Like Prometheus, but for logs.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
loki/pkg/util/metrics_helper.go

850 lines
25 KiB

package util
import (
"bytes"
"errors"
"fmt"
"math"
"strings"
"sync"
humanize "github.com/dustin/go-humanize"
"github.com/go-kit/log/level"
"github.com/prometheus/client_golang/prometheus"
dto "github.com/prometheus/client_model/go"
"github.com/prometheus/prometheus/model/labels"
tsdb_errors "github.com/prometheus/prometheus/tsdb/errors"
util_log "github.com/grafana/loki/v3/pkg/util/log"
)
var (
bytesBufferPool = sync.Pool{
New: func() interface{} {
return bytes.NewBuffer(nil)
},
}
)
// Data for single value (counter/gauge) with labels.
type singleValueWithLabels struct {
Value float64
LabelValues []string
}
// Key to this map is value unique to label values (generated by getLabelsString function)
type singleValueWithLabelsMap map[string]singleValueWithLabels
// This function is used to aggregate results with different labels into a map. Values for same labels are added together.
func (m singleValueWithLabelsMap) aggregateFn(labelsKey string, labelValues []string, value float64) {
r := m[labelsKey]
if r.LabelValues == nil {
r.LabelValues = labelValues
}
r.Value += value
m[labelsKey] = r
}
func (m singleValueWithLabelsMap) prependUserLabelValue(user string) {
for key, mlv := range m {
mlv.LabelValues = append([]string{user}, mlv.LabelValues...)
m[key] = mlv
}
}
func (m singleValueWithLabelsMap) WriteToMetricChannel(out chan<- prometheus.Metric, desc *prometheus.Desc, valueType prometheus.ValueType) {
for _, cr := range m {
out <- prometheus.MustNewConstMetric(desc, valueType, cr.Value, cr.LabelValues...)
}
}
// MetricFamilyMap is a map of metric names to their family (metrics with same name, but different labels)
// Keeping map of metric name to its family makes it easier to do searches later.
type MetricFamilyMap map[string]*dto.MetricFamily
// MetricLabelTransformFunc exists in ruler package, but that would create a cyclic import, so is duplicated here
type MetricLabelTransformFunc func(k, v string) string
// NewMetricFamilyMap sorts output from Gatherer.Gather method into a map.
// Gatherer.Gather specifies that there metric families are uniquely named, and we use that fact here.
// If they are not, this method returns error.
func NewMetricFamilyMap(metrics []*dto.MetricFamily) (MetricFamilyMap, error) {
perMetricName := MetricFamilyMap{}
for _, m := range metrics {
name := m.GetName()
// these errors should never happen when passing Gatherer.Gather() output.
if name == "" {
return nil, errors.New("empty name for metric family")
}
if perMetricName[name] != nil {
return nil, fmt.Errorf("non-unique name for metric family: %q", name)
}
perMetricName[name] = m
}
return perMetricName, nil
}
func (mfm MetricFamilyMap) SumCounters(name string) float64 {
return sum(mfm[name], counterValue)
}
func (mfm MetricFamilyMap) SumGauges(name string) float64 {
return sum(mfm[name], gaugeValue)
}
func (mfm MetricFamilyMap) MaxGauges(name string) float64 {
return max(mfm[name], gaugeValue)
}
func (mfm MetricFamilyMap) SumHistograms(name string) HistogramData {
hd := HistogramData{}
mfm.SumHistogramsTo(name, &hd)
return hd
}
func (mfm MetricFamilyMap) SumHistogramsTo(name string, output *HistogramData) {
for _, m := range mfm[name].GetMetric() {
output.AddHistogram(m.GetHistogram())
}
}
func (mfm MetricFamilyMap) SumSummaries(name string) SummaryData {
sd := SummaryData{}
mfm.SumSummariesTo(name, &sd)
return sd
}
func (mfm MetricFamilyMap) SumSummariesTo(name string, output *SummaryData) {
for _, m := range mfm[name].GetMetric() {
output.AddSummary(m.GetSummary())
}
}
func (mfm MetricFamilyMap) sumOfSingleValuesWithLabels(metric string, labelNames []string, extractFn func(*dto.Metric) float64, aggregateFn func(labelsKey string, labelValues []string, value float64), transformFn MetricLabelTransformFunc) {
metricsPerLabelValue := getMetricsWithLabelNames(mfm[metric], labelNames, transformFn)
for k, mlv := range metricsPerLabelValue {
for _, m := range mlv.metrics {
val := extractFn(m)
aggregateFn(k, mlv.labelValues, val)
}
}
}
// MetricFamiliesPerUser is a collection of metrics gathered via calling Gatherer.Gather() method on different
// gatherers, one per user.
type MetricFamiliesPerUser []struct {
user string
metrics MetricFamilyMap
labelTransformFn MetricLabelTransformFunc
}
func (d MetricFamiliesPerUser) GetSumOfCounters(counter string) float64 {
result := float64(0)
for _, userEntry := range d {
result += userEntry.metrics.SumCounters(counter)
}
return result
}
func (d MetricFamiliesPerUser) SendSumOfCounters(out chan<- prometheus.Metric, desc *prometheus.Desc, counter string) {
out <- prometheus.MustNewConstMetric(desc, prometheus.CounterValue, d.GetSumOfCounters(counter))
}
func (d MetricFamiliesPerUser) SendSumOfCountersWithLabels(out chan<- prometheus.Metric, desc *prometheus.Desc, counter string, labelNames ...string) {
d.sumOfSingleValuesWithLabels(counter, counterValue, labelNames).WriteToMetricChannel(out, desc, prometheus.CounterValue)
}
func (d MetricFamiliesPerUser) SendSumOfCountersPerUser(out chan<- prometheus.Metric, desc *prometheus.Desc, counter string) {
d.SendSumOfCountersPerUserWithLabels(out, desc, counter)
}
// SendSumOfCountersPerUserWithLabels provides metrics with the provided label names on a per-user basis. This function assumes that `user` is the
// first label on the provided metric Desc
func (d MetricFamiliesPerUser) SendSumOfCountersPerUserWithLabels(out chan<- prometheus.Metric, desc *prometheus.Desc, metric string, labelNames ...string) {
for _, userEntry := range d {
if userEntry.user == "" {
continue
}
result := singleValueWithLabelsMap{}
userEntry.metrics.sumOfSingleValuesWithLabels(metric, labelNames, counterValue, result.aggregateFn, userEntry.labelTransformFn)
result.prependUserLabelValue(userEntry.user)
result.WriteToMetricChannel(out, desc, prometheus.CounterValue)
}
}
func (d MetricFamiliesPerUser) GetSumOfGauges(gauge string) float64 {
result := float64(0)
for _, userEntry := range d {
result += userEntry.metrics.SumGauges(gauge)
}
return result
}
func (d MetricFamiliesPerUser) SendSumOfGauges(out chan<- prometheus.Metric, desc *prometheus.Desc, gauge string) {
out <- prometheus.MustNewConstMetric(desc, prometheus.GaugeValue, d.GetSumOfGauges(gauge))
}
func (d MetricFamiliesPerUser) SendSumOfGaugesWithLabels(out chan<- prometheus.Metric, desc *prometheus.Desc, gauge string, labelNames ...string) {
d.sumOfSingleValuesWithLabels(gauge, gaugeValue, labelNames).WriteToMetricChannel(out, desc, prometheus.GaugeValue)
}
func (d MetricFamiliesPerUser) SendSumOfGaugesPerUser(out chan<- prometheus.Metric, desc *prometheus.Desc, gauge string) {
d.SendSumOfGaugesPerUserWithLabels(out, desc, gauge)
}
// SendSumOfGaugesPerUserWithLabels provides metrics with the provided label names on a per-user basis. This function assumes that `user` is the
// first label on the provided metric Desc
func (d MetricFamiliesPerUser) SendSumOfGaugesPerUserWithLabels(out chan<- prometheus.Metric, desc *prometheus.Desc, metric string, labelNames ...string) {
for _, userEntry := range d {
if userEntry.user == "" {
continue
}
result := singleValueWithLabelsMap{}
userEntry.metrics.sumOfSingleValuesWithLabels(metric, labelNames, gaugeValue, result.aggregateFn, userEntry.labelTransformFn)
result.prependUserLabelValue(userEntry.user)
result.WriteToMetricChannel(out, desc, prometheus.GaugeValue)
}
}
func (d MetricFamiliesPerUser) sumOfSingleValuesWithLabels(metric string, fn func(*dto.Metric) float64, labelNames []string) singleValueWithLabelsMap {
result := singleValueWithLabelsMap{}
for _, userEntry := range d {
userEntry.metrics.sumOfSingleValuesWithLabels(metric, labelNames, fn, result.aggregateFn, userEntry.labelTransformFn)
}
return result
}
func (d MetricFamiliesPerUser) SendMaxOfGauges(out chan<- prometheus.Metric, desc *prometheus.Desc, gauge string) {
result := math.NaN()
for _, userEntry := range d {
if value := userEntry.metrics.MaxGauges(gauge); math.IsNaN(result) || value > result {
result = value
}
}
// If there's no metric, we do send 0 which is the gauge default.
if math.IsNaN(result) {
result = 0
}
out <- prometheus.MustNewConstMetric(desc, prometheus.GaugeValue, result)
}
func (d MetricFamiliesPerUser) SendMaxOfGaugesPerUser(out chan<- prometheus.Metric, desc *prometheus.Desc, gauge string) {
for _, userEntry := range d {
if userEntry.user == "" {
continue
}
result := userEntry.metrics.MaxGauges(gauge)
out <- prometheus.MustNewConstMetric(desc, prometheus.GaugeValue, result, userEntry.user)
}
}
func (d MetricFamiliesPerUser) SendSumOfSummaries(out chan<- prometheus.Metric, desc *prometheus.Desc, summaryName string) {
summaryData := SummaryData{}
for _, userEntry := range d {
userEntry.metrics.SumSummariesTo(summaryName, &summaryData)
}
out <- summaryData.Metric(desc)
}
func (d MetricFamiliesPerUser) SendSumOfSummariesWithLabels(out chan<- prometheus.Metric, desc *prometheus.Desc, summaryName string, labelNames ...string) {
type summaryResult struct {
data SummaryData
labelValues []string
}
result := map[string]summaryResult{}
for _, mfm := range d {
metricsPerLabelValue := getMetricsWithLabelNames(mfm.metrics[summaryName], labelNames, mfm.labelTransformFn)
for key, mwl := range metricsPerLabelValue {
for _, m := range mwl.metrics {
r := result[key]
if r.labelValues == nil {
r.labelValues = mwl.labelValues
}
r.data.AddSummary(m.GetSummary())
result[key] = r
}
}
}
for _, sr := range result {
out <- sr.data.Metric(desc, sr.labelValues...)
}
}
func (d MetricFamiliesPerUser) SendSumOfSummariesPerUser(out chan<- prometheus.Metric, desc *prometheus.Desc, summaryName string) {
for _, userEntry := range d {
if userEntry.user == "" {
continue
}
data := userEntry.metrics.SumSummaries(summaryName)
out <- data.Metric(desc, userEntry.user)
}
}
func (d MetricFamiliesPerUser) SendSumOfHistograms(out chan<- prometheus.Metric, desc *prometheus.Desc, histogramName string) {
hd := HistogramData{}
for _, userEntry := range d {
userEntry.metrics.SumHistogramsTo(histogramName, &hd)
}
out <- hd.Metric(desc)
}
func (d MetricFamiliesPerUser) SendSumOfHistogramsWithLabels(out chan<- prometheus.Metric, desc *prometheus.Desc, histogramName string, labelNames ...string) {
type histogramResult struct {
data HistogramData
labelValues []string
}
result := map[string]histogramResult{}
for _, mfm := range d {
metricsPerLabelValue := getMetricsWithLabelNames(mfm.metrics[histogramName], labelNames, mfm.labelTransformFn)
for key, mwl := range metricsPerLabelValue {
for _, m := range mwl.metrics {
r := result[key]
if r.labelValues == nil {
r.labelValues = mwl.labelValues
}
r.data.AddHistogram(m.GetHistogram())
result[key] = r
}
}
}
for _, hg := range result {
out <- hg.data.Metric(desc, hg.labelValues...)
}
}
// struct for holding metrics with same label values
type metricsWithLabels struct {
labelValues []string
metrics []*dto.Metric
}
func getMetricsWithLabelNames(mf *dto.MetricFamily, labelNames []string, labelTransformFunc MetricLabelTransformFunc) map[string]metricsWithLabels {
result := map[string]metricsWithLabels{}
for _, m := range mf.GetMetric() {
lbls, include := getLabelValues(m, labelNames, labelTransformFunc)
if !include {
continue
}
key := getLabelsString(lbls)
r := result[key]
if r.labelValues == nil {
r.labelValues = lbls
}
r.metrics = append(r.metrics, m)
result[key] = r
}
return result
}
func getLabelValues(m *dto.Metric, labelNames []string, labelTransformFunc MetricLabelTransformFunc) ([]string, bool) {
result := make([]string, 0, len(labelNames))
for _, ln := range labelNames {
found := false
// Look for the label among the metric ones. We re-iterate on each metric label
// which is algorithmically bad, but the main assumption is that the labelNames
// in input are typically very few units.
for _, lp := range m.GetLabel() {
if ln != lp.GetName() {
continue
}
value := lp.GetValue()
if labelTransformFunc != nil {
value = labelTransformFunc(ln, value)
}
result = append(result, value)
found = true
break
}
if !found {
// required labels not found
return nil, false
}
}
return result, true
}
func getLabelsString(labelValues []string) string {
// Get a buffer from the pool, reset it and release it at the
// end of the function.
buf := bytesBufferPool.Get().(*bytes.Buffer)
buf.Reset()
defer bytesBufferPool.Put(buf)
for _, v := range labelValues {
buf.WriteString(v)
buf.WriteByte(0) // separator, not used in prometheus labels
}
return buf.String()
}
// sum returns sum of values from all metrics from same metric family (= series with the same metric name, but different labels)
// Supplied function extracts value.
func sum(mf *dto.MetricFamily, fn func(*dto.Metric) float64) float64 {
result := float64(0)
for _, m := range mf.GetMetric() {
result += fn(m)
}
return result
}
// max returns the max value from all metrics from same metric family (= series with the same metric name, but different labels)
// Supplied function extracts value.
func max(mf *dto.MetricFamily, fn func(*dto.Metric) float64) float64 {
result := math.NaN()
for _, m := range mf.GetMetric() {
if value := fn(m); math.IsNaN(result) || value > result {
result = value
}
}
// If there's no metric, we do return 0 which is the gauge default.
if math.IsNaN(result) {
return 0
}
return result
}
// This works even if m is nil, m.Counter is nil or m.Counter.Value is nil (it returns 0 in those cases)
func counterValue(m *dto.Metric) float64 { return m.GetCounter().GetValue() }
func gaugeValue(m *dto.Metric) float64 { return m.GetGauge().GetValue() }
// SummaryData keeps all data needed to create summary metric
type SummaryData struct {
sampleCount uint64
sampleSum float64
quantiles map[float64]float64
}
func (s *SummaryData) AddSummary(sum *dto.Summary) {
s.sampleCount += sum.GetSampleCount()
s.sampleSum += sum.GetSampleSum()
qs := sum.GetQuantile()
if len(qs) > 0 && s.quantiles == nil {
s.quantiles = map[float64]float64{}
}
for _, q := range qs {
// we assume that all summaries have same quantiles
s.quantiles[q.GetQuantile()] += q.GetValue()
}
}
func (s *SummaryData) Metric(desc *prometheus.Desc, labelValues ...string) prometheus.Metric {
return prometheus.MustNewConstSummary(desc, s.sampleCount, s.sampleSum, s.quantiles, labelValues...)
}
// HistogramData keeps data required to build histogram Metric.
type HistogramData struct {
sampleCount uint64
sampleSum float64
buckets map[float64]uint64
}
// AddHistogram adds histogram from gathered metrics to this histogram data.
// Do not call this function after Metric() has been invoked, because histogram created by Metric
// is using the buckets map (doesn't make a copy), and it's not allowed to change the buckets
// after they've been passed to a prometheus.Metric.
func (d *HistogramData) AddHistogram(histo *dto.Histogram) {
d.sampleCount += histo.GetSampleCount()
d.sampleSum += histo.GetSampleSum()
histoBuckets := histo.GetBucket()
if len(histoBuckets) > 0 && d.buckets == nil {
d.buckets = map[float64]uint64{}
}
for _, b := range histoBuckets {
// we assume that all histograms have same buckets
d.buckets[b.GetUpperBound()] += b.GetCumulativeCount()
}
}
// AddHistogramData merges another histogram data into this one.
// Do not call this function after Metric() has been invoked, because histogram created by Metric
// is using the buckets map (doesn't make a copy), and it's not allowed to change the buckets
// after they've been passed to a prometheus.Metric.
func (d *HistogramData) AddHistogramData(histo HistogramData) {
d.sampleCount += histo.sampleCount
d.sampleSum += histo.sampleSum
if len(histo.buckets) > 0 && d.buckets == nil {
d.buckets = map[float64]uint64{}
}
for bound, count := range histo.buckets {
// we assume that all histograms have same buckets
d.buckets[bound] += count
}
}
// Metric returns prometheus metric from this histogram data.
//
// Note that returned metric shares bucket with this HistogramData, so avoid
// doing more modifications to this HistogramData after calling Metric.
func (d *HistogramData) Metric(desc *prometheus.Desc, labelValues ...string) prometheus.Metric {
return prometheus.MustNewConstHistogram(desc, d.sampleCount, d.sampleSum, d.buckets, labelValues...)
}
// Copy returns a copy of this histogram data.
func (d *HistogramData) Copy() *HistogramData {
cp := &HistogramData{}
cp.AddHistogramData(*d)
return cp
}
// NewHistogramDataCollector creates new histogram data collector.
func NewHistogramDataCollector(desc *prometheus.Desc) *HistogramDataCollector {
return &HistogramDataCollector{
desc: desc,
data: &HistogramData{},
}
}
// HistogramDataCollector combines histogram data, with prometheus descriptor. It can be registered
// into prometheus to report histogram with stored data. Data can be updated via Add method.
type HistogramDataCollector struct {
desc *prometheus.Desc
dataMu sync.RWMutex
data *HistogramData
}
func (h *HistogramDataCollector) Describe(out chan<- *prometheus.Desc) {
out <- h.desc
}
func (h *HistogramDataCollector) Collect(out chan<- prometheus.Metric) {
h.dataMu.RLock()
defer h.dataMu.RUnlock()
// We must create a copy of the HistogramData data structure before calling Metric()
// to honor its contract.
out <- h.data.Copy().Metric(h.desc)
}
func (h *HistogramDataCollector) Add(hd HistogramData) {
h.dataMu.Lock()
defer h.dataMu.Unlock()
h.data.AddHistogramData(hd)
}
// UserRegistry holds a Prometheus registry associated to a specific user.
type UserRegistry struct {
user string // Set to "" when registry is soft-removed.
reg *prometheus.Registry // Set to nil, when registry is soft-removed.
// Set to last result of Gather() call when removing registry.
lastGather MetricFamilyMap
}
// UserRegistries holds Prometheus registries for multiple users, guaranteeing
// multi-thread safety and stable ordering.
type UserRegistries struct {
regsMu sync.Mutex
regs []UserRegistry
}
// NewUserRegistries makes new UserRegistries.
func NewUserRegistries() *UserRegistries {
return &UserRegistries{}
}
// AddUserRegistry adds an user registry. If user already has a registry,
// previous registry is removed, but latest metric values are preserved
// in order to avoid counter resets.
func (r *UserRegistries) AddUserRegistry(user string, reg *prometheus.Registry) {
r.regsMu.Lock()
defer r.regsMu.Unlock()
// Soft-remove user registry, if user has one already.
for idx := 0; idx < len(r.regs); {
if r.regs[idx].user != user {
idx++
continue
}
if r.softRemoveUserRegistry(&r.regs[idx]) {
// Keep it.
idx++
} else {
// Remove it.
r.regs = append(r.regs[:idx], r.regs[idx+1:]...)
}
}
// New registries must be added to the end of the list, to guarantee stability.
r.regs = append(r.regs, UserRegistry{
user: user,
reg: reg,
})
}
// RemoveUserRegistry removes all Prometheus registries for a given user.
// If hard is true, registry is removed completely.
// If hard is false, latest registry values are preserved for future aggregations.
func (r *UserRegistries) RemoveUserRegistry(user string, hard bool) {
r.regsMu.Lock()
defer r.regsMu.Unlock()
for idx := 0; idx < len(r.regs); {
if user != r.regs[idx].user {
idx++
continue
}
if !hard && r.softRemoveUserRegistry(&r.regs[idx]) {
idx++ // keep it
} else {
r.regs = append(r.regs[:idx], r.regs[idx+1:]...) // remove it.
}
}
}
// Returns true, if we should keep latest metrics. Returns false if we failed to gather latest metrics,
// and this can be removed completely.
func (r *UserRegistries) softRemoveUserRegistry(ur *UserRegistry) bool {
last, err := ur.reg.Gather()
if err != nil {
level.Warn(util_log.Logger).Log("msg", "failed to gather metrics from registry", "user", ur.user, "err", err)
return false
}
for ix := 0; ix < len(last); {
// Only keep metrics for which we don't want to go down, since that indicates reset (counter, summary, histogram).
switch last[ix].GetType() {
case dto.MetricType_COUNTER, dto.MetricType_SUMMARY, dto.MetricType_HISTOGRAM:
ix++
default:
// Remove gauges and unknowns.
last = append(last[:ix], last[ix+1:]...)
}
}
// No metrics left.
if len(last) == 0 {
return false
}
ur.lastGather, err = NewMetricFamilyMap(last)
if err != nil {
level.Warn(util_log.Logger).Log("msg", "failed to gather metrics from registry", "user", ur.user, "err", err)
return false
}
ur.user = ""
ur.reg = nil
return true
}
// Registries returns a copy of the user registries list.
func (r *UserRegistries) Registries() []UserRegistry {
r.regsMu.Lock()
defer r.regsMu.Unlock()
out := make([]UserRegistry, 0, len(r.regs))
out = append(out, r.regs...)
return out
}
func (r *UserRegistries) BuildMetricFamiliesPerUser(labelTransformFn MetricLabelTransformFunc) MetricFamiliesPerUser {
data := MetricFamiliesPerUser{}
for _, entry := range r.Registries() {
// Set for removed users.
if entry.reg == nil {
if entry.lastGather != nil {
data = append(data, struct {
user string
metrics MetricFamilyMap
labelTransformFn MetricLabelTransformFunc
}{
user: "",
metrics: entry.lastGather,
labelTransformFn: labelTransformFn,
})
}
continue
}
m, err := entry.reg.Gather()
if err == nil {
var mfm MetricFamilyMap // := would shadow err from outer block, and single err check will not work
mfm, err = NewMetricFamilyMap(m)
if err == nil {
data = append(data, struct {
user string
metrics MetricFamilyMap
labelTransformFn MetricLabelTransformFunc
}{
user: entry.user,
metrics: mfm,
labelTransformFn: labelTransformFn,
})
}
}
if err != nil {
level.Warn(util_log.Logger).Log("msg", "failed to gather metrics from registry", "user", entry.user, "err", err)
continue
}
}
return data
}
// FromLabelPairsToLabels converts dto.LabelPair into labels.Labels.
func FromLabelPairsToLabels(pairs []*dto.LabelPair) labels.Labels {
builder := labels.NewBuilder(nil)
for _, pair := range pairs {
builder.Set(pair.GetName(), pair.GetValue())
}
return builder.Labels()
}
// GetSumOfHistogramSampleCount returns the sum of samples count of histograms matching the provided metric name
// and optional label matchers. Returns 0 if no metric matches.
func GetSumOfHistogramSampleCount(families []*dto.MetricFamily, metricName string, matchers labels.Selector) uint64 {
sum := uint64(0)
for _, metric := range families {
if metric.GetName() != metricName {
continue
}
if metric.GetType() != dto.MetricType_HISTOGRAM {
continue
}
for _, series := range metric.GetMetric() {
if !matchers.Matches(FromLabelPairsToLabels(series.GetLabel())) {
continue
}
histogram := series.GetHistogram()
sum += histogram.GetSampleCount()
}
}
return sum
}
// GetLabels returns list of label combinations used by this collector at the time of call.
// This can be used to find and delete unused metrics.
func GetLabels(c prometheus.Collector, filter map[string]string) ([]labels.Labels, error) {
ch := make(chan prometheus.Metric, 16)
go func() {
defer close(ch)
c.Collect(ch)
}()
errs := tsdb_errors.NewMulti()
var result []labels.Labels
dtoMetric := &dto.Metric{}
lbls := labels.NewBuilder(nil)
nextMetric:
for m := range ch {
err := m.Write(dtoMetric)
if err != nil {
errs.Add(err)
// We cannot return here, to avoid blocking goroutine calling c.Collect()
continue
}
lbls.Reset(nil)
for _, lp := range dtoMetric.Label {
n := lp.GetName()
v := lp.GetValue()
filterValue, ok := filter[n]
if ok && filterValue != v {
continue nextMetric
}
lbls.Set(lp.GetName(), lp.GetValue())
}
result = append(result, lbls.Labels())
}
return result, errs.Err()
}
// DeleteMatchingLabels removes metric with labels matching the filter.
func DeleteMatchingLabels(c CollectorVec, filter map[string]string) error {
lbls, err := GetLabels(c, filter)
if err != nil {
return err
}
for _, ls := range lbls {
c.Delete(ls.Map())
}
return nil
}
// CollectorVec is a collector that can delete metrics by labels.
// Implemented by *prometheus.MetricVec (used by CounterVec, GaugeVec, SummaryVec, and HistogramVec).
type CollectorVec interface {
prometheus.Collector
Delete(labels prometheus.Labels) bool
}
// RegisterCounterVec registers new CounterVec with given name,namespace and labels.
// If metric was already registered it returns existing instance.
func RegisterCounterVec(registerer prometheus.Registerer, namespace, name, help string, labels []string) *prometheus.CounterVec {
vec := prometheus.NewCounterVec(prometheus.CounterOpts{
Namespace: namespace,
Name: name,
Help: help,
}, labels)
err := registerer.Register(vec)
if err != nil {
if existing, ok := err.(prometheus.AlreadyRegisteredError); ok {
vec = existing.ExistingCollector.(*prometheus.CounterVec)
} else {
// Same behavior as MustRegister if the error is not for AlreadyRegistered
panic(err)
}
}
return vec
}
// HumanizeBytes returns a human readable string representation of the given byte value and removes all whitespaces.
func HumanizeBytes(val uint64) string {
return strings.Replace(humanize.Bytes(val), " ", "", 1)
}