You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
182 lines
4.6 KiB
182 lines
4.6 KiB
// CRYPTO LIBRARY FOR EXCHANGING KEYS
|
|
// USING THE DIFFIE-HELLMAN KEY EXCHANGE PROTOCOL
|
|
|
|
// The diffie-hellman can be used to securely exchange keys
|
|
// between parties, where a third party eavesdropper given
|
|
// the values being transmitted cannot determine the key.
|
|
|
|
// Implemented by Lee Griffiths, Jan 2004.
|
|
// This software is freeware, you may use it to your discretion,
|
|
// however by doing so you take full responsibility for any damage
|
|
// it may cause.
|
|
|
|
// Hope you find it useful, even if you just use some of the functions
|
|
// out of it like the prime number generator and the XtoYmodN function.
|
|
|
|
// It would be great if you could send me emails to: lee.griffiths@first4internet.co.uk
|
|
// with any suggestions, comments, or questions!
|
|
|
|
// Enjoy.
|
|
|
|
// Adopted to ms-logon for ultravnc and ported to Java by marscha, 2006.
|
|
|
|
//import java.lang.Math;
|
|
|
|
public class DH {
|
|
|
|
public DH() {
|
|
maxNum = (((long) 1) << DH_MAX_BITS) - 1;
|
|
}
|
|
|
|
public DH(long generator, long modulus) throws Exception {
|
|
maxNum = (((long) 1) << DH_MAX_BITS) - 1;
|
|
if (generator >= maxNum || modulus >= maxNum)
|
|
throw new Exception("Modulus or generator too large.");
|
|
gen = generator;
|
|
mod = modulus;
|
|
}
|
|
|
|
private long rng(long limit) {
|
|
return (long) (java.lang.Math.random() * limit);
|
|
}
|
|
|
|
//Performs the miller-rabin primality test on a guessed prime n.
|
|
//trials is the number of attempts to verify this, because the function
|
|
//is not 100% accurate it may be a composite. However setting the trial
|
|
//value to around 5 should guarantee success even with very large primes
|
|
private boolean millerRabin (long n, int trials) {
|
|
long a = 0;
|
|
|
|
for (int i = 0; i < trials; i++) {
|
|
a = rng(n - 3) + 2;// gets random value in [2..n-1]
|
|
if (XpowYmodN(a, n - 1, n) != 1) return false; //n composite, return false
|
|
}
|
|
return true; // n probably prime
|
|
}
|
|
|
|
//Generates a large prime number by
|
|
//choosing a randomly large integer, and ensuring the value is odd
|
|
//then uses the miller-rabin primality test on it to see if it is prime
|
|
//if not the value gets increased until it is prime
|
|
private long generatePrime() {
|
|
long prime = 0;
|
|
|
|
do {
|
|
long start = rng(maxNum);
|
|
prime = tryToGeneratePrime(start);
|
|
} while (prime == 0);
|
|
return prime;
|
|
}
|
|
|
|
private long tryToGeneratePrime(long prime) {
|
|
//ensure it is an odd number
|
|
if ((prime & 1) == 0)
|
|
prime += 1;
|
|
|
|
long cnt = 0;
|
|
while (!millerRabin(prime, 25) && (cnt++ < DH_RANGE) && prime < maxNum) {
|
|
prime += 2;
|
|
if ((prime % 3) == 0) prime += 2;
|
|
}
|
|
return (cnt >= DH_RANGE || prime >= maxNum) ? 0 : prime;
|
|
}
|
|
|
|
//Raises X to the power Y in modulus N
|
|
//the values of X, Y, and N can be massive, and this can be
|
|
//achieved by first calculating X to the power of 2 then
|
|
//using power chaining over modulus N
|
|
private long XpowYmodN(long x, long y, long N) {
|
|
long result = 1;
|
|
final long oneShift63 = ((long) 1) << 63;
|
|
|
|
for (int i = 0; i < 64; y <<= 1, i++){
|
|
result = result * result % N;
|
|
if ((y & oneShift63) != 0)
|
|
result = result * x % N;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
public void createKeys() {
|
|
gen = generatePrime();
|
|
mod = generatePrime();
|
|
|
|
if (gen > mod) {
|
|
long swap = gen;
|
|
gen = mod;
|
|
mod = swap;
|
|
}
|
|
}
|
|
|
|
public long createInterKey() {
|
|
priv = rng(maxNum);
|
|
return pub = XpowYmodN(gen,priv,mod);
|
|
}
|
|
|
|
public long createEncryptionKey(long interKey) throws Exception {
|
|
if (interKey >= maxNum){
|
|
throw new Exception("interKey too large");
|
|
}
|
|
return key = XpowYmodN(interKey,priv,mod);
|
|
}
|
|
|
|
|
|
public long getValue(int flags) {
|
|
switch (flags) {
|
|
case DH_MOD:
|
|
return mod;
|
|
case DH_GEN:
|
|
return gen;
|
|
case DH_PRIV:
|
|
return priv;
|
|
case DH_PUB:
|
|
return pub;
|
|
case DH_KEY:
|
|
return key;
|
|
default:
|
|
return (long) 0;
|
|
}
|
|
}
|
|
|
|
public int bits(long number){
|
|
for (int i = 0; i < 64; i++){
|
|
number /= 2;
|
|
if (number < 2) return i;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
public static byte[] longToBytes(long number) {
|
|
byte[] bytes = new byte[8];
|
|
for (int i = 0; i < 8; i++) {
|
|
bytes[i] = (byte) (0xff & (number >> (8 * (7 - i))));
|
|
}
|
|
return bytes;
|
|
}
|
|
|
|
public static long bytesToLong(byte[] bytes) {
|
|
long result = 0;
|
|
for (int i = 0; i < 8; i++) {
|
|
result <<= 8;
|
|
result += (byte) bytes[i];
|
|
}
|
|
return result;
|
|
}
|
|
|
|
private long gen;
|
|
private long mod;
|
|
private long priv;
|
|
private long pub;
|
|
private long key;
|
|
private long maxNum;
|
|
|
|
private static final int DH_MAX_BITS = 31;
|
|
private static final int DH_RANGE = 100;
|
|
|
|
private static final int DH_MOD = 1;
|
|
private static final int DH_GEN = 2;
|
|
private static final int DH_PRIV = 3;
|
|
private static final int DH_PUB = 4;
|
|
private static final int DH_KEY = 5;
|
|
|
|
} |