|
|
|
|
@ -30,29 +30,29 @@ import ( |
|
|
|
|
// used by function nodes.
|
|
|
|
|
type Function struct { |
|
|
|
|
Name string |
|
|
|
|
ArgTypes []ExprType |
|
|
|
|
ArgTypes []model.ValueType |
|
|
|
|
OptionalArgs int |
|
|
|
|
ReturnType ExprType |
|
|
|
|
Call func(ev *evaluator, args Expressions) Value |
|
|
|
|
ReturnType model.ValueType |
|
|
|
|
Call func(ev *evaluator, args Expressions) model.Value |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === time() model.SampleValue ===
|
|
|
|
|
func funcTime(ev *evaluator, args Expressions) Value { |
|
|
|
|
return &Scalar{ |
|
|
|
|
func funcTime(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
return &model.Scalar{ |
|
|
|
|
Value: model.SampleValue(ev.Timestamp.Unix()), |
|
|
|
|
Timestamp: ev.Timestamp, |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === delta(matrix ExprMatrix, isCounter=0 ExprScalar) Vector ===
|
|
|
|
|
func funcDelta(ev *evaluator, args Expressions) Value { |
|
|
|
|
// === delta(matrix model.ValMatrix, isCounter=0 model.ValScalar) Vector ===
|
|
|
|
|
func funcDelta(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
isCounter := len(args) >= 2 && ev.evalInt(args[1]) > 0 |
|
|
|
|
resultVector := Vector{} |
|
|
|
|
resultVector := vector{} |
|
|
|
|
|
|
|
|
|
// If we treat these metrics as counters, we need to fetch all values
|
|
|
|
|
// in the interval to find breaks in the timeseries' monotonicity.
|
|
|
|
|
// I.e. if a counter resets, we want to ignore that reset.
|
|
|
|
|
var matrixValue Matrix |
|
|
|
|
var matrixValue matrix |
|
|
|
|
if isCounter { |
|
|
|
|
matrixValue = ev.evalMatrix(args[0]) |
|
|
|
|
} else { |
|
|
|
|
@ -65,8 +65,10 @@ func funcDelta(ev *evaluator, args Expressions) Value { |
|
|
|
|
continue |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
counterCorrection := model.SampleValue(0) |
|
|
|
|
lastValue := model.SampleValue(0) |
|
|
|
|
var ( |
|
|
|
|
counterCorrection model.SampleValue |
|
|
|
|
lastValue model.SampleValue |
|
|
|
|
) |
|
|
|
|
for _, sample := range samples.Values { |
|
|
|
|
currentValue := sample.Value |
|
|
|
|
if isCounter && currentValue < lastValue { |
|
|
|
|
@ -93,7 +95,7 @@ func funcDelta(ev *evaluator, args Expressions) Value { |
|
|
|
|
intervalCorrection := model.SampleValue(targetInterval) / model.SampleValue(sampledInterval) |
|
|
|
|
resultValue *= intervalCorrection |
|
|
|
|
|
|
|
|
|
resultSample := &Sample{ |
|
|
|
|
resultSample := &sample{ |
|
|
|
|
Metric: samples.Metric, |
|
|
|
|
Value: resultValue, |
|
|
|
|
Timestamp: ev.Timestamp, |
|
|
|
|
@ -104,12 +106,12 @@ func funcDelta(ev *evaluator, args Expressions) Value { |
|
|
|
|
return resultVector |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === rate(node ExprMatrix) Vector ===
|
|
|
|
|
func funcRate(ev *evaluator, args Expressions) Value { |
|
|
|
|
// === rate(node model.ValMatrix) Vector ===
|
|
|
|
|
func funcRate(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
args = append(args, &NumberLiteral{1}) |
|
|
|
|
vector := funcDelta(ev, args).(Vector) |
|
|
|
|
vector := funcDelta(ev, args).(vector) |
|
|
|
|
|
|
|
|
|
// TODO: could be other type of ExprMatrix in the future (right now, only
|
|
|
|
|
// TODO: could be other type of model.ValMatrix in the future (right now, only
|
|
|
|
|
// MatrixSelector exists). Find a better way of getting the duration of a
|
|
|
|
|
// matrix, such as looking at the samples themselves.
|
|
|
|
|
interval := args[0].(*MatrixSelector).Range |
|
|
|
|
@ -119,38 +121,38 @@ func funcRate(ev *evaluator, args Expressions) Value { |
|
|
|
|
return vector |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === increase(node ExprMatrix) Vector ===
|
|
|
|
|
func funcIncrease(ev *evaluator, args Expressions) Value { |
|
|
|
|
// === increase(node model.ValMatrix) Vector ===
|
|
|
|
|
func funcIncrease(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
args = append(args, &NumberLiteral{1}) |
|
|
|
|
vector := funcDelta(ev, args).(Vector) |
|
|
|
|
return vector |
|
|
|
|
return funcDelta(ev, args).(vector) |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === sort(node ExprVector) Vector ===
|
|
|
|
|
func funcSort(ev *evaluator, args Expressions) Value { |
|
|
|
|
// === sort(node model.ValVector) Vector ===
|
|
|
|
|
func funcSort(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
byValueSorter := vectorByValueHeap(ev.evalVector(args[0])) |
|
|
|
|
sort.Sort(byValueSorter) |
|
|
|
|
return Vector(byValueSorter) |
|
|
|
|
return vector(byValueSorter) |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === sortDesc(node ExprVector) Vector ===
|
|
|
|
|
func funcSortDesc(ev *evaluator, args Expressions) Value { |
|
|
|
|
// === sortDesc(node model.ValVector) Vector ===
|
|
|
|
|
func funcSortDesc(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
byValueSorter := vectorByValueHeap(ev.evalVector(args[0])) |
|
|
|
|
sort.Sort(sort.Reverse(byValueSorter)) |
|
|
|
|
return Vector(byValueSorter) |
|
|
|
|
|
|
|
|
|
return vector(byValueSorter) |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === topk(k ExprScalar, node ExprVector) Vector ===
|
|
|
|
|
func funcTopk(ev *evaluator, args Expressions) Value { |
|
|
|
|
// === topk(k model.ValScalar, node model.ValVector) Vector ===
|
|
|
|
|
func funcTopk(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
k := ev.evalInt(args[0]) |
|
|
|
|
if k < 1 { |
|
|
|
|
return Vector{} |
|
|
|
|
return vector{} |
|
|
|
|
} |
|
|
|
|
vector := ev.evalVector(args[1]) |
|
|
|
|
vec := ev.evalVector(args[1]) |
|
|
|
|
|
|
|
|
|
topk := make(vectorByValueHeap, 0, k) |
|
|
|
|
|
|
|
|
|
for _, el := range vector { |
|
|
|
|
for _, el := range vec { |
|
|
|
|
if len(topk) < k || topk[0].Value < el.Value { |
|
|
|
|
if len(topk) == k { |
|
|
|
|
heap.Pop(&topk) |
|
|
|
|
@ -159,21 +161,21 @@ func funcTopk(ev *evaluator, args Expressions) Value { |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
sort.Sort(sort.Reverse(topk)) |
|
|
|
|
return Vector(topk) |
|
|
|
|
return vector(topk) |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === bottomk(k ExprScalar, node ExprVector) Vector ===
|
|
|
|
|
func funcBottomk(ev *evaluator, args Expressions) Value { |
|
|
|
|
// === bottomk(k model.ValScalar, node model.ValVector) Vector ===
|
|
|
|
|
func funcBottomk(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
k := ev.evalInt(args[0]) |
|
|
|
|
if k < 1 { |
|
|
|
|
return Vector{} |
|
|
|
|
return vector{} |
|
|
|
|
} |
|
|
|
|
vector := ev.evalVector(args[1]) |
|
|
|
|
vec := ev.evalVector(args[1]) |
|
|
|
|
|
|
|
|
|
bottomk := make(vectorByValueHeap, 0, k) |
|
|
|
|
bkHeap := reverseHeap{Interface: &bottomk} |
|
|
|
|
|
|
|
|
|
for _, el := range vector { |
|
|
|
|
for _, el := range vec { |
|
|
|
|
if len(bottomk) < k || bottomk[0].Value > el.Value { |
|
|
|
|
if len(bottomk) == k { |
|
|
|
|
heap.Pop(&bkHeap) |
|
|
|
|
@ -182,17 +184,17 @@ func funcBottomk(ev *evaluator, args Expressions) Value { |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
sort.Sort(bottomk) |
|
|
|
|
return Vector(bottomk) |
|
|
|
|
return vector(bottomk) |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === drop_common_labels(node ExprVector) Vector ===
|
|
|
|
|
func funcDropCommonLabels(ev *evaluator, args Expressions) Value { |
|
|
|
|
vector := ev.evalVector(args[0]) |
|
|
|
|
if len(vector) < 1 { |
|
|
|
|
return Vector{} |
|
|
|
|
// === drop_common_labels(node model.ValVector) Vector ===
|
|
|
|
|
func funcDropCommonLabels(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
vec := ev.evalVector(args[0]) |
|
|
|
|
if len(vec) < 1 { |
|
|
|
|
return vector{} |
|
|
|
|
} |
|
|
|
|
common := model.LabelSet{} |
|
|
|
|
for k, v := range vector[0].Metric.Metric { |
|
|
|
|
for k, v := range vec[0].Metric.Metric { |
|
|
|
|
// TODO(julius): Should we also drop common metric names?
|
|
|
|
|
if k == model.MetricNameLabel { |
|
|
|
|
continue |
|
|
|
|
@ -200,7 +202,7 @@ func funcDropCommonLabels(ev *evaluator, args Expressions) Value { |
|
|
|
|
common[k] = v |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for _, el := range vector[1:] { |
|
|
|
|
for _, el := range vec[1:] { |
|
|
|
|
for k, v := range common { |
|
|
|
|
if el.Metric.Metric[k] != v { |
|
|
|
|
// Deletion of map entries while iterating over them is safe.
|
|
|
|
|
@ -212,18 +214,18 @@ func funcDropCommonLabels(ev *evaluator, args Expressions) Value { |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for _, el := range vector { |
|
|
|
|
for _, el := range vec { |
|
|
|
|
for k := range el.Metric.Metric { |
|
|
|
|
if _, ok := common[k]; ok { |
|
|
|
|
el.Metric.Del(k) |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
return vector |
|
|
|
|
return vec |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === round(vector ExprVector, toNearest=1 Scalar) Vector ===
|
|
|
|
|
func funcRound(ev *evaluator, args Expressions) Value { |
|
|
|
|
// === round(vector model.ValVector, toNearest=1 Scalar) Vector ===
|
|
|
|
|
func funcRound(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
// round returns a number rounded to toNearest.
|
|
|
|
|
// Ties are solved by rounding up.
|
|
|
|
|
toNearest := float64(1) |
|
|
|
|
@ -233,42 +235,42 @@ func funcRound(ev *evaluator, args Expressions) Value { |
|
|
|
|
// Invert as it seems to cause fewer floating point accuracy issues.
|
|
|
|
|
toNearestInverse := 1.0 / toNearest |
|
|
|
|
|
|
|
|
|
vector := ev.evalVector(args[0]) |
|
|
|
|
for _, el := range vector { |
|
|
|
|
vec := ev.evalVector(args[0]) |
|
|
|
|
for _, el := range vec { |
|
|
|
|
el.Metric.Del(model.MetricNameLabel) |
|
|
|
|
el.Value = model.SampleValue(math.Floor(float64(el.Value)*toNearestInverse+0.5) / toNearestInverse) |
|
|
|
|
} |
|
|
|
|
return vector |
|
|
|
|
return vec |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === scalar(node ExprVector) Scalar ===
|
|
|
|
|
func funcScalar(ev *evaluator, args Expressions) Value { |
|
|
|
|
// === scalar(node model.ValVector) Scalar ===
|
|
|
|
|
func funcScalar(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
v := ev.evalVector(args[0]) |
|
|
|
|
if len(v) != 1 { |
|
|
|
|
return &Scalar{model.SampleValue(math.NaN()), ev.Timestamp} |
|
|
|
|
return &model.Scalar{model.SampleValue(math.NaN()), ev.Timestamp} |
|
|
|
|
} |
|
|
|
|
return &Scalar{model.SampleValue(v[0].Value), ev.Timestamp} |
|
|
|
|
return &model.Scalar{model.SampleValue(v[0].Value), ev.Timestamp} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === count_scalar(vector ExprVector) model.SampleValue ===
|
|
|
|
|
func funcCountScalar(ev *evaluator, args Expressions) Value { |
|
|
|
|
return &Scalar{ |
|
|
|
|
// === count_scalar(vector model.ValVector) model.SampleValue ===
|
|
|
|
|
func funcCountScalar(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
return &model.Scalar{ |
|
|
|
|
Value: model.SampleValue(len(ev.evalVector(args[0]))), |
|
|
|
|
Timestamp: ev.Timestamp, |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
func aggrOverTime(ev *evaluator, args Expressions, aggrFn func([]model.SamplePair) model.SampleValue) Value { |
|
|
|
|
matrix := ev.evalMatrix(args[0]) |
|
|
|
|
resultVector := Vector{} |
|
|
|
|
func aggrOverTime(ev *evaluator, args Expressions, aggrFn func([]model.SamplePair) model.SampleValue) model.Value { |
|
|
|
|
mat := ev.evalMatrix(args[0]) |
|
|
|
|
resultVector := vector{} |
|
|
|
|
|
|
|
|
|
for _, el := range matrix { |
|
|
|
|
for _, el := range mat { |
|
|
|
|
if len(el.Values) == 0 { |
|
|
|
|
continue |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
el.Metric.Del(model.MetricNameLabel) |
|
|
|
|
resultVector = append(resultVector, &Sample{ |
|
|
|
|
resultVector = append(resultVector, &sample{ |
|
|
|
|
Metric: el.Metric, |
|
|
|
|
Value: aggrFn(el.Values), |
|
|
|
|
Timestamp: ev.Timestamp, |
|
|
|
|
@ -277,8 +279,8 @@ func aggrOverTime(ev *evaluator, args Expressions, aggrFn func([]model.SamplePai |
|
|
|
|
return resultVector |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === avg_over_time(matrix ExprMatrix) Vector ===
|
|
|
|
|
func funcAvgOverTime(ev *evaluator, args Expressions) Value { |
|
|
|
|
// === avg_over_time(matrix model.ValMatrix) Vector ===
|
|
|
|
|
func funcAvgOverTime(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
return aggrOverTime(ev, args, func(values []model.SamplePair) model.SampleValue { |
|
|
|
|
var sum model.SampleValue |
|
|
|
|
for _, v := range values { |
|
|
|
|
@ -288,15 +290,15 @@ func funcAvgOverTime(ev *evaluator, args Expressions) Value { |
|
|
|
|
}) |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === count_over_time(matrix ExprMatrix) Vector ===
|
|
|
|
|
func funcCountOverTime(ev *evaluator, args Expressions) Value { |
|
|
|
|
// === count_over_time(matrix model.ValMatrix) Vector ===
|
|
|
|
|
func funcCountOverTime(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
return aggrOverTime(ev, args, func(values []model.SamplePair) model.SampleValue { |
|
|
|
|
return model.SampleValue(len(values)) |
|
|
|
|
}) |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === floor(vector ExprVector) Vector ===
|
|
|
|
|
func funcFloor(ev *evaluator, args Expressions) Value { |
|
|
|
|
// === floor(vector model.ValVector) Vector ===
|
|
|
|
|
func funcFloor(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
vector := ev.evalVector(args[0]) |
|
|
|
|
for _, el := range vector { |
|
|
|
|
el.Metric.Del(model.MetricNameLabel) |
|
|
|
|
@ -305,8 +307,8 @@ func funcFloor(ev *evaluator, args Expressions) Value { |
|
|
|
|
return vector |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === max_over_time(matrix ExprMatrix) Vector ===
|
|
|
|
|
func funcMaxOverTime(ev *evaluator, args Expressions) Value { |
|
|
|
|
// === max_over_time(matrix model.ValMatrix) Vector ===
|
|
|
|
|
func funcMaxOverTime(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
return aggrOverTime(ev, args, func(values []model.SamplePair) model.SampleValue { |
|
|
|
|
max := math.Inf(-1) |
|
|
|
|
for _, v := range values { |
|
|
|
|
@ -316,8 +318,8 @@ func funcMaxOverTime(ev *evaluator, args Expressions) Value { |
|
|
|
|
}) |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === min_over_time(matrix ExprMatrix) Vector ===
|
|
|
|
|
func funcMinOverTime(ev *evaluator, args Expressions) Value { |
|
|
|
|
// === min_over_time(matrix model.ValMatrix) Vector ===
|
|
|
|
|
func funcMinOverTime(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
return aggrOverTime(ev, args, func(values []model.SamplePair) model.SampleValue { |
|
|
|
|
min := math.Inf(1) |
|
|
|
|
for _, v := range values { |
|
|
|
|
@ -327,8 +329,8 @@ func funcMinOverTime(ev *evaluator, args Expressions) Value { |
|
|
|
|
}) |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === sum_over_time(matrix ExprMatrix) Vector ===
|
|
|
|
|
func funcSumOverTime(ev *evaluator, args Expressions) Value { |
|
|
|
|
// === sum_over_time(matrix model.ValMatrix) Vector ===
|
|
|
|
|
func funcSumOverTime(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
return aggrOverTime(ev, args, func(values []model.SamplePair) model.SampleValue { |
|
|
|
|
var sum model.SampleValue |
|
|
|
|
for _, v := range values { |
|
|
|
|
@ -338,8 +340,8 @@ func funcSumOverTime(ev *evaluator, args Expressions) Value { |
|
|
|
|
}) |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === abs(vector ExprVector) Vector ===
|
|
|
|
|
func funcAbs(ev *evaluator, args Expressions) Value { |
|
|
|
|
// === abs(vector model.ValVector) Vector ===
|
|
|
|
|
func funcAbs(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
vector := ev.evalVector(args[0]) |
|
|
|
|
for _, el := range vector { |
|
|
|
|
el.Metric.Del(model.MetricNameLabel) |
|
|
|
|
@ -348,10 +350,10 @@ func funcAbs(ev *evaluator, args Expressions) Value { |
|
|
|
|
return vector |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === absent(vector ExprVector) Vector ===
|
|
|
|
|
func funcAbsent(ev *evaluator, args Expressions) Value { |
|
|
|
|
// === absent(vector model.ValVector) Vector ===
|
|
|
|
|
func funcAbsent(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
if len(ev.evalVector(args[0])) > 0 { |
|
|
|
|
return Vector{} |
|
|
|
|
return vector{} |
|
|
|
|
} |
|
|
|
|
m := model.Metric{} |
|
|
|
|
if vs, ok := args[0].(*VectorSelector); ok { |
|
|
|
|
@ -361,9 +363,9 @@ func funcAbsent(ev *evaluator, args Expressions) Value { |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
return Vector{ |
|
|
|
|
&Sample{ |
|
|
|
|
Metric: model.COWMetric{ |
|
|
|
|
return vector{ |
|
|
|
|
&sample{ |
|
|
|
|
Metric: metric.Metric{ |
|
|
|
|
Metric: m, |
|
|
|
|
Copied: true, |
|
|
|
|
}, |
|
|
|
|
@ -373,8 +375,8 @@ func funcAbsent(ev *evaluator, args Expressions) Value { |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === ceil(vector ExprVector) Vector ===
|
|
|
|
|
func funcCeil(ev *evaluator, args Expressions) Value { |
|
|
|
|
// === ceil(vector model.ValVector) Vector ===
|
|
|
|
|
func funcCeil(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
vector := ev.evalVector(args[0]) |
|
|
|
|
for _, el := range vector { |
|
|
|
|
el.Metric.Del(model.MetricNameLabel) |
|
|
|
|
@ -383,8 +385,8 @@ func funcCeil(ev *evaluator, args Expressions) Value { |
|
|
|
|
return vector |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === exp(vector ExprVector) Vector ===
|
|
|
|
|
func funcExp(ev *evaluator, args Expressions) Value { |
|
|
|
|
// === exp(vector model.ValVector) Vector ===
|
|
|
|
|
func funcExp(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
vector := ev.evalVector(args[0]) |
|
|
|
|
for _, el := range vector { |
|
|
|
|
el.Metric.Del(model.MetricNameLabel) |
|
|
|
|
@ -394,7 +396,7 @@ func funcExp(ev *evaluator, args Expressions) Value { |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === sqrt(vector VectorNode) Vector ===
|
|
|
|
|
func funcSqrt(ev *evaluator, args Expressions) Value { |
|
|
|
|
func funcSqrt(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
vector := ev.evalVector(args[0]) |
|
|
|
|
for _, el := range vector { |
|
|
|
|
el.Metric.Del(model.MetricNameLabel) |
|
|
|
|
@ -403,8 +405,8 @@ func funcSqrt(ev *evaluator, args Expressions) Value { |
|
|
|
|
return vector |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === ln(vector ExprVector) Vector ===
|
|
|
|
|
func funcLn(ev *evaluator, args Expressions) Value { |
|
|
|
|
// === ln(vector model.ValVector) Vector ===
|
|
|
|
|
func funcLn(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
vector := ev.evalVector(args[0]) |
|
|
|
|
for _, el := range vector { |
|
|
|
|
el.Metric.Del(model.MetricNameLabel) |
|
|
|
|
@ -413,8 +415,8 @@ func funcLn(ev *evaluator, args Expressions) Value { |
|
|
|
|
return vector |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === log2(vector ExprVector) Vector ===
|
|
|
|
|
func funcLog2(ev *evaluator, args Expressions) Value { |
|
|
|
|
// === log2(vector model.ValVector) Vector ===
|
|
|
|
|
func funcLog2(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
vector := ev.evalVector(args[0]) |
|
|
|
|
for _, el := range vector { |
|
|
|
|
el.Metric.Del(model.MetricNameLabel) |
|
|
|
|
@ -423,8 +425,8 @@ func funcLog2(ev *evaluator, args Expressions) Value { |
|
|
|
|
return vector |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === log10(vector ExprVector) Vector ===
|
|
|
|
|
func funcLog10(ev *evaluator, args Expressions) Value { |
|
|
|
|
// === log10(vector model.ValVector) Vector ===
|
|
|
|
|
func funcLog10(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
vector := ev.evalVector(args[0]) |
|
|
|
|
for _, el := range vector { |
|
|
|
|
el.Metric.Del(model.MetricNameLabel) |
|
|
|
|
@ -433,12 +435,12 @@ func funcLog10(ev *evaluator, args Expressions) Value { |
|
|
|
|
return vector |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === deriv(node ExprMatrix) Vector ===
|
|
|
|
|
func funcDeriv(ev *evaluator, args Expressions) Value { |
|
|
|
|
resultVector := Vector{} |
|
|
|
|
matrix := ev.evalMatrix(args[0]) |
|
|
|
|
// === deriv(node model.ValMatrix) Vector ===
|
|
|
|
|
func funcDeriv(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
resultVector := vector{} |
|
|
|
|
mat := ev.evalMatrix(args[0]) |
|
|
|
|
|
|
|
|
|
for _, samples := range matrix { |
|
|
|
|
for _, samples := range mat { |
|
|
|
|
// No sense in trying to compute a derivative without at least two points.
|
|
|
|
|
// Drop this vector element.
|
|
|
|
|
if len(samples.Values) < 2 { |
|
|
|
|
@ -464,7 +466,7 @@ func funcDeriv(ev *evaluator, args Expressions) Value { |
|
|
|
|
|
|
|
|
|
resultValue := numerator / denominator |
|
|
|
|
|
|
|
|
|
resultSample := &Sample{ |
|
|
|
|
resultSample := &sample{ |
|
|
|
|
Metric: samples.Metric, |
|
|
|
|
Value: resultValue, |
|
|
|
|
Timestamp: ev.Timestamp, |
|
|
|
|
@ -475,9 +477,9 @@ func funcDeriv(ev *evaluator, args Expressions) Value { |
|
|
|
|
return resultVector |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === predict_linear(node ExprMatrix, k ExprScalar) Vector ===
|
|
|
|
|
func funcPredictLinear(ev *evaluator, args Expressions) Value { |
|
|
|
|
vector := funcDeriv(ev, args[0:1]).(Vector) |
|
|
|
|
// === predict_linear(node model.ValMatrix, k model.ValScalar) Vector ===
|
|
|
|
|
func funcPredictLinear(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
vec := funcDeriv(ev, args[0:1]).(vector) |
|
|
|
|
duration := model.SampleValue(model.SampleValue(ev.evalFloat(args[1]))) |
|
|
|
|
|
|
|
|
|
excludedLabels := map[model.LabelName]struct{}{ |
|
|
|
|
@ -486,14 +488,14 @@ func funcPredictLinear(ev *evaluator, args Expressions) Value { |
|
|
|
|
|
|
|
|
|
// Calculate predicted delta over the duration.
|
|
|
|
|
signatureToDelta := map[uint64]model.SampleValue{} |
|
|
|
|
for _, el := range vector { |
|
|
|
|
for _, el := range vec { |
|
|
|
|
signature := model.SignatureWithoutLabels(el.Metric.Metric, excludedLabels) |
|
|
|
|
signatureToDelta[signature] = el.Value * duration |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// add predicted delta to last value.
|
|
|
|
|
matrixBounds := ev.evalMatrixBounds(args[0]) |
|
|
|
|
outVec := make(Vector, 0, len(signatureToDelta)) |
|
|
|
|
outVec := make(vector, 0, len(signatureToDelta)) |
|
|
|
|
for _, samples := range matrixBounds { |
|
|
|
|
if len(samples.Values) < 2 { |
|
|
|
|
continue |
|
|
|
|
@ -502,7 +504,7 @@ func funcPredictLinear(ev *evaluator, args Expressions) Value { |
|
|
|
|
delta, ok := signatureToDelta[signature] |
|
|
|
|
if ok { |
|
|
|
|
samples.Metric.Del(model.MetricNameLabel) |
|
|
|
|
outVec = append(outVec, &Sample{ |
|
|
|
|
outVec = append(outVec, &sample{ |
|
|
|
|
Metric: samples.Metric, |
|
|
|
|
Value: delta + samples.Values[1].Value, |
|
|
|
|
Timestamp: ev.Timestamp, |
|
|
|
|
@ -512,12 +514,12 @@ func funcPredictLinear(ev *evaluator, args Expressions) Value { |
|
|
|
|
return outVec |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === histogram_quantile(k ExprScalar, vector ExprVector) Vector ===
|
|
|
|
|
func funcHistogramQuantile(ev *evaluator, args Expressions) Value { |
|
|
|
|
// === histogram_quantile(k model.ValScalar, vector model.ValVector) Vector ===
|
|
|
|
|
func funcHistogramQuantile(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
q := model.SampleValue(ev.evalFloat(args[0])) |
|
|
|
|
inVec := ev.evalVector(args[1]) |
|
|
|
|
|
|
|
|
|
outVec := Vector{} |
|
|
|
|
outVec := vector{} |
|
|
|
|
signatureToMetricWithBuckets := map[uint64]*metricWithBuckets{} |
|
|
|
|
for _, el := range inVec { |
|
|
|
|
upperBound, err := strconv.ParseFloat( |
|
|
|
|
@ -540,7 +542,7 @@ func funcHistogramQuantile(ev *evaluator, args Expressions) Value { |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for _, mb := range signatureToMetricWithBuckets { |
|
|
|
|
outVec = append(outVec, &Sample{ |
|
|
|
|
outVec = append(outVec, &sample{ |
|
|
|
|
Metric: mb.metric, |
|
|
|
|
Value: model.SampleValue(quantile(q, mb.buckets)), |
|
|
|
|
Timestamp: ev.Timestamp, |
|
|
|
|
@ -550,10 +552,10 @@ func funcHistogramQuantile(ev *evaluator, args Expressions) Value { |
|
|
|
|
return outVec |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === resets(matrix ExprMatrix) Vector ===
|
|
|
|
|
func funcResets(ev *evaluator, args Expressions) Value { |
|
|
|
|
// === resets(matrix model.ValMatrix) Vector ===
|
|
|
|
|
func funcResets(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
in := ev.evalMatrix(args[0]) |
|
|
|
|
out := make(Vector, 0, len(in)) |
|
|
|
|
out := make(vector, 0, len(in)) |
|
|
|
|
|
|
|
|
|
for _, samples := range in { |
|
|
|
|
resets := 0 |
|
|
|
|
@ -566,7 +568,7 @@ func funcResets(ev *evaluator, args Expressions) Value { |
|
|
|
|
prev = current |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
rs := &Sample{ |
|
|
|
|
rs := &sample{ |
|
|
|
|
Metric: samples.Metric, |
|
|
|
|
Value: model.SampleValue(resets), |
|
|
|
|
Timestamp: ev.Timestamp, |
|
|
|
|
@ -577,10 +579,10 @@ func funcResets(ev *evaluator, args Expressions) Value { |
|
|
|
|
return out |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === changes(matrix ExprMatrix) Vector ===
|
|
|
|
|
func funcChanges(ev *evaluator, args Expressions) Value { |
|
|
|
|
// === changes(matrix model.ValMatrix) Vector ===
|
|
|
|
|
func funcChanges(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
in := ev.evalMatrix(args[0]) |
|
|
|
|
out := make(Vector, 0, len(in)) |
|
|
|
|
out := make(vector, 0, len(in)) |
|
|
|
|
|
|
|
|
|
for _, samples := range in { |
|
|
|
|
changes := 0 |
|
|
|
|
@ -593,7 +595,7 @@ func funcChanges(ev *evaluator, args Expressions) Value { |
|
|
|
|
prev = current |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
rs := &Sample{ |
|
|
|
|
rs := &sample{ |
|
|
|
|
Metric: samples.Metric, |
|
|
|
|
Value: model.SampleValue(changes), |
|
|
|
|
Timestamp: ev.Timestamp, |
|
|
|
|
@ -604,8 +606,8 @@ func funcChanges(ev *evaluator, args Expressions) Value { |
|
|
|
|
return out |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// === label_replace(vector ExprVector, dst_label, replacement, src_labelname, regex ExprString) Vector ===
|
|
|
|
|
func funcLabelReplace(ev *evaluator, args Expressions) Value { |
|
|
|
|
// === label_replace(vector model.ValVector, dst_label, replacement, src_labelname, regex model.ValString) Vector ===
|
|
|
|
|
func funcLabelReplace(ev *evaluator, args Expressions) model.Value { |
|
|
|
|
var ( |
|
|
|
|
vector = ev.evalVector(args[0]) |
|
|
|
|
dst = model.LabelName(ev.evalString(args[1]).Value) |
|
|
|
|
@ -651,196 +653,196 @@ func funcLabelReplace(ev *evaluator, args Expressions) Value { |
|
|
|
|
var functions = map[string]*Function{ |
|
|
|
|
"abs": { |
|
|
|
|
Name: "abs", |
|
|
|
|
ArgTypes: []ExprType{ExprVector}, |
|
|
|
|
ReturnType: ExprVector, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValVector}, |
|
|
|
|
ReturnType: model.ValVector, |
|
|
|
|
Call: funcAbs, |
|
|
|
|
}, |
|
|
|
|
"absent": { |
|
|
|
|
Name: "absent", |
|
|
|
|
ArgTypes: []ExprType{ExprVector}, |
|
|
|
|
ReturnType: ExprVector, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValVector}, |
|
|
|
|
ReturnType: model.ValVector, |
|
|
|
|
Call: funcAbsent, |
|
|
|
|
}, |
|
|
|
|
"increase": { |
|
|
|
|
Name: "increase", |
|
|
|
|
ArgTypes: []ExprType{ExprMatrix}, |
|
|
|
|
ReturnType: ExprVector, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValMatrix}, |
|
|
|
|
ReturnType: model.ValVector, |
|
|
|
|
Call: funcIncrease, |
|
|
|
|
}, |
|
|
|
|
"avg_over_time": { |
|
|
|
|
Name: "avg_over_time", |
|
|
|
|
ArgTypes: []ExprType{ExprMatrix}, |
|
|
|
|
ReturnType: ExprVector, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValMatrix}, |
|
|
|
|
ReturnType: model.ValVector, |
|
|
|
|
Call: funcAvgOverTime, |
|
|
|
|
}, |
|
|
|
|
"bottomk": { |
|
|
|
|
Name: "bottomk", |
|
|
|
|
ArgTypes: []ExprType{ExprScalar, ExprVector}, |
|
|
|
|
ReturnType: ExprVector, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValScalar, model.ValVector}, |
|
|
|
|
ReturnType: model.ValVector, |
|
|
|
|
Call: funcBottomk, |
|
|
|
|
}, |
|
|
|
|
"ceil": { |
|
|
|
|
Name: "ceil", |
|
|
|
|
ArgTypes: []ExprType{ExprVector}, |
|
|
|
|
ReturnType: ExprVector, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValVector}, |
|
|
|
|
ReturnType: model.ValVector, |
|
|
|
|
Call: funcCeil, |
|
|
|
|
}, |
|
|
|
|
"changes": { |
|
|
|
|
Name: "changes", |
|
|
|
|
ArgTypes: []ExprType{ExprMatrix}, |
|
|
|
|
ReturnType: ExprVector, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValMatrix}, |
|
|
|
|
ReturnType: model.ValVector, |
|
|
|
|
Call: funcChanges, |
|
|
|
|
}, |
|
|
|
|
"count_over_time": { |
|
|
|
|
Name: "count_over_time", |
|
|
|
|
ArgTypes: []ExprType{ExprMatrix}, |
|
|
|
|
ReturnType: ExprVector, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValMatrix}, |
|
|
|
|
ReturnType: model.ValVector, |
|
|
|
|
Call: funcCountOverTime, |
|
|
|
|
}, |
|
|
|
|
"count_scalar": { |
|
|
|
|
Name: "count_scalar", |
|
|
|
|
ArgTypes: []ExprType{ExprVector}, |
|
|
|
|
ReturnType: ExprScalar, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValVector}, |
|
|
|
|
ReturnType: model.ValScalar, |
|
|
|
|
Call: funcCountScalar, |
|
|
|
|
}, |
|
|
|
|
"delta": { |
|
|
|
|
Name: "delta", |
|
|
|
|
ArgTypes: []ExprType{ExprMatrix, ExprScalar}, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValMatrix, model.ValScalar}, |
|
|
|
|
OptionalArgs: 1, // The 2nd argument is deprecated.
|
|
|
|
|
ReturnType: ExprVector, |
|
|
|
|
ReturnType: model.ValVector, |
|
|
|
|
Call: funcDelta, |
|
|
|
|
}, |
|
|
|
|
"deriv": { |
|
|
|
|
Name: "deriv", |
|
|
|
|
ArgTypes: []ExprType{ExprMatrix}, |
|
|
|
|
ReturnType: ExprVector, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValMatrix}, |
|
|
|
|
ReturnType: model.ValVector, |
|
|
|
|
Call: funcDeriv, |
|
|
|
|
}, |
|
|
|
|
"drop_common_labels": { |
|
|
|
|
Name: "drop_common_labels", |
|
|
|
|
ArgTypes: []ExprType{ExprVector}, |
|
|
|
|
ReturnType: ExprVector, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValVector}, |
|
|
|
|
ReturnType: model.ValVector, |
|
|
|
|
Call: funcDropCommonLabels, |
|
|
|
|
}, |
|
|
|
|
"exp": { |
|
|
|
|
Name: "exp", |
|
|
|
|
ArgTypes: []ExprType{ExprVector}, |
|
|
|
|
ReturnType: ExprVector, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValVector}, |
|
|
|
|
ReturnType: model.ValVector, |
|
|
|
|
Call: funcExp, |
|
|
|
|
}, |
|
|
|
|
"floor": { |
|
|
|
|
Name: "floor", |
|
|
|
|
ArgTypes: []ExprType{ExprVector}, |
|
|
|
|
ReturnType: ExprVector, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValVector}, |
|
|
|
|
ReturnType: model.ValVector, |
|
|
|
|
Call: funcFloor, |
|
|
|
|
}, |
|
|
|
|
"histogram_quantile": { |
|
|
|
|
Name: "histogram_quantile", |
|
|
|
|
ArgTypes: []ExprType{ExprScalar, ExprVector}, |
|
|
|
|
ReturnType: ExprVector, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValScalar, model.ValVector}, |
|
|
|
|
ReturnType: model.ValVector, |
|
|
|
|
Call: funcHistogramQuantile, |
|
|
|
|
}, |
|
|
|
|
"label_replace": { |
|
|
|
|
Name: "label_replace", |
|
|
|
|
ArgTypes: []ExprType{ExprVector, ExprString, ExprString, ExprString, ExprString}, |
|
|
|
|
ReturnType: ExprVector, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValVector, model.ValString, model.ValString, model.ValString, model.ValString}, |
|
|
|
|
ReturnType: model.ValVector, |
|
|
|
|
Call: funcLabelReplace, |
|
|
|
|
}, |
|
|
|
|
"ln": { |
|
|
|
|
Name: "ln", |
|
|
|
|
ArgTypes: []ExprType{ExprVector}, |
|
|
|
|
ReturnType: ExprVector, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValVector}, |
|
|
|
|
ReturnType: model.ValVector, |
|
|
|
|
Call: funcLn, |
|
|
|
|
}, |
|
|
|
|
"log10": { |
|
|
|
|
Name: "log10", |
|
|
|
|
ArgTypes: []ExprType{ExprVector}, |
|
|
|
|
ReturnType: ExprVector, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValVector}, |
|
|
|
|
ReturnType: model.ValVector, |
|
|
|
|
Call: funcLog10, |
|
|
|
|
}, |
|
|
|
|
"log2": { |
|
|
|
|
Name: "log2", |
|
|
|
|
ArgTypes: []ExprType{ExprVector}, |
|
|
|
|
ReturnType: ExprVector, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValVector}, |
|
|
|
|
ReturnType: model.ValVector, |
|
|
|
|
Call: funcLog2, |
|
|
|
|
}, |
|
|
|
|
"max_over_time": { |
|
|
|
|
Name: "max_over_time", |
|
|
|
|
ArgTypes: []ExprType{ExprMatrix}, |
|
|
|
|
ReturnType: ExprVector, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValMatrix}, |
|
|
|
|
ReturnType: model.ValVector, |
|
|
|
|
Call: funcMaxOverTime, |
|
|
|
|
}, |
|
|
|
|
"min_over_time": { |
|
|
|
|
Name: "min_over_time", |
|
|
|
|
ArgTypes: []ExprType{ExprMatrix}, |
|
|
|
|
ReturnType: ExprVector, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValMatrix}, |
|
|
|
|
ReturnType: model.ValVector, |
|
|
|
|
Call: funcMinOverTime, |
|
|
|
|
}, |
|
|
|
|
"predict_linear": { |
|
|
|
|
Name: "predict_linear", |
|
|
|
|
ArgTypes: []ExprType{ExprMatrix, ExprScalar}, |
|
|
|
|
ReturnType: ExprVector, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValMatrix, model.ValScalar}, |
|
|
|
|
ReturnType: model.ValVector, |
|
|
|
|
Call: funcPredictLinear, |
|
|
|
|
}, |
|
|
|
|
"rate": { |
|
|
|
|
Name: "rate", |
|
|
|
|
ArgTypes: []ExprType{ExprMatrix}, |
|
|
|
|
ReturnType: ExprVector, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValMatrix}, |
|
|
|
|
ReturnType: model.ValVector, |
|
|
|
|
Call: funcRate, |
|
|
|
|
}, |
|
|
|
|
"resets": { |
|
|
|
|
Name: "resets", |
|
|
|
|
ArgTypes: []ExprType{ExprMatrix}, |
|
|
|
|
ReturnType: ExprVector, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValMatrix}, |
|
|
|
|
ReturnType: model.ValVector, |
|
|
|
|
Call: funcResets, |
|
|
|
|
}, |
|
|
|
|
"round": { |
|
|
|
|
Name: "round", |
|
|
|
|
ArgTypes: []ExprType{ExprVector, ExprScalar}, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValVector, model.ValScalar}, |
|
|
|
|
OptionalArgs: 1, |
|
|
|
|
ReturnType: ExprVector, |
|
|
|
|
ReturnType: model.ValVector, |
|
|
|
|
Call: funcRound, |
|
|
|
|
}, |
|
|
|
|
"scalar": { |
|
|
|
|
Name: "scalar", |
|
|
|
|
ArgTypes: []ExprType{ExprVector}, |
|
|
|
|
ReturnType: ExprScalar, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValVector}, |
|
|
|
|
ReturnType: model.ValScalar, |
|
|
|
|
Call: funcScalar, |
|
|
|
|
}, |
|
|
|
|
"sort": { |
|
|
|
|
Name: "sort", |
|
|
|
|
ArgTypes: []ExprType{ExprVector}, |
|
|
|
|
ReturnType: ExprVector, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValVector}, |
|
|
|
|
ReturnType: model.ValVector, |
|
|
|
|
Call: funcSort, |
|
|
|
|
}, |
|
|
|
|
"sort_desc": { |
|
|
|
|
Name: "sort_desc", |
|
|
|
|
ArgTypes: []ExprType{ExprVector}, |
|
|
|
|
ReturnType: ExprVector, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValVector}, |
|
|
|
|
ReturnType: model.ValVector, |
|
|
|
|
Call: funcSortDesc, |
|
|
|
|
}, |
|
|
|
|
"sqrt": { |
|
|
|
|
Name: "sqrt", |
|
|
|
|
ArgTypes: []ExprType{ExprVector}, |
|
|
|
|
ReturnType: ExprVector, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValVector}, |
|
|
|
|
ReturnType: model.ValVector, |
|
|
|
|
Call: funcSqrt, |
|
|
|
|
}, |
|
|
|
|
"sum_over_time": { |
|
|
|
|
Name: "sum_over_time", |
|
|
|
|
ArgTypes: []ExprType{ExprMatrix}, |
|
|
|
|
ReturnType: ExprVector, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValMatrix}, |
|
|
|
|
ReturnType: model.ValVector, |
|
|
|
|
Call: funcSumOverTime, |
|
|
|
|
}, |
|
|
|
|
"time": { |
|
|
|
|
Name: "time", |
|
|
|
|
ArgTypes: []ExprType{}, |
|
|
|
|
ReturnType: ExprScalar, |
|
|
|
|
ArgTypes: []model.ValueType{}, |
|
|
|
|
ReturnType: model.ValScalar, |
|
|
|
|
Call: funcTime, |
|
|
|
|
}, |
|
|
|
|
"topk": { |
|
|
|
|
Name: "topk", |
|
|
|
|
ArgTypes: []ExprType{ExprScalar, ExprVector}, |
|
|
|
|
ReturnType: ExprVector, |
|
|
|
|
ArgTypes: []model.ValueType{model.ValScalar, model.ValVector}, |
|
|
|
|
ReturnType: model.ValVector, |
|
|
|
|
Call: funcTopk, |
|
|
|
|
}, |
|
|
|
|
} |
|
|
|
|
@ -851,7 +853,7 @@ func getFunction(name string) (*Function, bool) { |
|
|
|
|
return function, ok |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
type vectorByValueHeap Vector |
|
|
|
|
type vectorByValueHeap vector |
|
|
|
|
|
|
|
|
|
func (s vectorByValueHeap) Len() int { |
|
|
|
|
return len(s) |
|
|
|
|
@ -869,7 +871,7 @@ func (s vectorByValueHeap) Swap(i, j int) { |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
func (s *vectorByValueHeap) Push(x interface{}) { |
|
|
|
|
*s = append(*s, x.(*Sample)) |
|
|
|
|
*s = append(*s, x.(*sample)) |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
func (s *vectorByValueHeap) Pop() interface{} { |
|
|
|
|
|