Error handling for bytecode sig evaluation, as well as logical and yara
sig evaluation only consider CL_VIRUS or CL_SUCCESS and fail to
consider terminal errors such as CL_ETIMEOUT.
This commit fixes the error handling in those functions so we properly
abort instead of continuing to evaluate more sigs.
This commit also adds some a scan time limit checks:
1. shortly after a bytecode time limit exceeded.
2. after evaluating each lsig or yara sig.
3. when processing unzip central directory file headers.
The cli_bc_ctx->outfd struct member was not properly initialized to -1.
Perhaps previous developers figured 0 was invalid-enough. All of the
checks for that file descriptor assumed 0 was the invalid value, going
so far as to explicitly set outfd to 0 if `open()` returned -1.
I didn't know this, so when I cleaned up the error handling in
`cli_unpackelf()` and `cli_unpackmacho()`, I had it `close(outfd)` when
not -1. That of course ended up closing stdin... and then all subsequent
file scans opened the file as fd `0`,... which interestingly caused
`read()` and `stat()` errors, but only after scanning a macho or elf
file, first.
Anyways... this commit fixes the issue by properly initializing outfd to
-1, and by changing any checks from 0 to -1.
I also found that it appears that the bytecode timeout wasn't being
applied to bytecode functions associated with logical signaures (that
is, those run by `cli_bytecode_runlsig()`).
What I see is that `ctx->bytecode_timeout` is only set to a non-zero
value in `cli_bytecode_context_alloc()`.
But for `cli_bytecode_runlsig()`, the bytecode context sits on the stack
and is memset instead. To resolve this, and ensure the bytecode context
is properly initialized, I created a new function that does this and
had it do the memset instead of using a calloc in the allocation
function.
I also removed the `bytecode_context_clear()` function because it simply
called `bytecode_context_reset()` and then did a memset. The memset is
unnecessary, especially since in most cases it's memsetting a stack
structure immediately before a return.
Also fixed a number of conditions where magic_scan() critical errors may
be ignored.
To ensure that the scan truly aborts for signature matches (not in
allmatch mode) and for timeouts, the `ctx->abort` option is now set in
these two conditions, and checked in several spots in magic_scan().
Additionally, I've consolidated some of the "scan must halt" type of
checks (mostly large switch statements) into a function so that we can
use the exact same logic in a few places in magic_scan().
I've also fixed a few minor warnings and code format issues.
Signatures that start with "PUA.", "Heuristics.", or "BC.Heuristics."
are perceived to be less serious, or more likely to have false
positives, than other signatures that we would think of us as "strong
indicators".
At present, only a subset of "Heuristics." signatures, such as those
added by the phishing module, are added as "potentially unwanted".
Unless you're using heuristic-precedence mode, these "potentially
unwanted" indicators are recorded but not reported unless no other
signature alerts. This behavior should apply to all signatures that
start with "PUA." and "Heuristics.". We already do a string match
comparison on the signature name to apply that behavior to bytecode
matches that start with "BC.Heuristics.".
I moved that string comparison logic used for "BC.Heuristics." into the
main `cl_append_virus()` function and extended it to cover the other two
cases.
I also replaced all hardcoded calls to append "Heuristics." signatures
to append using the `cli_append_potentially_unwanted()` function, so we
can skip the string compare in these cases. That function will of course
append them as strong indicators if heuristic-precedence mode is
enabled.
Significantly tidy the `cli_scan_fmap()` function, and add comments to
explain how it all works.
Add SHA1 and SHA256 digest variables to the FMAP structure in addition
to the existing MD5. Add a function to set the hash so that when we
calculate the hashes for hash matching, we save them for subsequent FP
matching. This enabled me to remove the extra "hash-only" FP check from
`cli_scan_fmap()`. This will also make it easier to switch the clean
cache hash algorithm to SHA256 in the future.
Remove extra allmatch checks that are no longer required.
Add a new header to prevent #include order issues.
The bytecode source files largely use `int` instead of the appropriate
`cl_errot_t` for clamav status codes, as well for boolean variables.
This hides warnings that would indicate bugs, and makes it harder to
read the code.
I haven't gone as in depth as with some other code cleanups. This
largely just replaces function interfactes and ret variables that use
`int` with `cl_error_t`. I also swapped a couple of `int`s to `bool`s.
While doing so I found that the `cli_bytecode_context_setpdf()` function
was incorrectly placed in the `bytecode_api.c` file instead of the next
to similar functions (`cli_bytecode_context_setpe`, etc.) in bytecode.c.
It's not an API function, so I moved it to the correct location.
I also eliminated a couple of compiler warnings:
- LLVM's CFG.h header emits a warning about a multi-line comment, so
that crops up with using LLVM for the bytecode runtime.
I disabled the warning through CMake.
- C doesn't like using the `inline` keyword on cli_dbgmsg in the
declaration in `bytecode2llvm.c` because we're compiling the bytecode
runtimes as a separate object file from the rest of libclamav.
It doesn't appear to be a functional issue, but I swapped that file
over to use `cli_dbgmsg_no_inline()` instead, just in case.
I would hope link-time-optimization will inline it anyways.
Rework the append_virus mechanism to store evidence (strong indicators,
pua indicators, and eventually weak indicators) in vectors. When
appending a "virus", we will return CLEAN when in allmatch-mode, and
simply add the indicator to the appropriate vector.
Later we can check if there were any alerts to return a vector by
summing the lengths of the strong and pua indicator vectors.
This does away with storing the latest "virname" in the scan context.
Instead, we can query for the last indicator in the evidence, giving
priority to strong indicators.
When heuristic-precendence is enabled, add PUA as Strong instead of
as PotentiallyUnwanted. This way, they will be treated equally and
reported in order in allmatch mode.
Also document reason for disabling cache with metadata JSON enabled
Print bytecode signature names in debug log when running, and not just
the bytecode signature id number.
Place bytecode signature-created temp files in the correct temp
sub-directory, and give it a name prefix that is more identifiable.
The current implementation sets a "next layer attributes" flag field
in the scan context. This may introduce bugs if accidentally not cleared
during error handling, causing that attribute to be applied to a
different layer than intended.
This commit resolves that by adding an attribute flag to the major
internal scan functions and removing the "next layer attributes" from
the scan context. This attributes flag shares the same flag fields as
the attributes flag in the new file inspection callback and the flags
are defined in `clamav.h`.
libclamav callbacks can be used to access embedded file content at each
layer of extraction during the course of a scan. The existing callbacks
only provide access to the file descriptor and a guess at the file type.
This patch adds a new callback for the purposes of file/archive
inspection that provides additional insight into the embedded file.
This includes:
- ancestors: an array of parent file names
- parent file size: the size of the direct parent layer
- file name: current layer's filename, if any.
- file buffer (pointer)
- file size: size of file buffer
- file type: just a guess at the current file's type
- file descriptor: may be -1 if the layer is in-memory only.
- layer attributes: a flag field. see LAYER_ATTRIBUTE_* defines in clamav.h
Two new example apps are added that are automatically built when
compiling under CMake:
- ex2 demonstrates the prescan callback.
- ex3 demonstrates the new file inspection callback.
The examples are now installed if enabled, so you can test them in the
Docker image, and so that they'll be colocated with the DLLs so you can
test them on Windows. The installed examples should also be able to find
the UnRAR library at run time, without having to set LD_LIBRARY_PATH.
This commit also sets the fmap->name in an fmap-scan using the basname
of the provided filename if the caller provided the filename and the
provided fmap does not have the name set.
The `have_clamjit` global is used in the unit tests but doesn't appear
to be exported when I was testing the external LLVM runtime support PR,
resulting in an undefined symbol issue. Converting this to a function
that returns 0 or 1 instead of a global variable resolved the issue.
* Added loglevel parameter to logg()
* Fix logg and mprintf internals with new loglevels
* Update all logg calls to set loglevel
* Update all mprintf calls to set loglevel
* Fix hidden logg calls
* Executed clam-format
The fmap module provides a mechanism for creating a mapping into an
existing map at an offset and length that's used when a file is found
with an uncompressed archive or when embedded files are found with
embedded file type recognition in scanraw(). This is the
"fmap_duplicate()" function. Duplicate fmaps just reference the original
fmap's 'data' or file handle/descriptor while allowing the caller to
treat it like a new map using offsets and lengths that don't account for
the original/actual file dimensions.
fmap's keep track of this with m->nested_offset & m->real_len, which
admittedly have confusing names. I found incorrect uses of these in a
handful of locations. Notably:
- In cli_magic_scan_nested_fmap_type().
The force-to-disk feature would have been checking incorrect sizes and
may have written incorrect offsets for duplicate fmaps.
- In XDP parser.
- A bunch of places from the previous commit when making dupe maps.
This commit fixes those and adds lots of documentation to the fmap.h API
to try to prevent confusion in the future.
nested_offset should never be referenced outside of fmap.c/h.
The fmap_* functions for accessing or reading map data have two
implementations, mem_* or handle_*, depending the data source.
I found issues with some of these so I made a unit test that covers each
of the functions I'm concerned about for both types of data sources and
for both original fmaps and nested/duplicate fmaps.
With the tests, I found and fixed issues in these fmap functions:
- handle_need_offstr(): must account for the nested_offset in dupe maps.
- handle_gets(): must account for nested_offset and use len & real_len
correctly.
- mem_need_offstr(): must account for nested_offset in dupe maps.
- mem_gets(): must account for nested_offset and use len & real_len
correctly.
Moved CDBRANGE() macro out of function definition so for better
legibility.
Fixed a few warnings.
Scan recursion is the process of identifying files embedded in other
files and then scanning them, recursively.
Internally this process is more complex than it may sound because a file
may have multiple layers of types before finding a new "file".
At present we treat the recursion count in the scanning context as an
index into both our fmap list AND our container list. These two lists
are conceptually a part of the same thing and should be unified.
But what's concerning is that the "recursion level" isn't actually
incremented or decremented at the same time that we add a layer to the
fmap or container lists but instead is more touchy-feely, increasing
when we find a new "file".
To account for this shadiness, the size of the fmap and container lists
has always been a little longer than our "max scan recursion" limit so
we don't accidentally overflow the fmap or container arrays (!).
I've implemented a single recursion-stack as an array, similar to before,
which includes a pointer to each fmap at each layer, along with the size
and type. Push and pop functions add and remove layers whenever a new
fmap is added. A boolean argument when pushing indicates if the new layer
represents a new buffer or new file (descriptor). A new buffer will reset
the "nested fmap level" (described below).
This commit also provides a solution for an issue where we detect
embedded files more than once during scan recursion.
For illustration, imagine a tarball named foo.tar.gz with this structure:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
But suppose baz.exe embeds a ZIP archive and a 7Z archive, like this:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| baz.exe | PE | 0 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| │ └── hello.txt | ASCII | 2 | 0 |
| └── sfx.7z | 7Z | 1 | 1 |
| └── world.txt | ASCII | 2 | 0 |
(A) If we scan for embedded files at any layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| ├── foo.tar | TAR | 1 | 0 |
| │ ├── bar.zip | ZIP | 2 | 1 |
| │ │ └── hola.txt | ASCII | 3 | 0 |
| │ ├── baz.exe | PE | 2 | 1 |
| │ │ ├── sfx.zip | ZIP | 3 | 1 |
| │ │ │ └── hello.txt | ASCII | 4 | 0 |
| │ │ └── sfx.7z | 7Z | 3 | 1 |
| │ │ └── world.txt | ASCII | 4 | 0 |
| │ ├── sfx.zip | ZIP | 2 | 1 |
| │ │ └── hello.txt | ASCII | 3 | 0 |
| │ └── sfx.7z | 7Z | 2 | 1 |
| │ └── world.txt | ASCII | 3 | 0 |
| ├── sfx.zip | ZIP | 1 | 1 |
| └── sfx.7z | 7Z | 1 | 1 |
(A) is bad because it scans content more than once.
Note that for the GZ layer, it may detect the ZIP and 7Z if the
signature hits on the compressed data, which it might, though
extracting the ZIP and 7Z will likely fail.
The reason the above doesn't happen now is that we restrict embedded
type scans for a bunch of archive formats to include GZ and TAR.
(B) If we scan for embedded files at the foo.tar layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| ├── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 2 | 1 |
| │ └── hello.txt | ASCII | 3 | 0 |
| └── sfx.7z | 7Z | 2 | 1 |
| └── world.txt | ASCII | 3 | 0 |
(B) is almost right. But we can achieve it easily enough only scanning for
embedded content in the current fmap when the "nested fmap level" is 0.
The upside is that it should safely detect all embedded content, even if
it may think the sfz.zip and sfx.7z are in foo.tar instead of in baz.exe.
The biggest risk I can think of affects ZIPs. SFXZIP detection
is identical to ZIP detection, which is why we don't allow SFXZIP to be
detected if insize of a ZIP. If we only allow embedded type scanning at
fmap-layer 0 in each buffer, this will fail to detect the embedded ZIP
if the bar.exe was not compressed in foo.zip and if non-compressed files
extracted from ZIPs aren't extracted as new buffers:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.zip | ZIP | 0 | 0 |
| └── bar.exe | PE | 1 | 1 |
| └── sfx.zip | ZIP | 2 | 2 |
Provided that we ensure all files extracted from zips are scanned in
new buffers, option (B) should be safe.
(C) If we scan for embedded files at the baz.exe layer, we may detect:
| description | type | rec level | nested fmap level |
| ------------------------- | ----- | --------- | ----------------- |
| foo.tar.gz | GZ | 0 | 0 |
| └── foo.tar | TAR | 1 | 0 |
| ├── bar.zip | ZIP | 2 | 1 |
| │ └── hola.txt | ASCII | 3 | 0 |
| └── baz.exe | PE | 2 | 1 |
| ├── sfx.zip | ZIP | 3 | 1 |
| │ └── hello.txt | ASCII | 4 | 0 |
| └── sfx.7z | 7Z | 3 | 1 |
| └── world.txt | ASCII | 4 | 0 |
(C) is right. But it's harder to achieve. For this example we can get it by
restricting 7ZSFX and ZIPSFX detection only when scanning an executable.
But that may mean losing detection of archives embedded elsewhere.
And we'd have to identify allowable container types for each possible
embedded type, which would be very difficult.
So this commit aims to solve the issue the (B)-way.
Note that in all situations, we still have to scan with file typing
enabled to determine if we need to reassign the current file type, such
as re-identifying a Bzip2 archive as a DMG that happens to be Bzip2-
compressed. Detection of DMG and a handful of other types rely on
finding data partway through or near the ned of a file before
reassigning the entire file as the new type.
Other fixes and considerations in this commit:
- The utf16 HTML parser has weak error handling, particularly with respect
to creating a nested fmap for scanning the ascii decoded file.
This commit cleans up the error handling and wraps the nested scan with
the recursion-stack push()/pop() for correct recursion tracking.
Before this commit, each container layer had a flag to indicate if the
container layer is valid.
We need something similar so that the cli_recursion_stack_get_*()
functions ignore normalized layers. Details...
Imagine an LDB signature for HTML content that specifies a ZIP
container. If the signature actually alerts on the normalized HTML and
you don't ignore normalized layers for the container check, it will
appear as though the alert is in an HTML container rather than a ZIP
container.
This commit accomplishes this with a boolean you set in the scan context
before scanning a new layer. Then when the new fmap is created, it will
use that flag to set similar flag for the layer. The context flag is
reset those that anything after this doesn't have that flag.
The flag allows the new recursion_stack_get() function to ignore
normalized layers when iterating the stack to return a layer at a
requested index, negative or positive.
Scanning normalized extracted/normalized javascript and VBA should also
use the 'layer is normalized' flag.
- This commit also fixes Heuristic.Broken.Executable alert for ELF files
to make sure that:
A) these only alert if cli_append_virus() returns CL_VIRUS (aka it
respects the FP check).
B) all broken-executable alerts for ELF only happen if the
SCAN_HEURISTIC_BROKEN option is enabled.
- This commit also cleans up the error handling in cli_magic_scan_dir().
This was needed so we could correctly apply the layer-is-normalized-flag
to all VBA macros extracted to a directory when scanning the directory.
- Also fix an issue where exceeding scan maximums wouldn't cause embedded
file detection scans to abort. Granted we don't actually want to abort
if max filesize or max recursion depth are exceeded... only if max
scansize, max files, and max scantime are exceeded.
Add 'abort_scan' flag to scan context, to protect against depending on
correct error propagation for fatal conditions. Instead, setting this
flag in the scan context should guarantee that a fatal condition deep in
scan recursion isn't lost which result in more stuff being scanned
instead of aborting. This shouldn't be necessary, but some status codes
like CL_ETIMEOUT never used to be fatal and it's easier to do this than
to verify every parser only returns CL_ETIMEOUT and other "fatal
status codes" in fatal conditions.
- Remove duplicate is_tar() prototype from filestypes.c and include
is_tar.h instead.
- Presently we create the fmap hash when creating the fmap.
This wastes a bit of CPU if the hash is never needed.
Now that we're creating fmap's for all embedded files discovered with
file type recognition scans, this is a much more frequent occurence and
really slows things down.
This commit fixes the issue by only creating fmap hashes as needed.
This should not only resolve the perfomance impact of creating fmap's
for all embedded files, but also should improve performance in general.
- Add allmatch check to the zip parser after the central-header meta
match. That way we don't multiple alerts with the same match except in
allmatch mode. Clean up error handling in the zip parser a tiny bit.
- Fixes to ensure that the scan limits such as scansize, filesize,
recursion depth, # of embedded files, and scantime are always reported
if AlertExceedsMax (--alert-exceeds-max) is enabled.
- Fixed an issue where non-fatal alerts for exceeding scan maximums may
mask signature matches later on. I changed it so these alerts use the
"possibly unwanted" alert-type and thus only alert if no other alerts
were found or if all-match or heuristic-precedence are enabled.
- Added the "Heuristics.Limits.Exceeded.*" events to the JSON metadata
when the --gen-json feature is enabled. These will show up once under
"ParseErrors" the first time a limit is exceeded. In the present
implementation, only one limits-exceeded events will be added, so as to
prevent a malicious or malformed sample from filling the JSON buffer
with millions of events and using a tonne of RAM.
An ENABLE_TESTS CMake option is provided so that users can disable
testing if they don't want it. Instructions for how to use this
included in the INSTALL.cmake.md file.
If you run `ctest`, each testcase will write out a log file to the
<build>/unit_tests directory.
As with Autotools' make check, the test files are from test/.split
and unit_tests/.split files, but for CMake these are generated at
build time instead of at test time.
On Posix systems, sets the LD_LIBRARY_PATH so that ClamAV-compiled
libraries can be loaded when running tests.
On Windows systems, CTest will identify and collect all library
dependencies and assemble a temporarily install under the
build/unit_tests directory so that the libraries can be loaded when
running tests.
The same feature is used on Windows when using CMake to install to
collect all DLL dependencies so that users don't have to install them
manually afterwards.
Each of the CTest tests are run using a custom wrapper around Python's
unittest framework, which is also responsible for finding and inserting
valgrind into the valgrind tests on Posix systems.
Unlike with Autotools, the CMake CTest Valgrind-tests are enabled by
default, if Valgrind can be found. There's no need to set VG=1.
CTest's memcheck module is NOT supported, because we use Python to
orchestrate our tests.
Added a bunch of Windows compatibility changes to the unit tests.
These were primarily changing / to PATHSEP and making adjustments
to use Win32 C headers and ifdef out the POSIX ones which aren't
available on Windows. Also disabled a bunch of tests on Win32
that don't work on Windows, notably the mmap ones and FD-passing
(i.e. FILEDES) ones.
Add JSON_C_HAVE_INTTYPES_H definition to clamav-config.h to eliminate
warnings on Windows where json.h is included after inttypes.h because
json-c's inttypes replacement relies on it.
This is a it of a hack and may be removed if json-c fixes their
inttypes header stuff in the future.
Add preprocessor definitions on Windows to disable MSVC warnings about
CRT secure and nonstandard functions. While there may be a better
solution, this is needed to be able to see other more serious warnings.
Add missing file comment block and copyright statement for clamsubmit.c.
Also change json-c/json.h include filename to json.h in clamsubmit.c.
The directory name is not required.
Changed the hash table data integer type from long, which is poorly
defined, to size_t -- which is capable of storing a pointer. Fixed a
bunch of casts regarding this variable to eliminate warnings.
Fixed two bugs causing utf8 encoding unit tests to fail on Windows:
- The in_size variable should be the number of bytes, not the character
count. This was was causing the SHIFT_JIS (japanese codepage) to UTF8
transcoding test to only transcode half the bytes.
- It turns out that the MultiByteToWideChar() API can't transcode
UTF16-BE to UTF16-LE. The solution is to just iterate over the buffer
and flip the bytes on each uint16_t. This but was causing the UTF16-BE
to UTF8 tests to fail.
I also split up the utf8 transcoding tests into separate tests so I
could see all of the failures instead of just the first one.
Added a flags parameter to the unit test function to open testfiles
because it turns out that on Windows if a file contains the \r\n it will
replace it with just \n if you opened the file as a text file instead of
as binary. However, if we open the CBC files as binary, then a bunch of
bytecode tests fail. So I've changed the tests to open the CBC files in
the bytecode tests as text files and open all other files as binary.
Ported the feature tests from shell scripts to Python using a modified
version of our QA test-framework, which is largely compatible and will
allow us to migrate some QA tests into this repo. I'd like to add GitHub
Actions pipelines in the future so that all public PR's get some testing
before anyone has to manually review them.
The clamd --log option was missing from the help string, though it
definitely works. I've added it in this commit.
It appears that clamd.c was never clang-format'd, so this commit also
reformats clamd.c.
Some of the check_clamd tests expected the path returned by clamd to
match character for character with original path sent to clamd. However,
as we now evaluate real paths before a scan, the path returned by clamd
isn't going to match the relative (and possibly symlink-ridden) path
passed to clamdscan. I fixed this test by changing the test to search
for the basename: <signature> FOUND within the response instead of
matching the exact path.
Autotools: Link check_clamd with libclamav so we can use our utility
functions in check_clamd.c.
This patch adds experimental-quality CMake build tooling.
The libmspack build required a modification to use "" instead of <> for
header #includes. This will hopefully be included in the libmspack
upstream project when adding CMake build tooling to libmspack.
Removed use of libltdl when using CMake.
Flex & Bison are now required to build.
If -DMAINTAINER_MODE, then GPERF is also required, though it currently
doesn't actually do anything. TODO!
I found that the autotools build system was generating the lexer output
but not actually compiling it, instead using previously generated (and
manually renamed) lexer c source. As a consequence, changes to the .l
and .y files weren't making it into the build. To resolve this, I
removed generated flex/bison files and fixed the tooling to use the
freshly generated files. Flex and bison are now required build tools.
On Windows, this adds a dependency on the winflexbison package,
which can be obtained using Chocolatey or may be manually installed.
CMake tooling only has partial support for building with external LLVM
library, and no support for the internal LLVM (to be removed in the
future). I.e. The CMake build currently only supports the bytecode
interpreter.
Many files used include paths relative to the top source directory or
relative to the current project, rather than relative to each build
target. Modern CMake support requires including internal dependency
headers the same way you would external dependency headers (albeit
with "" instead of <>). This meant correcting all header includes to
be relative to the build targets and not relative to the workspace.
For example, ...
```c
include "../libclamav/clamav.h"
include "clamd/clamd_others.h"
```
... becomes:
```c
// libclamav
include "clamav.h"
// clamd
include "clamd_others.h"
```
Fixes header name conflicts by renaming a few of the files.
Converted the "shared" code into a static library, which depends on
libclamav. The ironically named "shared" static library provides
features common to the ClamAV apps which are not required in
libclamav itself and are not intended for use by downstream projects.
This change was required for correct modern CMake practices but was
also required to use the automake "subdir-objects" option.
This eliminates warnings when running autoreconf which, in the next
version of autoconf & automake are likely to break the build.
libclamav used to build in multiple stages where an earlier stage is
a static library containing utils required by the "shared" code.
Linking clamdscan and clamdtop with this libclamav utils static lib
allowed these two apps to function without libclamav. While this is
nice in theory, the practical gains are minimal and it complicates
the build system. As such, the autotools and CMake tooling was
simplified for improved maintainability and this feature was thrown
out. clamdtop and clamdscan now require libclamav to function.
Removed the nopthreads version of the autotools
libclamav_internal_utils static library and added pthread linking to
a couple apps that may have issues building on some platforms without
it, with the intention of removing needless complexity from the
source. Kept the regular version of libclamav_internal_utils.la
though it is no longer used anywhere but in libclamav.
Added an experimental doxygen build option which attempts to build
clamav.h and libfreshclam doxygen html docs.
The CMake build tooling also may build the example program(s), which
isn't a feature in the Autotools build system.
Changed C standard to C90+ due to inline linking issues with socket.h
when linking libfreshclam.so on Linux.
Generate common.rc for win32.
Fix tabs/spaces in shared Makefile.am, and remove vestigial ifndef
from misc.c.
Add CMake files to the automake dist, so users can try the new
CMake tooling w/out having to build from a git clone.
clamonacc changes:
- Renamed FANOTIFY macro to HAVE_SYS_FANOTIFY_H to better match other
similar macros.
- Added a new clamav-clamonacc.service systemd unit file, based on
the work of ChadDevOps & Aaron Brighton.
- Added missing clamonacc man page.
Updates to clamdscan man page, add missing options.
Remove vestigial CL_NOLIBCLAMAV definitions (all apps now use
libclamav).
Rename Windows mspack.dll to libmspack.dll so all ClamAV-built
libraries have the lib-prefix with Visual Studio as with CMake.
Many of the core scanning functions' names no longer represent their
specific purpose or arguments. This commit aims to make the names more
intuitive. Names are now prefixed with "magic" if they involve
file-typing and file-type parsing. In addition, each function now
includes the type of input being scanned whether its "desc", "fmap", or
"buff". Some of the APIs also now specify "type" to indicate that a type
other than "ANY" may be passed in to select the type rather than use
file type magic for type recognition.
| current name | new name |
| ------------------------- | --------------------------------- |
| magic_scandesc() | cli_magic_scan() |
| cli_magic_scandesc_type() | <delete> |
| cli_magic_scandesc() | cli_magic_scan_desc() |
| cli_base_scandesc() | cli_magic_scan_desc_type() |
| cli_partition_scandesc() | <delete> |
| cli_map_scandesc() | magic_scan_nested_fmap_type() |
| cli_map_scan() | cli_magic_scan_nested_fmap_type() |
| cli_mem_scandesc() | cli_magic_scan_buff() |
| cli_scanbuff() | cli_scan_buff() |
| cli_scandesc() | cli_scan_desc() |
| cli_fmap_scandesc() | cli_scan_fmap() |
| cli_scanfile() | cli_magic_scan_file() |
| cli_scandir() | cli_magic_scan_dir() |
| cli_filetype2() | cli_determine_fmap_type() |
| cli_filetype() | cli_compare_ftm_file() |
| cli_partitiontype() | cli_compare_ftm_partition() |
| cli_scanraw() | scanraw() |
A way is needed to record scanned file names for two purposes:
1. File names (and extensions) must be stored in the json metadata
properties recorded when using the --gen-json clamscan option. Future
work may use this to compare file extensions with detected file types.
2. File names are useful when interpretting tmp directory output when
using the --leave-temps option.
This commit enables file name retention for later use by storing file
names in the fmap header structure, if a file name exists.
To store the names in fmaps, an optional name argument has been added to
any internal scan API's that create fmaps and every call to these APIs
has been modified to pass a file name or NULL if a file name is not
required. The zip and gpt parsers required some modification to record
file names. The NSIS and XAR parsers fail to collect file names at all
and will require future work to support file name extraction.
Also:
- Added recursive extraction to the tmp directory when the
--leave-temps option is enabled. When not enabled, the tmp directory
structure remains flat so as to prevent the likelihood of exceeding
MAX_PATH. The current tmp directory is stored in the scan context.
- Made the cli_scanfile() internal API non-static and added it to
scanners.h so it would be accessible outside of scanners.c in order to
remove code duplication within libmspack.c.
- Added function comments to scanners.h and matcher.h
- Converted a TDB-type macros and LSIG-type macros to enums for improved
type safey.
- Converted more return status variables from `int` to `cl_error_t` for
improved type safety, and corrected ooxml file typing functions so
they use `cli_file_t` exclusively rather than mixing types with
`cl_error_t`.
- Restructured the magic_scandesc() function to use goto's for error
handling and removed the early_ret_from_magicscan() macro and
magic_scandesc_cleanup() function. This makes the code easier to
read and made it easier to add the recursive tmp directory cleanup to
magic_scandesc().
- Corrected zip, egg, rar filename extraction issues.
- Removed use of extra sub-directory layer for zip, egg, and rar file
extraction. For Zip, this also involved changing the extracted
filenames to be randomly generated rather than using the "zip.###"
file name scheme.
Adds LZMA and BZip2 decompression routines to the bytecode API.
The ability to decompress LZMA and BZip2 streams is particularly
useful for bytecode signatures that extend clamav executable
unpacking capabilities.
Of note, the LZMA format is not well standardized. This API
expects the stream to start with the LZMA_Alone header.
Also fixed a bug in LZMA dictionary size setting.
Fixes an fmap leak in the bytecode switch_input() API. The
switch_input() API provides a way to read from an extracted file instead
of reading from the current file. The issue is that the current
implementation fails to free the fmap created to read from the extracted
file on cleanup or when switching back to the original fmap. In
addition, it fails to use the cli_bytecode_context_setfile() function
to restore the file_size in the context for the current fmap.
Fixes a couple fmap leaks in the unit tests.
Changes include:
- Fixing several memory leaks noticed when running with ASan
- Adds documentation for several functions and structs
- Simplifies the interface for using cli_targetinfo_init/destroy
and cli_exe_info_init/destroy
- A few other minor changes
Consolidate the PE parsing code into one function. I tried to preserve all existing functionality from the previous, distinct implementations to a large extent (with the exceptions mentioned below). If I noticed potential bugs/improvements, I added a TODO statement about those so that they can be fixed in a smaller commit later. Also, there are more TODOs in places where I'm not entirely sure why certain actions are performed - more research is needed for these.
I'm submitting a pull request now so that regression testing can be done, and because merging what I have thus far now will likely have fewer conflicts than if I try to merge later
PE parsing code improvements:
- PEs without all 16 data directories are parsed more appropriately now
- Added lots more debug statements
Also:
- Allow MAX_BC and MAX_TRACKED_PCRE to be specified via CFLAGS
When doing performance testing with the latest CVD, MAX_BC and
MAX_TRACKED_PCRE need to be raised to track all the events.
Allow these to be specified via CFLAGS by not redefining them
if they are already defined
- Fix an issue preventing wildcard sizes in .MDB/.MSB rules
I'm not sure what the original intent of the check I removed was,
but it prevents using wildcard sizes in .MDB/.MSB rules. AFAICT
these wildcard sizes should be handled appropriately by the MD5
section hash computation code, so I don't think a check on that
is needed.
- Fix several issues related to db loading
- .imp files will now get loaded if they exist in a directory passed
via clamscan's '-d' flag
- .pwdb files will now get loaded if they exist in a directory passed
via clamscan's '-d' flag even when compiling without yara support
- Changes to .imp, .ign, and .ign2 files will now be reflected in calls
to cl_statinidir and cl_statchkdir (and also .pwdb files, even when
compiling without yara support)
- The contents of .sfp files won't be included in some of the signature
counts, and the contents of .cud files will be
- Any local.gdb files will no longer be loaded twice
- For .imp files, you are no longer required to specify a minimum flevel for wildcard rules, since this isn't needed
Updated libclamav documentation detailing new scan options structure.
Renamed references to 'algorithmic' detection to 'heuristic' detection. Renaming references to 'properties' to 'collect metadata'.
Renamed references to 'scan all' to 'scan all match'.
Renamed a couple of 'Hueristic.*' signature names as 'Heuristics.*' signatures (plural) to match majority of other heuristics.