package logql import ( "fmt" "math" "sort" "sync" "time" "github.com/prometheus/prometheus/model/labels" "github.com/prometheus/prometheus/promql" promql_parser "github.com/prometheus/prometheus/promql/parser" "github.com/grafana/loki/pkg/iter" "github.com/grafana/loki/pkg/logql/syntax" "github.com/grafana/loki/pkg/logql/vector" ) // RangeVectorAggregator aggregates samples for a given range of samples. // It receives the current milliseconds timestamp and the list of point within // the range. type RangeVectorAggregator func([]promql.Point) float64 // RangeVectorIterator iterates through a range of samples. // To fetch the current vector use `At` with a `RangeVectorAggregator`. type RangeVectorIterator interface { Next() bool At(aggregator RangeVectorAggregator) (int64, promql.Vector) Close() error Error() error } type rangeVectorIterator struct { iter iter.PeekingSampleIterator selRange, step, end, current, offset int64 window map[string]*promql.Series metrics map[string]labels.Labels at []promql.Sample } func newRangeVectorIterator( it iter.PeekingSampleIterator, selRange, step, start, end, offset int64) *rangeVectorIterator { // forces at least one step. if step == 0 { step = 1 } if offset != 0 { start = start - offset end = end - offset } return &rangeVectorIterator{ iter: it, step: step, end: end, selRange: selRange, current: start - step, // first loop iteration will set it to start offset: offset, window: map[string]*promql.Series{}, metrics: map[string]labels.Labels{}, } } func (r *rangeVectorIterator) Next() bool { // slides the range window to the next position r.current = r.current + r.step if r.current > r.end { return false } rangeEnd := r.current rangeStart := rangeEnd - r.selRange // load samples r.popBack(rangeStart) r.load(rangeStart, rangeEnd) return true } func (r *rangeVectorIterator) Close() error { return r.iter.Close() } func (r *rangeVectorIterator) Error() error { return r.iter.Error() } // popBack removes all entries out of the current window from the back. func (r *rangeVectorIterator) popBack(newStart int64) { // possible improvement: if there is no overlap we can just remove all. for fp := range r.window { lastPoint := 0 remove := false for i, p := range r.window[fp].Points { if p.T <= newStart { lastPoint = i remove = true continue } break } if remove { r.window[fp].Points = r.window[fp].Points[lastPoint+1:] } if len(r.window[fp].Points) == 0 { s := r.window[fp] delete(r.window, fp) putSeries(s) } } } // load the next sample range window. func (r *rangeVectorIterator) load(start, end int64) { for lbs, sample, hasNext := r.iter.Peek(); hasNext; lbs, sample, hasNext = r.iter.Peek() { if sample.Timestamp > end { // not consuming the iterator as this belong to another range. return } // the lower bound of the range is not inclusive if sample.Timestamp <= start { _ = r.iter.Next() continue } // adds the sample. var series *promql.Series var ok bool series, ok = r.window[lbs] if !ok { var metric labels.Labels if metric, ok = r.metrics[lbs]; !ok { var err error metric, err = promql_parser.ParseMetric(lbs) if err != nil { _ = r.iter.Next() continue } r.metrics[lbs] = metric } series = getSeries() series.Metric = metric r.window[lbs] = series } p := promql.Point{ T: sample.Timestamp, V: sample.Value, } series.Points = append(series.Points, p) _ = r.iter.Next() } } func (r *rangeVectorIterator) At(aggregator RangeVectorAggregator) (int64, promql.Vector) { if r.at == nil { r.at = make([]promql.Sample, 0, len(r.window)) } r.at = r.at[:0] // convert ts from nano to milli seconds as the iterator work with nanoseconds ts := r.current/1e+6 + r.offset/1e+6 for _, series := range r.window { r.at = append(r.at, promql.Sample{ Point: promql.Point{ V: aggregator(series.Points), T: ts, }, Metric: series.Metric, }) } return ts, r.at } var seriesPool sync.Pool func getSeries() *promql.Series { if r := seriesPool.Get(); r != nil { s := r.(*promql.Series) s.Points = s.Points[:0] return s } return &promql.Series{ Points: make([]promql.Point, 0, 1024), } } func putSeries(s *promql.Series) { seriesPool.Put(s) } func aggregator(r *syntax.RangeAggregationExpr) (RangeVectorAggregator, error) { switch r.Operation { case syntax.OpRangeTypeRate: return rateLogs(r.Left.Interval, r.Left.Unwrap != nil), nil case syntax.OpRangeTypeRateCounter: return rateCounter(r.Left.Interval), nil case syntax.OpRangeTypeCount: return countOverTime, nil case syntax.OpRangeTypeBytesRate: return rateLogBytes(r.Left.Interval), nil case syntax.OpRangeTypeBytes, syntax.OpRangeTypeSum: return sumOverTime, nil case syntax.OpRangeTypeAvg: return avgOverTime, nil case syntax.OpRangeTypeMax: return maxOverTime, nil case syntax.OpRangeTypeMin: return minOverTime, nil case syntax.OpRangeTypeStddev: return stddevOverTime, nil case syntax.OpRangeTypeStdvar: return stdvarOverTime, nil case syntax.OpRangeTypeQuantile: return quantileOverTime(*r.Params), nil case syntax.OpRangeTypeFirst: return first, nil case syntax.OpRangeTypeLast: return last, nil case syntax.OpRangeTypeAbsent: return one, nil default: return nil, fmt.Errorf(syntax.UnsupportedErr, r.Operation) } } // rateLogs calculates the per-second rate of log lines or values extracted // from log lines func rateLogs(selRange time.Duration, computeValues bool) func(samples []promql.Point) float64 { return func(samples []promql.Point) float64 { if !computeValues { return float64(len(samples)) / selRange.Seconds() } var result float64 for _, sample := range samples { result += sample.V } return result / selRange.Seconds() } } // rateCounter calculates the per-second rate of values extracted from log lines // and treat them like a "counter" metric. func rateCounter(selRange time.Duration) func(samples []promql.Point) float64 { return func(samples []promql.Point) float64 { return extrapolatedRate(samples, selRange, true, true) } } // extrapolatedRate function is taken from prometheus code promql/functions.go:59 // extrapolatedRate is a utility function for rate/increase/delta. // It calculates the rate (allowing for counter resets if isCounter is true), // extrapolates if the first/last sample is close to the boundary, and returns // the result as either per-second (if isRate is true) or overall. func extrapolatedRate(samples []promql.Point, selRange time.Duration, isCounter, isRate bool) float64 { // No sense in trying to compute a rate without at least two points. Drop // this Vector element. if len(samples) < 2 { return 0 } var ( rangeStart = samples[0].T - durationMilliseconds(selRange) rangeEnd = samples[len(samples)-1].T ) resultValue := samples[len(samples)-1].V - samples[0].V if isCounter { var lastValue float64 for _, sample := range samples { if sample.V < lastValue { resultValue += lastValue } lastValue = sample.V } } // Duration between first/last samples and boundary of range. durationToStart := float64(samples[0].T-rangeStart) / 1000 durationToEnd := float64(rangeEnd-samples[len(samples)-1].T) / 1000 sampledInterval := float64(samples[len(samples)-1].T-samples[0].T) / 1000 averageDurationBetweenSamples := sampledInterval / float64(len(samples)-1) if isCounter && resultValue > 0 && samples[0].V >= 0 { // Counters cannot be negative. If we have any slope at // all (i.e. resultValue went up), we can extrapolate // the zero point of the counter. If the duration to the // zero point is shorter than the durationToStart, we // take the zero point as the start of the series, // thereby avoiding extrapolation to negative counter // values. durationToZero := sampledInterval * (samples[0].V / resultValue) if durationToZero < durationToStart { durationToStart = durationToZero } } // If the first/last samples are close to the boundaries of the range, // extrapolate the result. This is as we expect that another sample // will exist given the spacing between samples we've seen thus far, // with an allowance for noise. extrapolationThreshold := averageDurationBetweenSamples * 1.1 extrapolateToInterval := sampledInterval if durationToStart < extrapolationThreshold { extrapolateToInterval += durationToStart } else { extrapolateToInterval += averageDurationBetweenSamples / 2 } if durationToEnd < extrapolationThreshold { extrapolateToInterval += durationToEnd } else { extrapolateToInterval += averageDurationBetweenSamples / 2 } resultValue = resultValue * (extrapolateToInterval / sampledInterval) if isRate { seconds := selRange.Seconds() resultValue = resultValue / seconds } return resultValue } func durationMilliseconds(d time.Duration) int64 { return int64(d / (time.Millisecond / time.Nanosecond)) } // rateLogBytes calculates the per-second rate of log bytes. func rateLogBytes(selRange time.Duration) func(samples []promql.Point) float64 { return func(samples []promql.Point) float64 { return sumOverTime(samples) / selRange.Seconds() } } // countOverTime counts the amount of log lines. func countOverTime(samples []promql.Point) float64 { return float64(len(samples)) } func sumOverTime(samples []promql.Point) float64 { var sum float64 for _, v := range samples { sum += v.V } return sum } func avgOverTime(samples []promql.Point) float64 { var mean, count float64 for _, v := range samples { count++ if math.IsInf(mean, 0) { if math.IsInf(v.V, 0) && (mean > 0) == (v.V > 0) { // The `mean` and `v.V` values are `Inf` of the same sign. They // can't be subtracted, but the value of `mean` is correct // already. continue } if !math.IsInf(v.V, 0) && !math.IsNaN(v.V) { // At this stage, the mean is an infinite. If the added // value is neither an Inf or a Nan, we can keep that mean // value. // This is required because our calculation below removes // the mean value, which would look like Inf += x - Inf and // end up as a NaN. continue } } mean += v.V/count - mean/count } return mean } func maxOverTime(samples []promql.Point) float64 { max := samples[0].V for _, v := range samples { if v.V > max || math.IsNaN(max) { max = v.V } } return max } func minOverTime(samples []promql.Point) float64 { min := samples[0].V for _, v := range samples { if v.V < min || math.IsNaN(min) { min = v.V } } return min } func stdvarOverTime(samples []promql.Point) float64 { var aux, count, mean float64 for _, v := range samples { count++ delta := v.V - mean mean += delta / count aux += delta * (v.V - mean) } return aux / count } func stddevOverTime(samples []promql.Point) float64 { var aux, count, mean float64 for _, v := range samples { count++ delta := v.V - mean mean += delta / count aux += delta * (v.V - mean) } return math.Sqrt(aux / count) } func quantileOverTime(q float64) func(samples []promql.Point) float64 { return func(samples []promql.Point) float64 { values := make(vector.HeapByMaxValue, 0, len(samples)) for _, v := range samples { values = append(values, promql.Sample{Point: promql.Point{V: v.V}}) } return quantile(q, values) } } // quantile calculates the given quantile of a vector of samples. // // The Vector will be sorted. // If 'values' has zero elements, NaN is returned. // If q<0, -Inf is returned. // If q>1, +Inf is returned. func quantile(q float64, values vector.HeapByMaxValue) float64 { if len(values) == 0 { return math.NaN() } if q < 0 { return math.Inf(-1) } if q > 1 { return math.Inf(+1) } sort.Sort(values) n := float64(len(values)) // When the quantile lies between two samples, // we use a weighted average of the two samples. rank := q * (n - 1) lowerIndex := math.Max(0, math.Floor(rank)) upperIndex := math.Min(n-1, lowerIndex+1) weight := rank - math.Floor(rank) return values[int(lowerIndex)].V*(1-weight) + values[int(upperIndex)].V*weight } func first(samples []promql.Point) float64 { if len(samples) == 0 { return math.NaN() } return samples[0].V } func last(samples []promql.Point) float64 { if len(samples) == 0 { return math.NaN() } return samples[len(samples)-1].V } func one(samples []promql.Point) float64 { return 1.0 }