mirror of https://github.com/Cisco-Talos/clamav
parent
19e2ac07fe
commit
b5f780c215
@ -1,236 +1,273 @@ |
||||
/*
|
||||
* This code implements the MD5 message-digest algorithm. |
||||
* The algorithm is due to Ron Rivest. This code was |
||||
* written by Colin Plumb in 1993, no copyright is claimed. |
||||
* This code is in the public domain; do with it what you wish. |
||||
* This is an OpenSSL-compatible implementation of the RSA Data Security, |
||||
* Inc. MD5 Message-Digest Algorithm. |
||||
* |
||||
* Equivalent code is available from RSA Data Security, Inc. |
||||
* This code has been tested against that, and is equivalent, |
||||
* except that you don't need to include two pages of legalese |
||||
* with every copy. |
||||
* Written by Solar Designer <solar at openwall.com> in 2001, and placed |
||||
* in the public domain. There's absolutely no warranty. |
||||
* |
||||
* To compute the message digest of a chunk of bytes, declare an |
||||
* MD5Context structure, pass it to MD5Init, call MD5Update as |
||||
* needed on buffers full of bytes, and then call MD5Final, which |
||||
* will fill a supplied 16-byte array with the digest. |
||||
* This differs from Colin Plumb's older public domain implementation in |
||||
* that no 32-bit integer data type is required, there's no compile-time |
||||
* endianness configuration, and the function prototypes match OpenSSL's. |
||||
* The primary goals are portability and ease of use. |
||||
* |
||||
* This implementation is meant to be fast, but not as fast as possible. |
||||
* Some known optimizations are not included to reduce source code size |
||||
* and avoid compile-time configuration. |
||||
*/ |
||||
|
||||
#if HAVE_CONFIG_H |
||||
#include "clamav-config.h" |
||||
#endif |
||||
|
||||
#include <string.h> /* for memcpy() */ |
||||
#include <sys/types.h> /* for stupid systems */ |
||||
#include <netinet/in.h> /* for ntohl() */ |
||||
|
||||
#include <string.h> |
||||
#include "md5.h" |
||||
|
||||
#if WORDS_BIGENDIAN |
||||
void |
||||
byteSwap(uint32_t *buf, unsigned words) |
||||
{ |
||||
md5byte *p = (md5byte *)buf; |
||||
/*
|
||||
* The basic MD5 functions. |
||||
* |
||||
* F is optimized compared to its RFC 1321 definition just like in Colin |
||||
* Plumb's implementation. |
||||
*/ |
||||
#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) |
||||
#define G(x, y, z) ((y) ^ ((z) & ((x) ^ (y)))) |
||||
#define H(x, y, z) ((x) ^ (y) ^ (z)) |
||||
#define I(x, y, z) ((y) ^ ((x) | ~(z))) |
||||
|
||||
do { |
||||
*buf++ = (uint32_t)((unsigned)p[3] << 8 | p[2]) << 16 | |
||||
((unsigned)p[1] << 8 | p[0]); |
||||
p += 4; |
||||
} while (--words); |
||||
} |
||||
/*
|
||||
* The MD5 transformation for all four rounds. |
||||
*/ |
||||
#define STEP(f, a, b, c, d, x, t, s) \ |
||||
(a) += f((b), (c), (d)) + (x) + (t); \
|
||||
(a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \
|
||||
(a) += (b); |
||||
|
||||
/*
|
||||
* SET reads 4 input bytes in little-endian byte order and stores them |
||||
* in a properly aligned word in host byte order. |
||||
* |
||||
* The check for little-endian architectures which tolerate unaligned |
||||
* memory accesses is just an optimization. Nothing will break if it |
||||
* doesn't work. |
||||
*/ |
||||
#if defined(__i386__) || defined(__vax__) |
||||
#define SET(n) \ |
||||
(*(MD5_u32plus *)&ptr[(n) * 4]) |
||||
#define GET(n) \ |
||||
SET(n) |
||||
#else |
||||
#define byteSwap(buf,words) |
||||
#define SET(n) \ |
||||
(ctx->block[(n)] = \
|
||||
(MD5_u32plus)ptr[(n) * 4] | \
|
||||
((MD5_u32plus)ptr[(n) * 4 + 1] << 8) | \
|
||||
((MD5_u32plus)ptr[(n) * 4 + 2] << 16) | \
|
||||
((MD5_u32plus)ptr[(n) * 4 + 3] << 24)) |
||||
#define GET(n) \ |
||||
(ctx->block[(n)]) |
||||
#endif |
||||
|
||||
/*
|
||||
* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious |
||||
* initialization constants. |
||||
* This processes one or more 64-byte data blocks, but does NOT update |
||||
* the bit counters. There're no alignment requirements. |
||||
*/ |
||||
void |
||||
MD5Init(struct MD5Context *ctx) |
||||
static void *body(MD5_CTX *ctx, void *data, unsigned long size) |
||||
{ |
||||
ctx->buf[0] = 0x67452301; |
||||
ctx->buf[1] = 0xefcdab89; |
||||
ctx->buf[2] = 0x98badcfe; |
||||
ctx->buf[3] = 0x10325476; |
||||
unsigned char *ptr; |
||||
MD5_u32plus a, b, c, d; |
||||
MD5_u32plus saved_a, saved_b, saved_c, saved_d; |
||||
|
||||
ptr = data; |
||||
|
||||
a = ctx->a; |
||||
b = ctx->b; |
||||
c = ctx->c; |
||||
d = ctx->d; |
||||
|
||||
do { |
||||
saved_a = a; |
||||
saved_b = b; |
||||
saved_c = c; |
||||
saved_d = d; |
||||
|
||||
/* Round 1 */ |
||||
STEP(F, a, b, c, d, SET(0), 0xd76aa478, 7) |
||||
STEP(F, d, a, b, c, SET(1), 0xe8c7b756, 12) |
||||
STEP(F, c, d, a, b, SET(2), 0x242070db, 17) |
||||
STEP(F, b, c, d, a, SET(3), 0xc1bdceee, 22) |
||||
STEP(F, a, b, c, d, SET(4), 0xf57c0faf, 7) |
||||
STEP(F, d, a, b, c, SET(5), 0x4787c62a, 12) |
||||
STEP(F, c, d, a, b, SET(6), 0xa8304613, 17) |
||||
STEP(F, b, c, d, a, SET(7), 0xfd469501, 22) |
||||
STEP(F, a, b, c, d, SET(8), 0x698098d8, 7) |
||||
STEP(F, d, a, b, c, SET(9), 0x8b44f7af, 12) |
||||
STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17) |
||||
STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22) |
||||
STEP(F, a, b, c, d, SET(12), 0x6b901122, 7) |
||||
STEP(F, d, a, b, c, SET(13), 0xfd987193, 12) |
||||
STEP(F, c, d, a, b, SET(14), 0xa679438e, 17) |
||||
STEP(F, b, c, d, a, SET(15), 0x49b40821, 22) |
||||
|
||||
/* Round 2 */ |
||||
STEP(G, a, b, c, d, GET(1), 0xf61e2562, 5) |
||||
STEP(G, d, a, b, c, GET(6), 0xc040b340, 9) |
||||
STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14) |
||||
STEP(G, b, c, d, a, GET(0), 0xe9b6c7aa, 20) |
||||
STEP(G, a, b, c, d, GET(5), 0xd62f105d, 5) |
||||
STEP(G, d, a, b, c, GET(10), 0x02441453, 9) |
||||
STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14) |
||||
STEP(G, b, c, d, a, GET(4), 0xe7d3fbc8, 20) |
||||
STEP(G, a, b, c, d, GET(9), 0x21e1cde6, 5) |
||||
STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9) |
||||
STEP(G, c, d, a, b, GET(3), 0xf4d50d87, 14) |
||||
STEP(G, b, c, d, a, GET(8), 0x455a14ed, 20) |
||||
STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5) |
||||
STEP(G, d, a, b, c, GET(2), 0xfcefa3f8, 9) |
||||
STEP(G, c, d, a, b, GET(7), 0x676f02d9, 14) |
||||
STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20) |
||||
|
||||
/* Round 3 */ |
||||
STEP(H, a, b, c, d, GET(5), 0xfffa3942, 4) |
||||
STEP(H, d, a, b, c, GET(8), 0x8771f681, 11) |
||||
STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16) |
||||
STEP(H, b, c, d, a, GET(14), 0xfde5380c, 23) |
||||
STEP(H, a, b, c, d, GET(1), 0xa4beea44, 4) |
||||
STEP(H, d, a, b, c, GET(4), 0x4bdecfa9, 11) |
||||
STEP(H, c, d, a, b, GET(7), 0xf6bb4b60, 16) |
||||
STEP(H, b, c, d, a, GET(10), 0xbebfbc70, 23) |
||||
STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4) |
||||
STEP(H, d, a, b, c, GET(0), 0xeaa127fa, 11) |
||||
STEP(H, c, d, a, b, GET(3), 0xd4ef3085, 16) |
||||
STEP(H, b, c, d, a, GET(6), 0x04881d05, 23) |
||||
STEP(H, a, b, c, d, GET(9), 0xd9d4d039, 4) |
||||
STEP(H, d, a, b, c, GET(12), 0xe6db99e5, 11) |
||||
STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16) |
||||
STEP(H, b, c, d, a, GET(2), 0xc4ac5665, 23) |
||||
|
||||
/* Round 4 */ |
||||
STEP(I, a, b, c, d, GET(0), 0xf4292244, 6) |
||||
STEP(I, d, a, b, c, GET(7), 0x432aff97, 10) |
||||
STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15) |
||||
STEP(I, b, c, d, a, GET(5), 0xfc93a039, 21) |
||||
STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6) |
||||
STEP(I, d, a, b, c, GET(3), 0x8f0ccc92, 10) |
||||
STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15) |
||||
STEP(I, b, c, d, a, GET(1), 0x85845dd1, 21) |
||||
STEP(I, a, b, c, d, GET(8), 0x6fa87e4f, 6) |
||||
STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10) |
||||
STEP(I, c, d, a, b, GET(6), 0xa3014314, 15) |
||||
STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21) |
||||
STEP(I, a, b, c, d, GET(4), 0xf7537e82, 6) |
||||
STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10) |
||||
STEP(I, c, d, a, b, GET(2), 0x2ad7d2bb, 15) |
||||
STEP(I, b, c, d, a, GET(9), 0xeb86d391, 21) |
||||
|
||||
ctx->bytes[0] = 0; |
||||
ctx->bytes[1] = 0; |
||||
a += saved_a; |
||||
b += saved_b; |
||||
c += saved_c; |
||||
d += saved_d; |
||||
|
||||
ptr += 64; |
||||
} while (size -= 64); |
||||
|
||||
ctx->a = a; |
||||
ctx->b = b; |
||||
ctx->c = c; |
||||
ctx->d = d; |
||||
|
||||
return ptr; |
||||
} |
||||
|
||||
/*
|
||||
* Update context to reflect the concatenation of another buffer full |
||||
* of bytes. |
||||
*/ |
||||
void |
||||
MD5Update(struct MD5Context *ctx, md5byte const *buf, unsigned len) |
||||
void MD5_Init(MD5_CTX *ctx) |
||||
{ |
||||
uint32_t t; |
||||
ctx->a = 0x67452301; |
||||
ctx->b = 0xefcdab89; |
||||
ctx->c = 0x98badcfe; |
||||
ctx->d = 0x10325476; |
||||
|
||||
ctx->lo = 0; |
||||
ctx->hi = 0; |
||||
} |
||||
|
||||
void MD5_Update(MD5_CTX *ctx, void *data, unsigned long size) |
||||
{ |
||||
MD5_u32plus saved_lo; |
||||
unsigned long used, free; |
||||
|
||||
saved_lo = ctx->lo; |
||||
if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo) |
||||
ctx->hi++; |
||||
ctx->hi += size >> 29; |
||||
|
||||
/* Update byte count */ |
||||
used = saved_lo & 0x3f; |
||||
|
||||
t = ctx->bytes[0]; |
||||
if ((ctx->bytes[0] = t + len) < t) |
||||
ctx->bytes[1]++; /* Carry from low to high */ |
||||
if (used) { |
||||
free = 64 - used; |
||||
|
||||
t = 64 - (t & 0x3f); /* Space available in ctx->in (at least 1) */ |
||||
if (t > len) { |
||||
memcpy((md5byte *)ctx->in + 64 - t, buf, len); |
||||
return; |
||||
if (size < free) { |
||||
memcpy(&ctx->buffer[used], data, size); |
||||
return; |
||||
} |
||||
|
||||
memcpy(&ctx->buffer[used], data, free); |
||||
data = (unsigned char *)data + free; |
||||
size -= free; |
||||
body(ctx, ctx->buffer, 64); |
||||
} |
||||
/* First chunk is an odd size */ |
||||
memcpy((md5byte *)ctx->in + 64 - t, buf, t); |
||||
byteSwap(ctx->in, 16); |
||||
MD5Transform(ctx->buf, ctx->in); |
||||
buf += t; |
||||
len -= t; |
||||
|
||||
/* Process data in 64-byte chunks */ |
||||
while (len >= 64) { |
||||
memcpy(ctx->in, buf, 64); |
||||
byteSwap(ctx->in, 16); |
||||
MD5Transform(ctx->buf, ctx->in); |
||||
buf += 64; |
||||
len -= 64; |
||||
|
||||
if (size >= 64) { |
||||
data = body(ctx, data, size & ~(unsigned long)0x3f); |
||||
size &= 0x3f; |
||||
} |
||||
|
||||
/* Handle any remaining bytes of data. */ |
||||
memcpy(ctx->in, buf, len); |
||||
memcpy(ctx->buffer, data, size); |
||||
} |
||||
|
||||
/*
|
||||
* Final wrapup - pad to 64-byte boundary with the bit pattern
|
||||
* 1 0* (64-bit count of bits processed, MSB-first) |
||||
*/ |
||||
void |
||||
MD5Final(md5byte *digest, struct MD5Context *ctx) |
||||
void MD5_Final(unsigned char *result, MD5_CTX *ctx) |
||||
{ |
||||
int count = ctx->bytes[0] & 0x3f; /* Number of bytes in ctx->in */ |
||||
md5byte *p = (md5byte *)ctx->in + count; |
||||
unsigned long used, free; |
||||
|
||||
/* Set the first char of padding to 0x80. There is always room. */ |
||||
*p++ = 0x80; |
||||
used = ctx->lo & 0x3f; |
||||
|
||||
/* Bytes of padding needed to make 56 bytes (-8..55) */ |
||||
count = 56 - 1 - count; |
||||
ctx->buffer[used++] = 0x80; |
||||
|
||||
if (count < 0) { /* Padding forces an extra block */ |
||||
memset(p, 0, count + 8); |
||||
byteSwap(ctx->in, 16); |
||||
MD5Transform(ctx->buf, ctx->in); |
||||
p = (md5byte *)ctx->in; |
||||
count = 56; |
||||
} |
||||
memset(p, 0, count); |
||||
byteSwap(ctx->in, 14); |
||||
free = 64 - used; |
||||
|
||||
/* Append length in bits and transform */ |
||||
ctx->in[14] = ctx->bytes[0] << 3; |
||||
ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29; |
||||
MD5Transform(ctx->buf, ctx->in); |
||||
if (free < 8) { |
||||
memset(&ctx->buffer[used], 0, free); |
||||
body(ctx, ctx->buffer, 64); |
||||
used = 0; |
||||
free = 64; |
||||
} |
||||
|
||||
byteSwap(ctx->buf, 4); |
||||
memcpy(digest, ctx->buf, 16); |
||||
memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */ |
||||
} |
||||
memset(&ctx->buffer[used], 0, free - 8); |
||||
|
||||
/* The four core functions - F1 is optimized somewhat */ |
||||
ctx->lo <<= 3; |
||||
ctx->buffer[56] = ctx->lo; |
||||
ctx->buffer[57] = ctx->lo >> 8; |
||||
ctx->buffer[58] = ctx->lo >> 16; |
||||
ctx->buffer[59] = ctx->lo >> 24; |
||||
ctx->buffer[60] = ctx->hi; |
||||
ctx->buffer[61] = ctx->hi >> 8; |
||||
ctx->buffer[62] = ctx->hi >> 16; |
||||
ctx->buffer[63] = ctx->hi >> 24; |
||||
|
||||
/* #define F1(x, y, z) (x & y | ~x & z) */ |
||||
#define F1(x, y, z) (z ^ (x & (y ^ z))) |
||||
#define F2(x, y, z) F1(z, x, y) |
||||
#define F3(x, y, z) (x ^ y ^ z) |
||||
#define F4(x, y, z) (y ^ (x | ~z)) |
||||
body(ctx, ctx->buffer, 64); |
||||
|
||||
/* This is the central step in the MD5 algorithm. */ |
||||
#define MD5STEP(f,w,x,y,z,in,s) \ |
||||
(w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x) |
||||
result[0] = ctx->a; |
||||
result[1] = ctx->a >> 8; |
||||
result[2] = ctx->a >> 16; |
||||
result[3] = ctx->a >> 24; |
||||
result[4] = ctx->b; |
||||
result[5] = ctx->b >> 8; |
||||
result[6] = ctx->b >> 16; |
||||
result[7] = ctx->b >> 24; |
||||
result[8] = ctx->c; |
||||
result[9] = ctx->c >> 8; |
||||
result[10] = ctx->c >> 16; |
||||
result[11] = ctx->c >> 24; |
||||
result[12] = ctx->d; |
||||
result[13] = ctx->d >> 8; |
||||
result[14] = ctx->d >> 16; |
||||
result[15] = ctx->d >> 24; |
||||
|
||||
/*
|
||||
* The core of the MD5 algorithm, this alters an existing MD5 hash to |
||||
* reflect the addition of 16 longwords of new data. MD5Update blocks |
||||
* the data and converts bytes into longwords for this routine. |
||||
*/ |
||||
void |
||||
MD5Transform(uint32_t buf[4], uint32_t const in[16]) |
||||
{ |
||||
uint32_t a, b, c, d; |
||||
|
||||
a = buf[0]; |
||||
b = buf[1]; |
||||
c = buf[2]; |
||||
d = buf[3]; |
||||
|
||||
MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); |
||||
MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); |
||||
MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); |
||||
MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); |
||||
MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); |
||||
MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); |
||||
MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); |
||||
MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); |
||||
MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); |
||||
MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); |
||||
MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); |
||||
MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); |
||||
MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); |
||||
MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); |
||||
MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); |
||||
MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); |
||||
|
||||
MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); |
||||
MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); |
||||
MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); |
||||
MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); |
||||
MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); |
||||
MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); |
||||
MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); |
||||
MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); |
||||
MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); |
||||
MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); |
||||
MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); |
||||
MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); |
||||
MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); |
||||
MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); |
||||
MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); |
||||
MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); |
||||
|
||||
MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); |
||||
MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); |
||||
MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); |
||||
MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); |
||||
MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); |
||||
MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); |
||||
MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); |
||||
MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); |
||||
MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); |
||||
MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); |
||||
MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); |
||||
MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); |
||||
MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); |
||||
MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); |
||||
MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); |
||||
MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); |
||||
|
||||
MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); |
||||
MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); |
||||
MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); |
||||
MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); |
||||
MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); |
||||
MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); |
||||
MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); |
||||
MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); |
||||
MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); |
||||
MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); |
||||
MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); |
||||
MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); |
||||
MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); |
||||
MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); |
||||
MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); |
||||
MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); |
||||
|
||||
buf[0] += a; |
||||
buf[1] += b; |
||||
buf[2] += c; |
||||
buf[3] += d; |
||||
memset(ctx, 0, sizeof(*ctx)); |
||||
} |
||||
|
@ -1,37 +1,26 @@ |
||||
/*
|
||||
* This is the header file for the MD5 message-digest algorithm. |
||||
* The algorithm is due to Ron Rivest. This code was |
||||
* written by Colin Plumb in 1993, no copyright is claimed. |
||||
* This code is in the public domain; do with it what you wish. |
||||
* |
||||
* Equivalent code is available from RSA Data Security, Inc. |
||||
* This code has been tested against that, and is equivalent, |
||||
* except that you don't need to include two pages of legalese |
||||
* with every copy. |
||||
* |
||||
* To compute the message digest of a chunk of bytes, declare an |
||||
* MD5Context structure, pass it to MD5Init, call MD5Update as |
||||
* needed on buffers full of bytes, and then call MD5Final, which |
||||
* will fill a supplied 16-byte array with the digest. |
||||
* This is an OpenSSL-compatible implementation of the RSA Data Security, |
||||
* Inc. MD5 Message-Digest Algorithm. |
||||
* |
||||
* Written by Solar Designer <solar at openwall.com> in 2001, and placed |
||||
* in the public domain. See md5.c for more information. |
||||
*/ |
||||
|
||||
#ifndef __MD5_H |
||||
#define __MD5_H |
||||
|
||||
#define md5byte unsigned char |
||||
|
||||
#include "cltypes.h" |
||||
/* Any 32-bit or wider unsigned integer data type will do */ |
||||
typedef unsigned long MD5_u32plus; |
||||
|
||||
struct MD5Context { |
||||
uint32_t buf[4]; |
||||
uint32_t bytes[2]; |
||||
uint32_t in[16]; |
||||
}; |
||||
typedef struct { |
||||
MD5_u32plus lo, hi; |
||||
MD5_u32plus a, b, c, d; |
||||
unsigned char buffer[64]; |
||||
MD5_u32plus block[16]; |
||||
} MD5_CTX; |
||||
|
||||
void MD5Init(struct MD5Context *context); |
||||
void MD5Update(struct MD5Context *context, md5byte const *buf, unsigned len); |
||||
void MD5Final(unsigned char *digest, struct MD5Context *context); |
||||
void MD5Transform(uint32_t buf[4], uint32_t const in[16]); |
||||
extern void MD5_Init(MD5_CTX *ctx); |
||||
extern void MD5_Update(MD5_CTX *ctx, void *data, unsigned long size); |
||||
extern void MD5_Final(unsigned char *result, MD5_CTX *ctx); |
||||
|
||||
#endif |
||||
|
Loading…
Reference in new issue