Like Prometheus, but for logs.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
loki/pkg/ingester/mapper.go

187 lines
5.7 KiB

package ingester
import (
"fmt"
"sort"
"strings"
"sync"
"sync/atomic"
"github.com/prometheus/prometheus/pkg/labels"
"github.com/cortexproject/cortex/pkg/ingester/client"
"github.com/cortexproject/cortex/pkg/util"
"github.com/go-kit/kit/log/level"
"github.com/prometheus/common/model"
)
const maxMappedFP = 1 << 20 // About 1M fingerprints reserved for mapping.
var separatorString = string([]byte{model.SeparatorByte})
// fpMapper is used to map fingerprints in order to work around fingerprint
// collisions.
type fpMapper struct {
// highestMappedFP has to be aligned for atomic operations.
highestMappedFP model.Fingerprint
mtx sync.RWMutex // Protects mappings.
// maps original fingerprints to a map of string representations of
// metrics to the truly unique fingerprint.
mappings map[model.Fingerprint]map[string]model.Fingerprint
// Returns existing labels for given fingerprint, if any.
// Equality check relies on labels.Labels being sorted.
fpToLabels func(fingerprint model.Fingerprint) labels.Labels
}
// newFPMapper returns an fpMapper ready to use.
func newFPMapper(fpToLabels func(fingerprint model.Fingerprint) labels.Labels) *fpMapper {
if fpToLabels == nil {
panic("nil fpToLabels")
}
return &fpMapper{
fpToLabels: fpToLabels,
mappings: map[model.Fingerprint]map[string]model.Fingerprint{},
}
}
// mapFP takes a raw fingerprint (as returned by Metrics.FastFingerprint) and
// returns a truly unique fingerprint. The caller must have locked the raw
// fingerprint.
func (m *fpMapper) mapFP(fp model.Fingerprint, metric []client.LabelAdapter) model.Fingerprint {
// First check if we are in the reserved FP space, in which case this is
// automatically a collision that has to be mapped.
if fp <= maxMappedFP {
return m.maybeAddMapping(fp, metric)
}
// Then check the most likely case: This fp belongs to a series that is
// already in memory.
s := m.fpToLabels(fp)
if s != nil {
// FP exists in memory, but is it for the same metric?
if equalLabels(metric, s) {
// Yupp. We are done.
return fp
}
// Collision detected!
return m.maybeAddMapping(fp, metric)
}
// Metric is not in memory. Before doing the expensive archive lookup,
// check if we have a mapping for this metric in place already.
m.mtx.RLock()
mappedFPs, fpAlreadyMapped := m.mappings[fp]
m.mtx.RUnlock()
if fpAlreadyMapped {
// We indeed have mapped fp historically.
ms := metricToUniqueString(metric)
// fp is locked by the caller, so no further locking of
// 'collisions' required (it is specific to fp).
mappedFP, ok := mappedFPs[ms]
if ok {
// Historical mapping found, return the mapped FP.
return mappedFP
}
}
return fp
}
func valueForName(s labels.Labels, name string) (string, bool) {
pos := sort.Search(len(s), func(i int) bool { return s[i].Name >= name })
if pos == len(s) || s[pos].Name != name {
return "", false
}
return s[pos].Value, true
}
// Check if a and b contain the same name/value pairs
func equalLabels(a []client.LabelAdapter, b labels.Labels) bool {
if len(a) != len(b) {
return false
}
// Check as many as we can where the two sets are in the same order
i := 0
for ; i < len(a); i++ {
if b[i].Name != a[i].Name {
break
}
if b[i].Value != a[i].Value {
return false
}
}
// Now check remaining values using binary search
for ; i < len(a); i++ {
v, found := valueForName(b, a[i].Name)
if !found || v != a[i].Value {
return false
}
}
return true
}
// maybeAddMapping is only used internally. It takes a detected collision and
// adds it to the collisions map if not yet there. In any case, it returns the
// truly unique fingerprint for the colliding metric.
func (m *fpMapper) maybeAddMapping(fp model.Fingerprint, collidingMetric []client.LabelAdapter) model.Fingerprint {
ms := metricToUniqueString(collidingMetric)
m.mtx.RLock()
mappedFPs, ok := m.mappings[fp]
m.mtx.RUnlock()
if ok {
// fp is locked by the caller, so no further locking required.
mappedFP, ok := mappedFPs[ms]
if ok {
return mappedFP // Existing mapping.
}
// A new mapping has to be created.
mappedFP = m.nextMappedFP()
mappedFPs[ms] = mappedFP
level.Info(util.Logger).Log(
"msg", "fingerprint collision detected, mapping to new fingerprint",
"old_fp", fp,
"new_fp", mappedFP,
"metric", ms,
)
return mappedFP
}
// This is the first collision for fp.
mappedFP := m.nextMappedFP()
mappedFPs = map[string]model.Fingerprint{ms: mappedFP}
m.mtx.Lock()
m.mappings[fp] = mappedFPs
m.mtx.Unlock()
level.Info(util.Logger).Log(
"msg", "fingerprint collision detected, mapping to new fingerprint",
"old_fp", fp,
"new_fp", mappedFP,
"metric", collidingMetric,
)
return mappedFP
}
func (m *fpMapper) nextMappedFP() model.Fingerprint {
mappedFP := model.Fingerprint(atomic.AddUint64((*uint64)(&m.highestMappedFP), 1))
if mappedFP > maxMappedFP {
panic(fmt.Errorf("more than %v fingerprints mapped in collision detection", maxMappedFP))
}
return mappedFP
}
// metricToUniqueString turns a metric into a string in a reproducible and
// unique way, i.e. the same metric will always create the same string, and
// different metrics will always create different strings. In a way, it is the
// "ideal" fingerprint function, only that it is more expensive than the
// FastFingerprint function, and its result is not suitable as a key for maps
// and indexes as it might become really large, causing a lot of hashing effort
// in maps and a lot of storage overhead in indexes.
func metricToUniqueString(m []client.LabelAdapter) string {
parts := make([]string, 0, len(m))
for _, pair := range m {
parts = append(parts, pair.Name+separatorString+pair.Value)
}
sort.Strings(parts)
return strings.Join(parts, separatorString)
}