Chamilo is a learning management system focused on ease of use and accessibility
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
chamilo-lms/main/app_share/NoctisVncCanvas.java

1679 lines
40 KiB

//
// Copyright (C) 2001,2002 HorizonLive.com, Inc. All Rights Reserved.
// Copyright (C) 2001,2002 Constantin Kaplinsky. All Rights Reserved.
// Copyright (C) 2000 Tridia Corporation. All Rights Reserved.
// Copyright (C) 1999 AT&T Laboratories Cambridge. All Rights Reserved.
//
// This is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This software is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this software; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
//
import java.awt.Canvas;
import java.awt.Color;
import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.Image;
import java.awt.Insets;
import java.awt.Rectangle;
import java.awt.Toolkit;
import java.awt.event.KeyEvent;
import java.awt.event.KeyListener;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
import java.awt.event.MouseMotionListener;
import java.awt.image.ColorModel;
import java.awt.image.DirectColorModel;
import java.awt.image.MemoryImageSource;
import java.io.ByteArrayInputStream;
import java.io.DataInputStream;
import java.io.IOException;
import java.util.zip.Inflater;
//
// VncCanvas is a subclass of Canvas which draws a VNC desktop on it.
//
class NoctisVncCanvas
extends Canvas
implements KeyListener, MouseListener, MouseMotionListener {
VncViewer viewer;
RfbProto rfb;
ColorModel cm8_256c, cm8_64c, cm8_8c, cm24;
Color[] colors;
int bytesPixel;
Image memImage;
Graphics memGraphics;
Image rawPixelsImage;
MemoryImageSource pixelsSource;
byte[] pixels8;
int[] pixels24;
// Zlib encoder's data.
byte[] zlibBuf;
int zlibBufLen = 0;
Inflater zlibInflater;
// Tight encoder's data.
final static int tightZlibBufferSize = 512;
Inflater[] tightInflaters;
// Since JPEG images are loaded asynchronously, we have to remember
// their position in the framebuffer. Also, this jpegRect object is
// used for synchronization between the rfbThread and a JVM's thread
// which decodes and loads JPEG images.
Rectangle jpegRect;
// True if we process keyboard and mouse events.
boolean inputEnabled;
//
// The constructor.
//
NoctisVncCanvas(VncViewer v) throws IOException {
viewer = v;
rfb = viewer.rfb;
tightInflaters = new Inflater[4];
// sf@2005 - Adding more color modes
cm8_256c = new DirectColorModel(8, 7, (7 << 3), (3 << 6));
cm8_64c = new DirectColorModel(8, (3 << 4), (3 << 2), (3 << 0));
cm8_8c = new DirectColorModel(8, (1 << 2), (1 << 1), (1 << 0));
cm24 = new DirectColorModel(24, 0xFF0000, 0x00FF00, 0x0000FF);
colors = new Color[256];
// sf@2005 - Now Default
for (int i = 0; i < 256; i++)
colors[i] = new Color(cm8_256c.getRGB(i));
setPixelFormat();
inputEnabled = false;
if (!viewer.options.viewOnly)
enableInput(true);
// Keyboard listener is enabled even in view-only mode, to catch
// 'r' or 'R' key presses used to request screen update.
addKeyListener(this);
}
//
// Callback methods to determine geometry of our Component.
//
public Dimension getPreferredSize() {
return new Dimension(rfb.framebufferWidth, rfb.framebufferHeight);
}
public Dimension getMinimumSize() {
return new Dimension(rfb.framebufferWidth, rfb.framebufferHeight);
}
public Dimension getMaximumSize() {
return new Dimension(rfb.framebufferWidth, rfb.framebufferHeight);
}
//
// All painting is performed here.
//
public void update(Graphics g) {
paint(g);
}
public void paint(Graphics g) {
synchronized (memImage) {
g.drawImage(memImage, 0, 0, null);
}
if (showSoftCursor) {
int x0 = cursorX - hotX, y0 = cursorY - hotY;
Rectangle r = new Rectangle(x0, y0, cursorWidth, cursorHeight);
if (r.intersects(g.getClipBounds())) {
g.drawImage(softCursor, x0, y0, null);
}
}
}
//
// Override the ImageObserver interface method to handle drawing of
// JPEG-encoded data.
//
public boolean imageUpdate(
Image img,
int infoflags,
int x,
int y,
int width,
int height) {
if ((infoflags & (ALLBITS | ABORT)) == 0) {
return true; // We need more image data.
} else {
// If the whole image is available, draw it now.
if ((infoflags & ALLBITS) != 0) {
if (jpegRect != null) {
synchronized (jpegRect) {
memGraphics.drawImage(
img,
jpegRect.x,
jpegRect.y,
null);
scheduleRepaint(
jpegRect.x,
jpegRect.y,
jpegRect.width,
jpegRect.height);
jpegRect.notify();
}
}
}
return false; // All image data was processed.
}
}
//
// Start/stop receiving mouse events. Keyboard events are received
// even in view-only mode, because we want to map the 'r' key to the
// screen refreshing function.
//
public synchronized void enableInput(boolean enable) {
if (enable && !inputEnabled) {
inputEnabled = true;
addMouseListener(this);
addMouseMotionListener(this);
if (viewer.showControls) {
viewer.buttonPanel.enableRemoteAccessControls(true);
}
} else if (!enable && inputEnabled) {
inputEnabled = false;
removeMouseListener(this);
removeMouseMotionListener(this);
if (viewer.showControls) {
viewer.buttonPanel.enableRemoteAccessControls(false);
}
}
}
public void setPixelFormat() throws IOException {
// sf@2005 - Adding more color modes
if (viewer.options.eightBitColors > 0)
{
viewer.options.oldEightBitColors = viewer.options.eightBitColors;
switch (viewer.options.eightBitColors)
{
case 1: // 256
for (int i = 0; i < 256; i++)
colors[i] = new Color(cm8_256c.getRGB(i));
rfb.writeSetPixelFormat(8, 8, false, true, 7, 7, 3, 0, 3, 6, false);
break;
case 2: // 64
for (int i = 0; i < 256; i++)
colors[i] = new Color(cm8_64c.getRGB(i));
rfb.writeSetPixelFormat(8, 6, false, true, 3, 3, 3, 4, 2, 0, false);
break;
case 3: // 8
for (int i = 0; i < 256; i++)
colors[i] = new Color(cm8_8c.getRGB(i));
rfb.writeSetPixelFormat(8, 3, false, true, 1, 1, 1, 2, 1, 0, false);
break;
case 4: // 4 (Grey)
for (int i = 0; i < 256; i++)
colors[i] = new Color(cm8_64c.getRGB(i));
rfb.writeSetPixelFormat(8, 6, false, true, 3, 3, 3, 4, 2, 0, true);
break;
case 5: // 2 (B&W)
for (int i = 0; i < 256; i++)
colors[i] = new Color(cm8_8c.getRGB(i));
rfb.writeSetPixelFormat(8, 3, false, true, 1, 1, 1, 2, 1, 0, true);
break;
}
bytesPixel = 1;
}
else
{
rfb.writeSetPixelFormat(
32,
24,
false,
true,
255,
255,
255,
16,
8,
0,
false);
bytesPixel = 4;
}
updateFramebufferSize();
}
void updateFramebufferSize() {
// Useful shortcuts.
int fbWidth = rfb.framebufferWidth;
int fbHeight = rfb.framebufferHeight;
// Create new off-screen image either if it does not exist, or if
// its geometry should be changed. It's not necessary to replace
// existing image if only pixel format should be changed.
if (memImage == null) {
memImage = viewer.createImage(fbWidth, fbHeight);
memGraphics = memImage.getGraphics();
} else if (
memImage.getWidth(null) != fbWidth
|| memImage.getHeight(null) != fbHeight) {
synchronized (memImage) {
memImage = viewer.createImage(fbWidth, fbHeight);
memGraphics = memImage.getGraphics();
}
}
// Images with raw pixels should be re-allocated on every change
// of geometry or pixel format.
if (bytesPixel == 1) {
pixels24 = null;
pixels8 = new byte[fbWidth * fbHeight];
// sf@2005
ColorModel cml = cm8_8c;
// sf@2005
switch (viewer.options.eightBitColors)
{
case 1:
cml = cm8_256c;
break;
case 2:
case 4:
cml = cm8_64c;
break;
case 3:
case 5:
cml = cm8_8c;
break;
}
pixelsSource =
new MemoryImageSource(
fbWidth,
fbHeight,
cml,
pixels8,
0,
fbWidth);
} else {
pixels8 = null;
pixels24 = new int[fbWidth * fbHeight];
pixelsSource =
new MemoryImageSource(
fbWidth,
fbHeight,
cm24,
pixels24,
0,
fbWidth);
}
pixelsSource.setAnimated(true);
rawPixelsImage = createImage(pixelsSource);
// Update the size of desktop containers.
if (viewer.inSeparateFrame) {
if (viewer.desktopScrollPane != null)
resizeDesktopFrame();
} else {
setSize(fbWidth, fbHeight);
}
}
void resizeDesktopFrame() {
setSize(rfb.framebufferWidth, rfb.framebufferHeight);
// FIXME: Find a better way to determine correct size of a
// ScrollPane. -- const
Insets insets = viewer.desktopScrollPane.getInsets();
viewer.desktopScrollPane.setSize(
rfb.framebufferWidth + 2 * Math.min(insets.left, insets.right),
rfb.framebufferHeight + 2 * Math.min(insets.top, insets.bottom));
viewer.vncFrame.pack();
// Try to limit the frame size to the screen size.
Dimension screenSize = viewer.vncFrame.getToolkit().getScreenSize();
Dimension frameSize = viewer.vncFrame.getSize();
Dimension newSize = frameSize;
boolean needToResizeFrame = false;
if (frameSize.height > screenSize.height) {
newSize.height = screenSize.height;
needToResizeFrame = true;
}
if (frameSize.width > screenSize.width) {
newSize.width = screenSize.width;
needToResizeFrame = true;
}
if (needToResizeFrame) {
viewer.vncFrame.setSize(newSize);
}
viewer.desktopScrollPane.doLayout();
}
//
// processNormalProtocol() - executed by the rfbThread to deal with the
// RFB socket.
//
public void processNormalProtocol() throws Exception {
// Start/stop session recording if necessary.
viewer.checkRecordingStatus();
rfb.writeFramebufferUpdateRequest(
0,
0,
rfb.framebufferWidth,
rfb.framebufferHeight,
false);
//
// main dispatch loop
//
while (true) {
// Read message type from the server.
int msgType = rfb.readServerMessageType();
// Process the message depending on its type.
switch (msgType) {
case RfbProto.FramebufferUpdate :
rfb.readFramebufferUpdate();
for (int i = 0; i < rfb.updateNRects; i++) {
rfb.readFramebufferUpdateRectHdr();
int rx = rfb.updateRectX, ry = rfb.updateRectY;
int rw = rfb.updateRectW, rh = rfb.updateRectH;
if (rfb.updateRectEncoding == rfb.EncodingLastRect)
break;
if (rfb.updateRectEncoding == rfb.EncodingNewFBSize) {
rfb.setFramebufferSize(rw, rh);
updateFramebufferSize();
break;
}
if (rfb.updateRectEncoding == rfb.EncodingXCursor
|| rfb.updateRectEncoding == rfb.EncodingRichCursor) {
handleCursorShapeUpdate(
rfb.updateRectEncoding,
rx,
ry,
rw,
rh);
continue;
}
switch (rfb.updateRectEncoding) {
case RfbProto.EncodingRaw :
handleRawRect(rx, ry, rw, rh);
break;
case RfbProto.EncodingCopyRect :
handleCopyRect(rx, ry, rw, rh);
break;
case RfbProto.EncodingRRE :
handleRRERect(rx, ry, rw, rh);
break;
case RfbProto.EncodingCoRRE :
handleCoRRERect(rx, ry, rw, rh);
break;
case RfbProto.EncodingHextile :
handleHextileRect(rx, ry, rw, rh);
break;
case RfbProto.EncodingZlib :
handleZlibRect(rx, ry, rw, rh);
break;
case RfbProto.EncodingTight :
handleTightRect(rx, ry, rw, rh);
break;
// marscha - PointerPos
case RfbProto.EncodingPointerPos :
handleCursorPosUpdate(rx, ry);
break;
default :
throw new Exception(
"Unknown RFB rectangle encoding "
+ rfb.updateRectEncoding);
}
}
boolean fullUpdateNeeded = false;
// Start/stop session recording if necessary. Request full
// update if a new session file was opened.
if (viewer.checkRecordingStatus())
fullUpdateNeeded = true;
// Defer framebuffer update request if necessary. But wake up
// immediately on keyboard or mouse event.
if (viewer.deferUpdateRequests > 0) {
synchronized (rfb) {
try {
rfb.wait(viewer.deferUpdateRequests);
} catch (InterruptedException e) {
}
}
}
// Before requesting framebuffer update, check if the pixel
// format should be changed. If it should, request full update
// instead of an incremental one.
if ((viewer.options.eightBitColors > 0) && (bytesPixel != 1)
||
(viewer.options.eightBitColors == 0) && (bytesPixel == 1)
||
(viewer.options.eightBitColors != viewer.options.oldEightBitColors)
)
{
setPixelFormat();
fullUpdateNeeded = true;
}
rfb.writeFramebufferUpdateRequest(
0,
0,
rfb.framebufferWidth,
rfb.framebufferHeight,
!fullUpdateNeeded);
break;
case RfbProto.SetColourMapEntries :
throw new Exception("Can't handle SetColourMapEntries message");
case RfbProto.Bell :
Toolkit.getDefaultToolkit().beep();
break;
case RfbProto.ServerCutText :
String s = rfb.readServerCutText();
viewer.clipboard.setCutText(s);
break;
case RfbProto.rfbFileTransfer :
viewer.rfb.readRfbFileTransferMsg();
break;
default :
throw new Exception("Unknown RFB message type " + msgType);
}
}
}
//
// Handle a raw rectangle. The second form with paint==false is used
// by the Hextile decoder for raw-encoded tiles.
//
void handleRawRect(int x, int y, int w, int h) throws IOException {
handleRawRect(x, y, w, h, true);
}
void handleRawRect(int x, int y, int w, int h, boolean paint)
throws IOException {
if (bytesPixel == 1) {
for (int dy = y; dy < y + h; dy++) {
rfb.is.readFully(pixels8, dy * rfb.framebufferWidth + x, w);
if (rfb.rec != null) {
rfb.rec.write(pixels8, dy * rfb.framebufferWidth + x, w);
}
}
} else {
byte[] buf = new byte[w * 4];
int i, offset;
for (int dy = y; dy < y + h; dy++) {
rfb.is.readFully(buf);
if (rfb.rec != null) {
rfb.rec.write(buf);
}
offset = dy * rfb.framebufferWidth + x;
for (i = 0; i < w; i++) {
pixels24[offset + i] =
(buf[i * 4 + 2] & 0xFF)
<< 16 | (buf[i * 4 + 1] & 0xFF)
<< 8 | (buf[i * 4] & 0xFF);
}
}
}
handleUpdatedPixels(x, y, w, h);
if (paint)
scheduleRepaint(x, y, w, h);
}
//
// Handle a CopyRect rectangle.
//
void handleCopyRect(int x, int y, int w, int h) throws IOException {
rfb.readCopyRect();
memGraphics.copyArea(
rfb.copyRectSrcX,
rfb.copyRectSrcY,
w,
h,
x - rfb.copyRectSrcX,
y - rfb.copyRectSrcY);
scheduleRepaint(x, y, w, h);
}
//
// Handle an RRE-encoded rectangle.
//
void handleRRERect(int x, int y, int w, int h) throws IOException {
int nSubrects = rfb.is.readInt();
byte[] bg_buf = new byte[bytesPixel];
rfb.is.readFully(bg_buf);
Color pixel;
if (bytesPixel == 1)
{
pixel = colors[bg_buf[0] & 0xFF];
}
else
{
pixel = new Color(bg_buf[2] & 0xFF, bg_buf[1] & 0xFF, bg_buf[0] & 0xFF);
}
memGraphics.setColor(pixel);
memGraphics.fillRect(x, y, w, h);
byte[] buf = new byte[nSubrects * (bytesPixel + 8)];
rfb.is.readFully(buf);
DataInputStream ds = new DataInputStream(new ByteArrayInputStream(buf));
if (rfb.rec != null) {
rfb.rec.writeIntBE(nSubrects);
rfb.rec.write(bg_buf);
rfb.rec.write(buf);
}
int sx, sy, sw, sh;
for (int j = 0; j < nSubrects; j++) {
if (bytesPixel == 1) {
pixel = colors[ds.readUnsignedByte()];
} else {
ds.skip(4);
pixel =
new Color(
buf[j * 12 + 2] & 0xFF,
buf[j * 12 + 1] & 0xFF,
buf[j * 12] & 0xFF);
}
sx = x + ds.readUnsignedShort();
sy = y + ds.readUnsignedShort();
sw = ds.readUnsignedShort();
sh = ds.readUnsignedShort();
memGraphics.setColor(pixel);
memGraphics.fillRect(sx, sy, sw, sh);
}
scheduleRepaint(x, y, w, h);
}
//
// Handle a CoRRE-encoded rectangle.
//
void handleCoRRERect(int x, int y, int w, int h) throws IOException {
int nSubrects = rfb.is.readInt();
byte[] bg_buf = new byte[bytesPixel];
rfb.is.readFully(bg_buf);
Color pixel;
if (bytesPixel == 1) {
pixel = colors[bg_buf[0] & 0xFF];
} else {
pixel =
new Color(bg_buf[2] & 0xFF, bg_buf[1] & 0xFF, bg_buf[0] & 0xFF);
}
memGraphics.setColor(pixel);
memGraphics.fillRect(x, y, w, h);
byte[] buf = new byte[nSubrects * (bytesPixel + 4)];
rfb.is.readFully(buf);
if (rfb.rec != null) {
rfb.rec.writeIntBE(nSubrects);
rfb.rec.write(bg_buf);
rfb.rec.write(buf);
}
int sx, sy, sw, sh;
int i = 0;
for (int j = 0; j < nSubrects; j++) {
if (bytesPixel == 1) {
pixel = colors[buf[i++] & 0xFF];
} else {
pixel =
new Color(
buf[i + 2] & 0xFF,
buf[i + 1] & 0xFF,
buf[i] & 0xFF);
i += 4;
}
sx = x + (buf[i++] & 0xFF);
sy = y + (buf[i++] & 0xFF);
sw = buf[i++] & 0xFF;
sh = buf[i++] & 0xFF;
memGraphics.setColor(pixel);
memGraphics.fillRect(sx, sy, sw, sh);
}
scheduleRepaint(x, y, w, h);
}
//
// Handle a Hextile-encoded rectangle.
//
// These colors should be kept between handleHextileSubrect() calls.
private Color hextile_bg, hextile_fg;
void handleHextileRect(int x, int y, int w, int h) throws IOException {
hextile_bg = new Color(0);
hextile_fg = new Color(0);
for (int ty = y; ty < y + h; ty += 16) {
int th = 16;
if (y + h - ty < 16)
th = y + h - ty;
for (int tx = x; tx < x + w; tx += 16) {
int tw = 16;
if (x + w - tx < 16)
tw = x + w - tx;
handleHextileSubrect(tx, ty, tw, th);
}
// Finished with a row of tiles, now let's show it.
scheduleRepaint(x, y, w, h);
}
}
//
// Handle one tile in the Hextile-encoded data.
//
void handleHextileSubrect(int tx, int ty, int tw, int th)
throws IOException {
int subencoding = rfb.is.readUnsignedByte();
if (rfb.rec != null) {
rfb.rec.writeByte(subencoding);
}
// Is it a raw-encoded sub-rectangle?
if ((subencoding & rfb.HextileRaw) != 0) {
handleRawRect(tx, ty, tw, th, false);
return;
}
// Read and draw the background if specified.
byte[] cbuf = new byte[bytesPixel];
if ((subencoding & rfb.HextileBackgroundSpecified) != 0) {
rfb.is.readFully(cbuf);
if (bytesPixel == 1) {
hextile_bg = colors[cbuf[0] & 0xFF];
} else {
hextile_bg =
new Color(cbuf[2] & 0xFF, cbuf[1] & 0xFF, cbuf[0] & 0xFF);
}
if (rfb.rec != null) {
rfb.rec.write(cbuf);
}
}
memGraphics.setColor(hextile_bg);
memGraphics.fillRect(tx, ty, tw, th);
// Read the foreground color if specified.
if ((subencoding & rfb.HextileForegroundSpecified) != 0) {
rfb.is.readFully(cbuf);
if (bytesPixel == 1) {
hextile_fg = colors[cbuf[0] & 0xFF];
} else {
hextile_fg =
new Color(cbuf[2] & 0xFF, cbuf[1] & 0xFF, cbuf[0] & 0xFF);
}
if (rfb.rec != null) {
rfb.rec.write(cbuf);
}
}
// Done with this tile if there is no sub-rectangles.
if ((subencoding & rfb.HextileAnySubrects) == 0)
return;
int nSubrects = rfb.is.readUnsignedByte();
int bufsize = nSubrects * 2;
if ((subencoding & rfb.HextileSubrectsColoured) != 0) {
bufsize += nSubrects * bytesPixel;
}
byte[] buf = new byte[bufsize];
rfb.is.readFully(buf);
if (rfb.rec != null) {
rfb.rec.writeByte(nSubrects);
rfb.rec.write(buf);
}
int b1, b2, sx, sy, sw, sh;
int i = 0;
if ((subencoding & rfb.HextileSubrectsColoured) == 0) {
// Sub-rectangles are all of the same color.
memGraphics.setColor(hextile_fg);
for (int j = 0; j < nSubrects; j++) {
b1 = buf[i++] & 0xFF;
b2 = buf[i++] & 0xFF;
sx = tx + (b1 >> 4);
sy = ty + (b1 & 0xf);
sw = (b2 >> 4) + 1;
sh = (b2 & 0xf) + 1;
memGraphics.fillRect(sx, sy, sw, sh);
}
} else if (bytesPixel == 1) {
// BGR233 (8-bit color) version for colored sub-rectangles.
for (int j = 0; j < nSubrects; j++) {
hextile_fg = colors[buf[i++] & 0xFF];
b1 = buf[i++] & 0xFF;
b2 = buf[i++] & 0xFF;
sx = tx + (b1 >> 4);
sy = ty + (b1 & 0xf);
sw = (b2 >> 4) + 1;
sh = (b2 & 0xf) + 1;
memGraphics.setColor(hextile_fg);
memGraphics.fillRect(sx, sy, sw, sh);
}
} else {
// Full-color (24-bit) version for colored sub-rectangles.
for (int j = 0; j < nSubrects; j++) {
hextile_fg =
new Color(
buf[i + 2] & 0xFF,
buf[i + 1] & 0xFF,
buf[i] & 0xFF);
i += 4;
b1 = buf[i++] & 0xFF;
b2 = buf[i++] & 0xFF;
sx = tx + (b1 >> 4);
sy = ty + (b1 & 0xf);
sw = (b2 >> 4) + 1;
sh = (b2 & 0xf) + 1;
memGraphics.setColor(hextile_fg);
memGraphics.fillRect(sx, sy, sw, sh);
}
}
}
//
// Handle a Zlib-encoded rectangle.
//
void handleZlibRect(int x, int y, int w, int h) throws Exception {
int nBytes = rfb.is.readInt();
if (zlibBuf == null || zlibBufLen < nBytes) {
zlibBufLen = nBytes * 2;
zlibBuf = new byte[zlibBufLen];
}
rfb.is.readFully(zlibBuf, 0, nBytes);
if (rfb.rec != null && rfb.recordFromBeginning) {
rfb.rec.writeIntBE(nBytes);
rfb.rec.write(zlibBuf, 0, nBytes);
}
if (zlibInflater == null) {
zlibInflater = new Inflater();
}
zlibInflater.setInput(zlibBuf, 0, nBytes);
if (bytesPixel == 1) {
for (int dy = y; dy < y + h; dy++) {
zlibInflater.inflate(pixels8, dy * rfb.framebufferWidth + x, w);
if (rfb.rec != null && !rfb.recordFromBeginning)
rfb.rec.write(pixels8, dy * rfb.framebufferWidth + x, w);
}
} else {
byte[] buf = new byte[w * 4];
int i, offset;
for (int dy = y; dy < y + h; dy++) {
zlibInflater.inflate(buf);
offset = dy * rfb.framebufferWidth + x;
for (i = 0; i < w; i++) {
pixels24[offset + i] =
(buf[i * 4 + 2] & 0xFF)
<< 16 | (buf[i * 4 + 1] & 0xFF)
<< 8 | (buf[i * 4] & 0xFF);
}
if (rfb.rec != null && !rfb.recordFromBeginning)
rfb.rec.write(buf);
}
}
handleUpdatedPixels(x, y, w, h);
scheduleRepaint(x, y, w, h);
}
//
// Handle a Tight-encoded rectangle.
//
void handleTightRect(int x, int y, int w, int h) throws Exception {
int comp_ctl = rfb.is.readUnsignedByte();
if (rfb.rec != null) {
if (rfb.recordFromBeginning
|| comp_ctl == (rfb.TightFill << 4)
|| comp_ctl == (rfb.TightJpeg << 4)) {
// Send data exactly as received.
rfb.rec.writeByte(comp_ctl);
} else {
// Tell the decoder to flush each of the four zlib streams.
rfb.rec.writeByte(comp_ctl | 0x0F);
}
}
// Flush zlib streams if we are told by the server to do so.
for (int stream_id = 0; stream_id < 4; stream_id++) {
if ((comp_ctl & 1) != 0 && tightInflaters[stream_id] != null) {
tightInflaters[stream_id] = null;
}
comp_ctl >>= 1;
}
// Check correctness of subencoding value.
if (comp_ctl > rfb.TightMaxSubencoding) {
throw new Exception("Incorrect tight subencoding: " + comp_ctl);
}
// Handle solid-color rectangles.
if (comp_ctl == rfb.TightFill) {
if (bytesPixel == 1) {
int idx = rfb.is.readUnsignedByte();
memGraphics.setColor(colors[idx]);
if (rfb.rec != null) {
rfb.rec.writeByte(idx);
}
} else {
byte[] buf = new byte[3];
rfb.is.readFully(buf);
if (rfb.rec != null) {
rfb.rec.write(buf);
}
Color bg =
new Color(
0xFF000000 | (buf[0] & 0xFF)
<< 16 | (buf[1] & 0xFF)
<< 8 | (buf[2] & 0xFF));
memGraphics.setColor(bg);
}
memGraphics.fillRect(x, y, w, h);
scheduleRepaint(x, y, w, h);
return;
}
if (comp_ctl == rfb.TightJpeg) {
// Read JPEG data.
byte[] jpegData = new byte[rfb.readCompactLen()];
rfb.is.readFully(jpegData);
if (rfb.rec != null) {
if (!rfb.recordFromBeginning) {
rfb.recordCompactLen(jpegData.length);
}
rfb.rec.write(jpegData);
}
// Create an Image object from the JPEG data.
Image jpegImage = Toolkit.getDefaultToolkit().createImage(jpegData);
// Remember the rectangle where the image should be drawn.
jpegRect = new Rectangle(x, y, w, h);
// Let the imageUpdate() method do the actual drawing, here just
// wait until the image is fully loaded and drawn.
synchronized (jpegRect) {
Toolkit.getDefaultToolkit().prepareImage(
jpegImage,
-1,
-1,
this);
try {
// Wait no longer than three seconds.
jpegRect.wait(3000);
} catch (InterruptedException e) {
throw new Exception("Interrupted while decoding JPEG image");
}
}
// Done, jpegRect is not needed any more.
jpegRect = null;
return;
}
// Read filter id and parameters.
int numColors = 0, rowSize = w;
byte[] palette8 = new byte[2];
int[] palette24 = new int[256];
boolean useGradient = false;
if ((comp_ctl & rfb.TightExplicitFilter) != 0) {
int filter_id = rfb.is.readUnsignedByte();
if (rfb.rec != null) {
rfb.rec.writeByte(filter_id);
}
if (filter_id == rfb.TightFilterPalette) {
numColors = rfb.is.readUnsignedByte() + 1;
if (rfb.rec != null) {
rfb.rec.writeByte(numColors - 1);
}
if (bytesPixel == 1) {
if (numColors != 2) {
throw new Exception(
"Incorrect tight palette size: " + numColors);
}
rfb.is.readFully(palette8);
if (rfb.rec != null) {
rfb.rec.write(palette8);
}
} else {
byte[] buf = new byte[numColors * 3];
rfb.is.readFully(buf);
if (rfb.rec != null) {
rfb.rec.write(buf);
}
for (int i = 0; i < numColors; i++) {
palette24[i] =
((buf[i * 3] & 0xFF)
<< 16 | (buf[i * 3 + 1] & 0xFF)
<< 8 | (buf[i * 3 + 2] & 0xFF));
}
}
if (numColors == 2)
rowSize = (w + 7) / 8;
} else if (filter_id == rfb.TightFilterGradient) {
useGradient = true;
} else if (filter_id != rfb.TightFilterCopy) {
throw new Exception("Incorrect tight filter id: " + filter_id);
}
}
if (numColors == 0 && bytesPixel == 4)
rowSize *= 3;
// Read, optionally uncompress and decode data.
int dataSize = h * rowSize;
if (dataSize < rfb.TightMinToCompress) {
// Data size is small - not compressed with zlib.
if (numColors != 0) {
// Indexed colors.
byte[] indexedData = new byte[dataSize];
rfb.is.readFully(indexedData);
if (rfb.rec != null) {
rfb.rec.write(indexedData);
}
if (numColors == 2) {
// Two colors.
if (bytesPixel == 1) {
decodeMonoData(x, y, w, h, indexedData, palette8);
} else {
decodeMonoData(x, y, w, h, indexedData, palette24);
}
} else {
// 3..255 colors (assuming bytesPixel == 4).
int i = 0;
for (int dy = y; dy < y + h; dy++) {
for (int dx = x; dx < x + w; dx++) {
pixels24[dy * rfb.framebufferWidth + dx] =
palette24[indexedData[i++] & 0xFF];
}
}
}
} else if (useGradient) {
// "Gradient"-processed data
byte[] buf = new byte[w * h * 3];
rfb.is.readFully(buf);
if (rfb.rec != null) {
rfb.rec.write(buf);
}
decodeGradientData(x, y, w, h, buf);
} else {
// Raw truecolor data.
if (bytesPixel == 1) {
for (int dy = y; dy < y + h; dy++) {
rfb.is.readFully(
pixels8,
dy * rfb.framebufferWidth + x,
w);
if (rfb.rec != null) {
rfb.rec.write(
pixels8,
dy * rfb.framebufferWidth + x,
w);
}
}
} else {
byte[] buf = new byte[w * 3];
int i, offset;
for (int dy = y; dy < y + h; dy++) {
rfb.is.readFully(buf);
if (rfb.rec != null) {
rfb.rec.write(buf);
}
offset = dy * rfb.framebufferWidth + x;
for (i = 0; i < w; i++) {
pixels24[offset + i] =
(buf[i * 3] & 0xFF)
<< 16 | (buf[i * 3 + 1] & 0xFF)
<< 8 | (buf[i * 3 + 2] & 0xFF);
}
}
}
}
} else {
// Data was compressed with zlib.
int zlibDataLen = rfb.readCompactLen();
byte[] zlibData = new byte[zlibDataLen];
rfb.is.readFully(zlibData);
if (rfb.rec != null && rfb.recordFromBeginning) {
rfb.rec.write(zlibData);
}
int stream_id = comp_ctl & 0x03;
if (tightInflaters[stream_id] == null) {
tightInflaters[stream_id] = new Inflater();
}
Inflater myInflater = tightInflaters[stream_id];
myInflater.setInput(zlibData);
byte[] buf = new byte[dataSize];
myInflater.inflate(buf);
if (rfb.rec != null && !rfb.recordFromBeginning) {
rfb.recordCompressedData(buf);
}
if (numColors != 0) {
// Indexed colors.
if (numColors == 2) {
// Two colors.
if (bytesPixel == 1) {
decodeMonoData(x, y, w, h, buf, palette8);
} else {
decodeMonoData(x, y, w, h, buf, palette24);
}
} else {
// More than two colors (assuming bytesPixel == 4).
int i = 0;
for (int dy = y; dy < y + h; dy++) {
for (int dx = x; dx < x + w; dx++) {
pixels24[dy * rfb.framebufferWidth + dx] =
palette24[buf[i++] & 0xFF];
}
}
}
} else if (useGradient) {
// Compressed "Gradient"-filtered data (assuming bytesPixel == 4).
decodeGradientData(x, y, w, h, buf);
} else {
// Compressed truecolor data.
if (bytesPixel == 1) {
int destOffset = y * rfb.framebufferWidth + x;
for (int dy = 0; dy < h; dy++) {
System.arraycopy(buf, dy * w, pixels8, destOffset, w);
destOffset += rfb.framebufferWidth;
}
} else {
int srcOffset = 0;
int destOffset, i;
for (int dy = 0; dy < h; dy++) {
myInflater.inflate(buf);
destOffset = (y + dy) * rfb.framebufferWidth + x;
for (i = 0; i < w; i++) {
pixels24[destOffset + i] =
(buf[srcOffset] & 0xFF)
<< 16 | (buf[srcOffset + 1] & 0xFF)
<< 8 | (buf[srcOffset + 2] & 0xFF);
srcOffset += 3;
}
}
}
}
}
handleUpdatedPixels(x, y, w, h);
scheduleRepaint(x, y, w, h);
}
//
// Decode 1bpp-encoded bi-color rectangle (8-bit and 24-bit versions).
//
void decodeMonoData(
int x,
int y,
int w,
int h,
byte[] src,
byte[] palette) {
int dx, dy, n;
int i = y * rfb.framebufferWidth + x;
int rowBytes = (w + 7) / 8;
byte b;
for (dy = 0; dy < h; dy++) {
for (dx = 0; dx < w / 8; dx++) {
b = src[dy * rowBytes + dx];
for (n = 7; n >= 0; n--)
pixels8[i++] = palette[b >> n & 1];
}
for (n = 7; n >= 8 - w % 8; n--) {
pixels8[i++] = palette[src[dy * rowBytes + dx] >> n & 1];
}
i += (rfb.framebufferWidth - w);
}
}
void decodeMonoData(
int x,
int y,
int w,
int h,
byte[] src,
int[] palette) {
int dx, dy, n;
int i = y * rfb.framebufferWidth + x;
int rowBytes = (w + 7) / 8;
byte b;
for (dy = 0; dy < h; dy++) {
for (dx = 0; dx < w / 8; dx++) {
b = src[dy * rowBytes + dx];
for (n = 7; n >= 0; n--)
pixels24[i++] = palette[b >> n & 1];
}
for (n = 7; n >= 8 - w % 8; n--) {
pixels24[i++] = palette[src[dy * rowBytes + dx] >> n & 1];
}
i += (rfb.framebufferWidth - w);
}
}
//
// Decode data processed with the "Gradient" filter.
//
void decodeGradientData(int x, int y, int w, int h, byte[] buf) {
int dx, dy, c;
byte[] prevRow = new byte[w * 3];
byte[] thisRow = new byte[w * 3];
byte[] pix = new byte[3];
int[] est = new int[3];
int offset = y * rfb.framebufferWidth + x;
for (dy = 0; dy < h; dy++) {
/* First pixel in a row */
for (c = 0; c < 3; c++) {
pix[c] = (byte) (prevRow[c] + buf[dy * w * 3 + c]);
thisRow[c] = pix[c];
}
pixels24[offset++] =
(pix[0] & 0xFF) << 16 | (pix[1] & 0xFF) << 8 | (pix[2] & 0xFF);
/* Remaining pixels of a row */
for (dx = 1; dx < w; dx++) {
for (c = 0; c < 3; c++) {
est[c] =
((prevRow[dx * 3 + c] & 0xFF)
+ (pix[c] & 0xFF)
- (prevRow[(dx - 1) * 3 + c] & 0xFF));
if (est[c] > 0xFF) {
est[c] = 0xFF;
} else if (est[c] < 0x00) {
est[c] = 0x00;
}
pix[c] = (byte) (est[c] + buf[(dy * w + dx) * 3 + c]);
thisRow[dx * 3 + c] = pix[c];
}
pixels24[offset++] =
(pix[0] & 0xFF)
<< 16 | (pix[1] & 0xFF)
<< 8 | (pix[2] & 0xFF);
}
System.arraycopy(thisRow, 0, prevRow, 0, w * 3);
offset += (rfb.framebufferWidth - w);
}
}
//
// Display newly updated area of pixels.
//
void handleUpdatedPixels(int x, int y, int w, int h) {
// Draw updated pixels of the off-screen image.
pixelsSource.newPixels(x, y, w, h);
memGraphics.setClip(x, y, w, h);
memGraphics.drawImage(rawPixelsImage, 0, 0, null);
memGraphics.setClip(0, 0, rfb.framebufferWidth, rfb.framebufferHeight);
}
//
// Tell JVM to repaint specified desktop area.
//
void scheduleRepaint(int x, int y, int w, int h) {
// Request repaint, deferred if necessary.
repaint(viewer.deferScreenUpdates, x, y, w, h);
}
//
// Handle events.
//
public void keyPressed(KeyEvent evt) {
processLocalKeyEvent(evt);
}
public void keyReleased(KeyEvent evt) {
processLocalKeyEvent(evt);
}
public void keyTyped(KeyEvent evt) {
evt.consume();
}
public void mousePressed(MouseEvent evt) {
processLocalMouseEvent(evt, false);
}
public void mouseReleased(MouseEvent evt) {
processLocalMouseEvent(evt, false);
}
public void mouseMoved(MouseEvent evt) {
processLocalMouseEvent(evt, true);
}
public void mouseDragged(MouseEvent evt) {
processLocalMouseEvent(evt, true);
}
public void processLocalKeyEvent(KeyEvent evt) {
if (viewer.rfb != null && rfb.inNormalProtocol) {
if (!inputEnabled) {
if ((evt.getKeyChar() == 'r' || evt.getKeyChar() == 'R')
&& evt.getID() == KeyEvent.KEY_PRESSED) {
// Request screen update.
try {
rfb.writeFramebufferUpdateRequest(
0,
0,
rfb.framebufferWidth,
rfb.framebufferHeight,
false);
} catch (IOException e) {
e.printStackTrace();
}
}
} else {
// Input enabled.
synchronized (rfb) {
try {
rfb.writeKeyEvent(evt);
} catch (Exception e) {
e.printStackTrace();
}
rfb.notify();
}
}
}
// Don't ever pass keyboard events to AWT for default processing.
// Otherwise, pressing Tab would switch focus to ButtonPanel etc.
evt.consume();
}
public void processLocalMouseEvent(MouseEvent evt, boolean moved) {
if (viewer.rfb != null && rfb.inNormalProtocol) {
if (moved) {
softCursorMove(evt.getX(), evt.getY());
}
synchronized (rfb) {
try {
rfb.writePointerEvent(evt);
} catch (Exception e) {
e.printStackTrace();
}
rfb.notify();
}
}
}
//
// Ignored events.
//
public void mouseClicked(MouseEvent evt) {
}
public void mouseEntered(MouseEvent evt) {
}
public void mouseExited(MouseEvent evt) {
}
//////////////////////////////////////////////////////////////////
//
// Handle cursor shape updates (XCursor and RichCursor encodings).
//
boolean showSoftCursor = false;
int[] softCursorPixels;
MemoryImageSource softCursorSource;
Image softCursor;
int cursorX = 0, cursorY = 0;
int cursorWidth, cursorHeight;
int hotX, hotY;
//
// Handle cursor shape update (XCursor and RichCursor encodings).
//
synchronized void handleCursorShapeUpdate(
int encodingType,
int xhot,
int yhot,
int width,
int height)
throws IOException {
int bytesPerRow = (width + 7) / 8;
int bytesMaskData = bytesPerRow * height;
softCursorFree();
if (width * height == 0)
return;
// Ignore cursor shape data if requested by user.
if (viewer.options.ignoreCursorUpdates) {
if (encodingType == rfb.EncodingXCursor) {
rfb.is.skipBytes(6 + bytesMaskData * 2);
} else {
// rfb.EncodingRichCursor
rfb.is.skipBytes(width * height + bytesMaskData);
}
return;
}
// Decode cursor pixel data.
softCursorPixels = new int[width * height];
if (encodingType == rfb.EncodingXCursor) {
// Read foreground and background colors of the cursor.
byte[] rgb = new byte[6];
rfb.is.readFully(rgb);
int[] colors =
{
(0xFF000000 | (rgb[3] & 0xFF)
<< 16 | (rgb[4] & 0xFF)
<< 8 | (rgb[5] & 0xFF)),
(0xFF000000 | (rgb[0] & 0xFF)
<< 16 | (rgb[1] & 0xFF)
<< 8 | (rgb[2] & 0xFF))};
// Read pixel and mask data.
byte[] pixBuf = new byte[bytesMaskData];
rfb.is.readFully(pixBuf);
byte[] maskBuf = new byte[bytesMaskData];
rfb.is.readFully(maskBuf);
// Decode pixel data into softCursorPixels[].
byte pixByte, maskByte;
int x, y, n, result;
int i = 0;
for (y = 0; y < height; y++) {
for (x = 0; x < width / 8; x++) {
pixByte = pixBuf[y * bytesPerRow + x];
maskByte = maskBuf[y * bytesPerRow + x];
for (n = 7; n >= 0; n--) {
if ((maskByte >> n & 1) != 0) {
result = colors[pixByte >> n & 1];
} else {
result = 0; // Transparent pixel
}
softCursorPixels[i++] = result;
}
}
for (n = 7; n >= 8 - width % 8; n--) {
if ((maskBuf[y * bytesPerRow + x] >> n & 1) != 0) {
result = colors[pixBuf[y * bytesPerRow + x] >> n & 1];
} else {
result = 0; // Transparent pixel
}
softCursorPixels[i++] = result;
}
}
} else {
// encodingType == rfb.EncodingRichCursor
// Read pixel and mask data.
byte[] pixBuf = new byte[width * height * bytesPixel];
rfb.is.readFully(pixBuf);
byte[] maskBuf = new byte[bytesMaskData];
rfb.is.readFully(maskBuf);
// Decode pixel data into softCursorPixels[].
byte pixByte, maskByte;
int x, y, n, result;
int i = 0;
for (y = 0; y < height; y++) {
for (x = 0; x < width / 8; x++) {
maskByte = maskBuf[y * bytesPerRow + x];
for (n = 7; n >= 0; n--) {
if ((maskByte >> n & 1) != 0) {
if (bytesPixel == 1)
{
result = 0;
// sf@2005
switch (viewer.options.eightBitColors)
{
case 1:
result = cm8_256c.getRGB(pixBuf[i]);
break;
case 2:
case 4:
result = cm8_64c.getRGB(pixBuf[i]);
break;
case 3:
case 5:
result = cm8_8c.getRGB(pixBuf[i]);
break;
}
}
else
{
result =
0xFF000000 | (pixBuf[i * 4 + 1] & 0xFF)
<< 16 | (pixBuf[i * 4 + 2] & 0xFF)
<< 8 | (pixBuf[i * 4 + 3] & 0xFF);
}
} else {
result = 0; // Transparent pixel
}
softCursorPixels[i++] = result;
}
}
for (n = 7; n >= 8 - width % 8; n--) {
if ((maskBuf[y * bytesPerRow + x] >> n & 1) != 0) {
if (bytesPixel == 1)
{
result = 0;
// sf@2005
switch (viewer.options.eightBitColors)
{
case 1:
result = cm8_256c.getRGB(pixBuf[i]);
break;
case 2:
case 4:
result = cm8_64c.getRGB(pixBuf[i]);
break;
case 3:
case 5:
result = cm8_8c.getRGB(pixBuf[i]);
break;
} }
else
{
result =
0xFF000000 | (pixBuf[i * 4 + 1] & 0xFF)
<< 16 | (pixBuf[i * 4 + 2] & 0xFF)
<< 8 | (pixBuf[i * 4 + 3] & 0xFF);
}
} else {
result = 0; // Transparent pixel
}
softCursorPixels[i++] = result;
}
}
}
// Draw the cursor on an off-screen image.
softCursorSource =
new MemoryImageSource(width, height, softCursorPixels, 0, width);
softCursor = createImage(softCursorSource);
// Set remaining data associated with cursor.
cursorWidth = width;
cursorHeight = height;
hotX = xhot;
hotY = yhot;
showSoftCursor = true;
// Show the cursor.
repaint(
viewer.deferCursorUpdates,
cursorX - hotX,
cursorY - hotY,
cursorWidth,
cursorHeight);
}
//
// marscha - PointerPos
// Handle cursor position update (PointerPos encoding).
//
synchronized void handleCursorPosUpdate(
int x,
int y) {
if (x >= rfb.framebufferWidth)
x = rfb.framebufferWidth - 1;
if (y >= rfb.framebufferHeight)
y = rfb.framebufferHeight - 1;
softCursorMove(x, y);
}
//
// softCursorMove(). Moves soft cursor into a particular location.
//
synchronized void softCursorMove(int x, int y) {
if (showSoftCursor) {
repaint(
viewer.deferCursorUpdates,
cursorX - hotX,
cursorY - hotY,
cursorWidth,
cursorHeight);
repaint(
viewer.deferCursorUpdates,
x - hotX,
y - hotY,
cursorWidth,
cursorHeight);
}
cursorX = x;
cursorY = y;
}
//
// softCursorFree(). Remove soft cursor, dispose resources.
//
synchronized void softCursorFree() {
if (showSoftCursor) {
showSoftCursor = false;
softCursor = null;
softCursorSource = null;
softCursorPixels = null;
repaint(
viewer.deferCursorUpdates,
cursorX - hotX,
cursorY - hotY,
cursorWidth,
cursorHeight);
}
}
}