package logql import ( "context" "errors" "flag" "math" "sort" "time" "github.com/go-kit/log/level" "github.com/prometheus/client_golang/prometheus" "github.com/prometheus/client_golang/prometheus/promauto" "github.com/prometheus/prometheus/model/labels" "github.com/prometheus/prometheus/promql" promql_parser "github.com/prometheus/prometheus/promql/parser" "github.com/grafana/loki/pkg/util/spanlogger" "github.com/grafana/loki/pkg/tenant" "github.com/grafana/loki/pkg/iter" "github.com/grafana/loki/pkg/logproto" "github.com/grafana/loki/pkg/logqlmodel" "github.com/grafana/loki/pkg/logqlmodel/stats" "github.com/grafana/loki/pkg/util" ) var ( queryTime = promauto.NewHistogramVec(prometheus.HistogramOpts{ Namespace: "logql", Name: "query_duration_seconds", Help: "LogQL query timings", Buckets: prometheus.DefBuckets, }, []string{"query_type"}) lastEntryMinTime = time.Unix(-100, 0) ) // EngineOpts is the list of options to use with the LogQL query engine. type EngineOpts struct { // Timeout for queries execution Timeout time.Duration `yaml:"timeout"` // MaxLookBackPeriod is the maximum amount of time to look back for log lines. // only used for instant log queries. MaxLookBackPeriod time.Duration `yaml:"max_look_back_period"` } func (opts *EngineOpts) RegisterFlagsWithPrefix(prefix string, f *flag.FlagSet) { f.DurationVar(&opts.Timeout, prefix+".engine.timeout", 5*time.Minute, "Timeout for query execution.") f.DurationVar(&opts.MaxLookBackPeriod, prefix+".engine.max-lookback-period", 30*time.Second, "The maximum amount of time to look back for log lines. Used only for instant log queries.") } func (opts *EngineOpts) applyDefault() { if opts.Timeout == 0 { opts.Timeout = 5 * time.Minute } if opts.MaxLookBackPeriod == 0 { opts.MaxLookBackPeriod = 30 * time.Second } } // Engine is the LogQL engine. type Engine struct { timeout time.Duration evaluator Evaluator limits Limits } // NewEngine creates a new LogQL Engine. func NewEngine(opts EngineOpts, q Querier, l Limits) *Engine { opts.applyDefault() return &Engine{ timeout: opts.Timeout, evaluator: NewDefaultEvaluator(q, opts.MaxLookBackPeriod), limits: l, } } // Query creates a new LogQL query. Instant/Range type is derived from the parameters. func (ng *Engine) Query(params Params) Query { return &query{ timeout: ng.timeout, params: params, evaluator: ng.evaluator, parse: func(_ context.Context, query string) (Expr, error) { return ParseExpr(query) }, record: true, limits: ng.limits, } } // Query is a LogQL query to be executed. type Query interface { // Exec processes the query. Exec(ctx context.Context) (logqlmodel.Result, error) } type query struct { timeout time.Duration params Params parse func(context.Context, string) (Expr, error) limits Limits evaluator Evaluator record bool } // Exec Implements `Query`. It handles instrumentation & defers to Eval. func (q *query) Exec(ctx context.Context) (logqlmodel.Result, error) { log, ctx := spanlogger.New(ctx, "query.Exec") defer log.Finish() rangeType := GetRangeType(q.params) timer := prometheus.NewTimer(queryTime.WithLabelValues(string(rangeType))) defer timer.ObserveDuration() // records query statistics start := time.Now() statsCtx, ctx := stats.NewContext(ctx) data, err := q.Eval(ctx) statResult := statsCtx.Result(time.Since(start)) statResult.Log(level.Debug(log)) status := "200" if err != nil { status = "500" if errors.Is(err, logqlmodel.ErrParse) || errors.Is(err, logqlmodel.ErrPipeline) || errors.Is(err, logqlmodel.ErrLimit) || errors.Is(err, context.Canceled) { status = "400" } } if q.record { RecordMetrics(ctx, q.params, status, statResult, data) } return logqlmodel.Result{ Data: data, Statistics: statResult, }, err } func (q *query) Eval(ctx context.Context) (promql_parser.Value, error) { ctx, cancel := context.WithTimeout(ctx, q.timeout) defer cancel() expr, err := q.parse(ctx, q.params.Query()) if err != nil { return nil, err } switch e := expr.(type) { case SampleExpr: value, err := q.evalSample(ctx, e) return value, err case LogSelectorExpr: iter, err := q.evaluator.Iterator(ctx, e, q.params) if err != nil { return nil, err } defer util.LogErrorWithContext(ctx, "closing iterator", iter.Close) streams, err := readStreams(iter, q.params.Limit(), q.params.Direction(), q.params.Interval()) return streams, err default: return nil, errors.New("Unexpected type (%T): cannot evaluate") } } // evalSample evaluate a sampleExpr func (q *query) evalSample(ctx context.Context, expr SampleExpr) (promql_parser.Value, error) { if lit, ok := expr.(*LiteralExpr); ok { return q.evalLiteral(ctx, lit) } userID, err := tenant.TenantID(ctx) if err != nil { return nil, err } expr, err = optimizeSampleExpr(expr) if err != nil { return nil, err } stepEvaluator, err := q.evaluator.StepEvaluator(ctx, q.evaluator, expr, q.params) if err != nil { return nil, err } defer util.LogErrorWithContext(ctx, "closing SampleExpr", stepEvaluator.Close) seriesIndex := map[uint64]*promql.Series{} maxSeries := q.limits.MaxQuerySeries(userID) next, ts, vec := stepEvaluator.Next() if stepEvaluator.Error() != nil { return nil, stepEvaluator.Error() } // fail fast for the first step or instant query if len(vec) > maxSeries { return nil, logqlmodel.NewSeriesLimitError(maxSeries) } if GetRangeType(q.params) == InstantType { sort.Slice(vec, func(i, j int) bool { return labels.Compare(vec[i].Metric, vec[j].Metric) < 0 }) return vec, nil } stepCount := int(math.Ceil(float64(q.params.End().Sub(q.params.Start()).Nanoseconds()) / float64(q.params.Step().Nanoseconds()))) if stepCount <= 0 { stepCount = 1 } for next { for _, p := range vec { var ( series *promql.Series hash = p.Metric.Hash() ok bool ) series, ok = seriesIndex[hash] if !ok { series = &promql.Series{ Metric: p.Metric, Points: make([]promql.Point, 0, stepCount), } seriesIndex[hash] = series } series.Points = append(series.Points, promql.Point{ T: ts, V: p.V, }) } // as we slowly build the full query for each steps, make sure we don't go over the limit of unique series. if len(seriesIndex) > maxSeries { return nil, logqlmodel.NewSeriesLimitError(maxSeries) } next, ts, vec = stepEvaluator.Next() if stepEvaluator.Error() != nil { return nil, stepEvaluator.Error() } } series := make([]promql.Series, 0, len(seriesIndex)) for _, s := range seriesIndex { series = append(series, *s) } result := promql.Matrix(series) sort.Sort(result) return result, stepEvaluator.Error() } func (q *query) evalLiteral(_ context.Context, expr *LiteralExpr) (promql_parser.Value, error) { s := promql.Scalar{ T: q.params.Start().UnixNano() / int64(time.Millisecond), V: expr.value, } if GetRangeType(q.params) == InstantType { return s, nil } return PopulateMatrixFromScalar(s, q.params), nil } func PopulateMatrixFromScalar(data promql.Scalar, params Params) promql.Matrix { var ( start = params.Start() end = params.End() step = params.Step() series = promql.Series{ Points: make( []promql.Point, 0, // allocate enough space for all needed entries int(end.Sub(start)/step)+1, ), } ) for ts := start; !ts.After(end); ts = ts.Add(step) { series.Points = append(series.Points, promql.Point{ T: ts.UnixNano() / int64(time.Millisecond), V: data.V, }) } return promql.Matrix{series} } func readStreams(i iter.EntryIterator, size uint32, dir logproto.Direction, interval time.Duration) (logqlmodel.Streams, error) { streams := map[string]*logproto.Stream{} respSize := uint32(0) // lastEntry should be a really old time so that the first comparison is always true, we use a negative // value here because many unit tests start at time.Unix(0,0) lastEntry := lastEntryMinTime for respSize < size && i.Next() { labels, entry := i.Labels(), i.Entry() forwardShouldOutput := dir == logproto.FORWARD && (i.Entry().Timestamp.Equal(lastEntry.Add(interval)) || i.Entry().Timestamp.After(lastEntry.Add(interval))) backwardShouldOutput := dir == logproto.BACKWARD && (i.Entry().Timestamp.Equal(lastEntry.Add(-interval)) || i.Entry().Timestamp.Before(lastEntry.Add(-interval))) // If step == 0 output every line. // If lastEntry.Unix < 0 this is the first pass through the loop and we should output the line. // Then check to see if the entry is equal to, or past a forward or reverse step if interval == 0 || lastEntry.Unix() < 0 || forwardShouldOutput || backwardShouldOutput { stream, ok := streams[labels] if !ok { stream = &logproto.Stream{ Labels: labels, } streams[labels] = stream } stream.Entries = append(stream.Entries, entry) lastEntry = i.Entry().Timestamp respSize++ } } result := make(logqlmodel.Streams, 0, len(streams)) for _, stream := range streams { result = append(result, *stream) } sort.Sort(result) return result, i.Error() } type groupedAggregation struct { labels labels.Labels value float64 mean float64 groupCount int heap vectorByValueHeap reverseHeap vectorByReverseValueHeap }