Like Prometheus, but for logs.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
loki/pkg/util/time.go

154 lines
5.0 KiB

package util
import (
"math"
"math/rand"
"net/http"
"strconv"
"time"
"github.com/prometheus/common/model"
"github.com/weaveworks/common/httpgrpc"
utilsMath "github.com/grafana/loki/pkg/util/math"
)
const (
nanosecondsInMillisecond = int64(time.Millisecond / time.Nanosecond)
)
func TimeToMillis(t time.Time) int64 {
return t.UnixNano() / nanosecondsInMillisecond
}
// TimeFromMillis is a helper to turn milliseconds -> time.Time
func TimeFromMillis(ms int64) time.Time {
return time.Unix(0, ms*nanosecondsInMillisecond)
}
// FormatTimeMillis returns a human readable version of the input time (in milliseconds).
func FormatTimeMillis(ms int64) string {
return TimeFromMillis(ms).String()
}
// FormatTimeModel returns a human readable version of the input time.
func FormatTimeModel(t model.Time) string {
return TimeFromMillis(int64(t)).String()
}
// ParseTime parses the string into an int64, milliseconds since epoch.
func ParseTime(s string) (int64, error) {
if t, err := strconv.ParseFloat(s, 64); err == nil {
s, ns := math.Modf(t)
ns = math.Round(ns*1000) / 1000
tm := time.Unix(int64(s), int64(ns*float64(time.Second)))
return TimeToMillis(tm), nil
}
if t, err := time.Parse(time.RFC3339Nano, s); err == nil {
return TimeToMillis(t), nil
}
return 0, httpgrpc.Errorf(http.StatusBadRequest, "cannot parse %q to a valid timestamp", s)
}
// DurationWithJitter returns random duration from "input - input*variance" to "input + input*variance" interval.
func DurationWithJitter(input time.Duration, variancePerc float64) time.Duration {
// No duration? No jitter.
if input == 0 {
return 0
}
variance := int64(float64(input) * variancePerc)
jitter := rand.Int63n(variance*2) - variance
return input + time.Duration(jitter)
}
// DurationWithPositiveJitter returns random duration from "input" to "input + input*variance" interval.
func DurationWithPositiveJitter(input time.Duration, variancePerc float64) time.Duration {
// No duration? No jitter.
if input == 0 {
return 0
}
variance := int64(float64(input) * variancePerc)
jitter := rand.Int63n(variance)
return input + time.Duration(jitter)
}
// NewDisableableTicker essentially wraps NewTicker but allows the ticker to be disabled by passing
// zero duration as the interval. Returns a function for stopping the ticker, and the ticker channel.
func NewDisableableTicker(interval time.Duration) (func(), <-chan time.Time) {
if interval == 0 {
return func() {}, nil
}
tick := time.NewTicker(interval)
return func() { tick.Stop() }, tick.C
}
// ForInterval splits the given start and end time into given interval.
// The start and end time in splits would be aligned to the interval
// except for the start time of first split and end time of last split which would be kept same as original start/end
// When endTimeInclusive is true, it would keep a gap of 1ms between the splits.
func ForInterval(interval time.Duration, start, end time.Time, endTimeInclusive bool, callback func(start, end time.Time)) {
if interval <= 0 {
callback(start, end)
return
}
ogStart := start
startNs := start.UnixNano()
start = time.Unix(0, startNs-startNs%interval.Nanoseconds())
firstInterval := true
for start := start; start.Before(end); start = start.Add(interval) {
newEnd := start.Add(interval)
if !newEnd.Before(end) {
newEnd = end
} else if endTimeInclusive {
newEnd = newEnd.Add(-time.Millisecond)
}
if firstInterval {
callback(ogStart, newEnd)
firstInterval = false
continue
}
callback(start, newEnd)
}
}
// GetFactorOfTime returns the percentage of time that the span `from` to `through`
// accounts for inside the range `minTime` to `maxTime`.
// It also returns the leading and trailing time that is not accounted for.
// Note that `from`, `through`, `minTime` and `maxTime` should have the same scale (e.g. milliseconds).
//
// MinTime From Through MaxTime
// ┌────────┬─────────────────┬────────┐
// │ * * │
// └────────┴─────────────────┴────────┘
// ▲ A | C | B ▲
// └───────────────────────────────────┘
// T = MinTime - MaxTime
//
// We get the percentage of time that fits into C
// factor = C = (T - (A + B)) / T = (chunkTime - (leadingTime + trailingTime)) / chunkTime
func GetFactorOfTime(from, through int64, minTime, maxTime int64) (factor float64) {
if from > maxTime || through < minTime {
return 0
}
if minTime == maxTime {
// This function is most often used for chunk overlaps
// a chunk maxTime == minTime when it has only 1 entry
// return factor 1 to count that chunk's entry
return 1
}
totalTime := maxTime - minTime
leadingTime := utilsMath.Max64(0, from-minTime)
trailingTime := utilsMath.Max64(0, maxTime-through)
factor = float64(totalTime-(leadingTime+trailingTime)) / float64(totalTime)
return factor
}