|
|
|
@ -1313,7 +1313,7 @@ func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping |
|
|
|
|
|
|
|
|
|
var vector Vector // Input vectors for the function.
|
|
|
|
|
biggestLen := len(inputMatrix) |
|
|
|
|
enh := &EvalNodeHelper{Out: make(Vector, 0, biggestLen)} |
|
|
|
|
enh := &EvalNodeHelper{} |
|
|
|
|
seriess := make(map[uint64]Series, biggestLen) // Output series by series hash.
|
|
|
|
|
tempNumSamples := ev.currentSamples |
|
|
|
|
|
|
|
|
@ -1364,22 +1364,13 @@ func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping |
|
|
|
|
enh.Ts = ts |
|
|
|
|
result, ws := ev.aggregation(aggExpr, sortedGrouping, param, vector, bufHelper, enh, seriess) |
|
|
|
|
|
|
|
|
|
enh.Out = result[:0] // Reuse result vector.
|
|
|
|
|
warnings.Merge(ws) |
|
|
|
|
|
|
|
|
|
// If this could be an instant query, shortcut so as not to change sort order.
|
|
|
|
|
if ev.endTimestamp == ev.startTimestamp { |
|
|
|
|
mat := make(Matrix, len(result)) |
|
|
|
|
for i, s := range result { |
|
|
|
|
if s.H == nil { |
|
|
|
|
mat[i] = Series{Metric: s.Metric, Floats: []FPoint{{T: ts, F: s.F}}} |
|
|
|
|
} else { |
|
|
|
|
mat[i] = Series{Metric: s.Metric, Histograms: []HPoint{{T: ts, H: s.H}}} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
ev.currentSamples = originalNumSamples + mat.TotalSamples() |
|
|
|
|
ev.currentSamples = originalNumSamples + result.TotalSamples() |
|
|
|
|
ev.samplesStats.UpdatePeak(ev.currentSamples) |
|
|
|
|
return mat, warnings |
|
|
|
|
return result, warnings |
|
|
|
|
} |
|
|
|
|
if ev.currentSamples > ev.maxSamples { |
|
|
|
|
ev.error(ErrTooManySamples(env)) |
|
|
|
@ -2735,7 +2726,7 @@ type groupedAggregation struct { |
|
|
|
|
|
|
|
|
|
// aggregation evaluates an aggregation operation on a Vector. The provided grouping labels
|
|
|
|
|
// must be sorted.
|
|
|
|
|
func (ev *evaluator) aggregation(e *parser.AggregateExpr, grouping []string, param interface{}, vec Vector, seriesHelper []EvalSeriesHelper, enh *EvalNodeHelper, seriess map[uint64]Series) (Vector, annotations.Annotations) { |
|
|
|
|
func (ev *evaluator) aggregation(e *parser.AggregateExpr, grouping []string, param interface{}, vec Vector, seriesHelper []EvalSeriesHelper, enh *EvalNodeHelper, seriess map[uint64]Series) (Matrix, annotations.Annotations) { |
|
|
|
|
op := e.Op |
|
|
|
|
without := e.Without |
|
|
|
|
var annos annotations.Annotations |
|
|
|
@ -2749,7 +2740,7 @@ func (ev *evaluator) aggregation(e *parser.AggregateExpr, grouping []string, par |
|
|
|
|
} |
|
|
|
|
k = int64(f) |
|
|
|
|
if k < 1 { |
|
|
|
|
return Vector{}, annos |
|
|
|
|
return nil, annos |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
var q float64 |
|
|
|
@ -2939,10 +2930,19 @@ func (ev *evaluator) aggregation(e *parser.AggregateExpr, grouping []string, par |
|
|
|
|
|
|
|
|
|
// Construct the result from the aggregated groups.
|
|
|
|
|
numSteps := int((ev.endTimestamp-ev.startTimestamp)/ev.interval) + 1 |
|
|
|
|
var mat Matrix |
|
|
|
|
if ev.endTimestamp == ev.startTimestamp { |
|
|
|
|
mat = make(Matrix, 0, len(orderedResult)) |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
add := func(lbls labels.Labels, f float64, h *histogram.FloatHistogram) { |
|
|
|
|
// If this could be an instant query, build a slice so the result is in consistent order.
|
|
|
|
|
// If this could be an instant query, add directly to the matrix so the result is in consistent order.
|
|
|
|
|
if ev.endTimestamp == ev.startTimestamp { |
|
|
|
|
enh.Out = append(enh.Out, Sample{Metric: lbls, F: f, H: h}) |
|
|
|
|
if h == nil { |
|
|
|
|
mat = append(mat, Series{Metric: lbls, Floats: []FPoint{{T: enh.Ts, F: f}}}) |
|
|
|
|
} else { |
|
|
|
|
mat = append(mat, Series{Metric: lbls, Histograms: []HPoint{{T: enh.Ts, H: h}}}) |
|
|
|
|
} |
|
|
|
|
} else { |
|
|
|
|
// Otherwise the results are added into seriess elements.
|
|
|
|
|
hash := lbls.Hash() |
|
|
|
@ -3029,7 +3029,7 @@ func (ev *evaluator) aggregation(e *parser.AggregateExpr, grouping []string, par |
|
|
|
|
add(aggr.labels, aggr.floatValue, aggr.histogramValue) |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return enh.Out, annos |
|
|
|
|
return mat, annos |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// aggregationK evaluates count_values on vec.
|
|
|
|
|