inputs[0], limit.Skip, limit.Fetch)
}
func (c *Context) executeFilter(ctx context.Context, filter *physical.Filter, inputs []Pipeline) Pipeline {
ctx, span := tracer.Start(ctx, "Context.executeFilter", trace.WithAttributes(
attribute.Int("num_inputs", len(inputs)),
))
defer span.End()
if len(inputs) == 0 {
return emptyPipeline()
}
if len(inputs) > 1 {
return errorPipeline(ctx, fmt.Errorf("filter expects exactly one input, got %d", len(inputs)))
}
// Use memory allocator from context or default
allocator := memory.DefaultAllocator
return NewFilterPipeline(filter, inputs[0], c.evaluator, allocator)
}
func (c *Context) executeMerge(ctx context.Context, _ *physical.Merge, inputs []Pipeline) Pipeline {
ctx, span := tracer.Start(ctx, "Context.executeMerge", trace.WithAttributes(
attribute.Int("num_inputs", len(inputs)),
))
defer span.End()
if len(inputs) == 0 {
return emptyPipeline()
}
pipeline, err := newMergePipeline(inputs, c.mergePrefetchCount)
if err != nil {
return errorPipeline(ctx, err)
}
return pipeline
}
func (c *Context) executeProjection(ctx context.Context, proj *physical.Projection, inputs []Pipeline) Pipeline {
ctx, span := tracer.Start(ctx, "Context.executeProjection", trace.WithAttributes(
attribute.Int("num_columns", len(proj.Columns)),
attribute.Int("num_inputs", len(inputs)),
))
defer span.End()
if len(inputs) == 0 {
return emptyPipeline()
}
if len(inputs) > 1 {
// unsupported for now
return errorPipeline(ctx, fmt.Errorf("projection expects exactly one input, got %d", len(inputs)))
}
if len(proj.Columns) == 0 {
return errorPipeline(ctx, fmt.Errorf("projection expects at least one column, got 0"))
}
p, err := NewProjectPipeline(inputs[0], proj.Columns, &c.evaluator)
if err != nil {
return errorPipeline(ctx, err)
}
return p
}
func (c *Context) executeRangeAggregation(ctx context.Context, plan *physical.RangeAggregation, inputs []Pipeline) Pipeline {
ctx, span := tracer.Start(ctx, "Context.executeRangeAggregation", trace.WithAttributes(
attribute.Int("num_partition_by", len(plan.PartitionBy)),
attribute.Int64("start_ts", plan.Start.UnixNano()),
attribute.Int64("end_ts", plan.End.UnixNano()),
attribute.Int64("range_interval", int64(plan.Range)),
attribute.Int64("step", int64(plan.Step)),
attribute.Int("num_inputs", len(inputs)),
))
defer span.End()
if len(inputs) == 0 {
return emptyPipeline()
}
pipeline, err := newRangeAggregationPipeline(inputs, c.evaluator, rangeAggregationOptions{
partitionBy: plan.PartitionBy,
startTs: plan.Start,
endTs: plan.End,
rangeInterval: plan.Range,
step: plan.Step,
operation: plan.Operation,
})
if err != nil {
return errorPipeline(ctx, err)
}
return pipeline
}
func (c *Context) executeVectorAggregation(ctx context.Context, plan *physical.VectorAggregation, inputs []Pipeline) Pipeline {
ctx, span := tracer.Start(ctx, "Context.executeVectorAggregation", trace.WithAttributes(
attribute.Int("num_group_by", len(plan.GroupBy)),
attribute.Int("num_inputs", len(inputs)),
))
defer span.End()
if len(inputs) == 0 {
return emptyPipeline()
}
pipeline, err := newVectorAggregationPipeline(inputs, plan.GroupBy, c.evaluator, plan.Operation)
if err != nil {
return errorPipeline(ctx, err)
}
return pipeline
}
func (c *Context) executeParse(ctx context.Context, parse *physical.ParseNode, inputs []Pipeline) Pipeline {
if len(inputs) == 0 {
return emptyPipeline()
}
if len(inputs) > 1 {
return errorPipeline(ctx, fmt.Errorf("parse expects exactly one input, got %d", len(inputs)))
}
// Use memory allocator from context or default
allocator := memory.DefaultAllocator
return NewParsePipeline(parse, inputs[0], allocator)
}
func (c *Context) executeColumnCompat(ctx context.Context, compat *physical.ColumnCompat, inputs []Pipeline) Pipeline {
if len(inputs) == 0 {
return emptyPipeline()
}
if len(inputs) > 1 {
return errorPipeline(ctx, fmt.Errorf("columncompat expects exactly one input, got %d", len(inputs)))
}
return newColumnCompatibilityPipeline(compat, inputs[0])
}
func (c *Context) executeParallelize(ctx context.Context, _ *physical.Parallelize, inputs []Pipeline) Pipeline {
if len(inputs) == 0 {
return emptyPipeline()
} else if len(inputs) > 1 {
return errorPipeline(ctx, fmt.Errorf("parallelize expects exactly one input, got %d", len(inputs)))
}
// Parallelize is a hint node to the scheduler for parallel execution. If we
// see an Parallelize node in the plan, we ignore it and immediately
// propagate up the input.
return inputs[0]
}