ClamAV is an open source (GPLv2) anti-virus toolkit.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
clamav/clamav-devel/libclamav/mspack/mszipd.c

668 lines
22 KiB

/* This file is part of libmspack.
* (C) 2003-2004 Stuart Caie.
*
* The deflate method was created by Phil Katz. MSZIP is equivalent to the
* deflate method.
*
* libmspack is free software; you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License (LGPL) version 2.1
*
* For further details, see the file COPYING.LIB distributed with libmspack
*/
/* MS-ZIP decompression implementation. */
#if HAVE_CONFIG_H
#include "clamav-config.h"
#endif
#include <mspack.h>
#include <system.h>
#include <mszip.h>
#include "others.h"
/* match lengths for literal codes 257.. 285 */
static const unsigned short lit_lengths[29] = {
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27,
31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258
};
/* match offsets for distance codes 0 .. 29 */
static const unsigned short dist_offsets[30] = {
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385,
513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577
};
/* extra bits required for literal codes 257.. 285 */
static const unsigned char lit_extrabits[29] = {
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2,
2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0
};
/* extra bits required for distance codes 0 .. 29 */
static const unsigned char dist_extrabits[30] = {
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6,
6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13
};
/* the order of the bit length Huffman code lengths */
static const unsigned char bitlen_order[19] = {
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
};
/* ANDing with bit_mask[n] masks the lower n bits */
static const unsigned short bit_mask[17] = {
0x0000, 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
};
#define STORE_BITS do { \
zip->i_ptr = i_ptr; \
zip->i_end = i_end; \
zip->bit_buffer = bit_buffer; \
zip->bits_left = bits_left; \
} while (0)
#define RESTORE_BITS do { \
i_ptr = zip->i_ptr; \
i_end = zip->i_end; \
bit_buffer = zip->bit_buffer; \
bits_left = zip->bits_left; \
} while (0)
#define ENSURE_BITS(nbits) do { \
while (bits_left < (nbits)) { \
if (i_ptr >= i_end) { \
if (zipd_read_input(zip)) return zip->error; \
i_ptr = zip->i_ptr; \
i_end = zip->i_end; \
} \
bit_buffer |= *i_ptr++ << bits_left; bits_left += 8; \
} \
} while (0)
#define PEEK_BITS(nbits) (bit_buffer & ((1<<(nbits))-1))
#define PEEK_BITS_T(nbits) (bit_buffer & bit_mask[(nbits)])
#define REMOVE_BITS(nbits) ((bit_buffer >>= (nbits)), (bits_left -= (nbits)))
#define READ_BITS(val, nbits) do { \
ENSURE_BITS(nbits); (val) = PEEK_BITS(nbits); REMOVE_BITS(nbits); \
} while (0)
#define READ_BITS_T(val, nbits) do { \
ENSURE_BITS(nbits); (val) = PEEK_BITS_T(nbits); REMOVE_BITS(nbits); \
} while (0)
static int zipd_read_input(struct mszipd_stream *zip) {
int read = zip->sys->read(zip->input, &zip->inbuf[0], (int)zip->inbuf_size);
if (read < 0) return zip->error = MSPACK_ERR_READ;
if (read == 0) {
if (zip->input_end) {
D(("out of input bytes"))
return zip->error = MSPACK_ERR_READ;
}
else {
read = 1;
zip->inbuf[0] = 0;
zip->input_end = 1;
}
}
zip->i_ptr = &zip->inbuf[0];
zip->i_end = &zip->inbuf[read];
return MSPACK_ERR_OK;
}
/* inflate() error codes */
#define INF_ERR_BLOCKTYPE (-1) /* unknown block type */
#define INF_ERR_COMPLEMENT (-2) /* block size complement mismatch */
#define INF_ERR_FLUSH (-3) /* error from flush_window() callback */
#define INF_ERR_BITBUF (-4) /* too many bits in bit buffer */
#define INF_ERR_SYMLENS (-5) /* too many symbols in blocktype 2 header */
#define INF_ERR_BITLENTBL (-6) /* failed to build bitlens huffman table */
#define INF_ERR_LITERALTBL (-7) /* failed to build literals huffman table */
#define INF_ERR_DISTANCETBL (-8) /* failed to build distance huffman table */
#define INF_ERR_BITOVERRUN (-9) /* bitlen RLE code goes over table size */
#define INF_ERR_BADBITLEN (-10) /* invalid bit-length code */
#define INF_ERR_LITCODE (-11) /* out-of-range literal code */
#define INF_ERR_DISTCODE (-12) /* out-of-range distance code */
#define INF_ERR_DISTANCE (-13) /* somehow, distance is beyond 32k */
#define INF_ERR_HUFFSYM (-14) /* out of bits decoding huffman symbol */
/* make_decode_table(nsyms, nbits, length[], table[])
*
* This function was coded by David Tritscher. It builds a fast huffman
* decoding table out of just a canonical huffman code lengths table.
*
* NOTE: this is NOT identical to the make_decode_table() in lzxd.c. This
* one reverses the quick-lookup bit pattern. Bits are read MSB to LSB in LZX,
* but LSB to MSB in MSZIP.
*
* nsyms = total number of symbols in this huffman tree.
* nbits = any symbols with a code length of nbits or less can be decoded
* in one lookup of the table.
* length = A table to get code lengths from [0 to nsyms-1]
* table = The table to fill up with decoded symbols and pointers.
*
* Returns 0 for OK or 1 for error
*/
static int make_decode_table(unsigned int nsyms, unsigned int nbits,
unsigned char *length, unsigned short *table)
{
register unsigned int leaf, reverse, fill;
register unsigned short sym, next_sym;
register unsigned char bit_num;
unsigned int pos = 0; /* the current position in the decode table */
unsigned int table_mask = 1 << nbits;
unsigned int bit_mask = table_mask >> 1; /* don't do 0 length codes */
/* fill entries for codes short enough for a direct mapping */
for (bit_num = 1; bit_num <= nbits; bit_num++) {
for (sym = 0; sym < nsyms; sym++) {
if (length[sym] != bit_num) continue;
/* reverse the significant bits */
fill = length[sym]; reverse = pos >> (nbits - fill); leaf = 0;
do {leaf <<= 1; leaf |= reverse & 1; reverse >>= 1;} while (--fill);
if((pos += bit_mask) > table_mask) return 1; /* table overrun */
/* fill all possible lookups of this symbol with the symbol itself */
fill = bit_mask; next_sym = 1 << bit_num;
do { table[leaf] = sym; leaf += next_sym; } while (--fill);
}
bit_mask >>= 1;
}
/* exit with success if table is now complete */
if (pos == table_mask) return 0;
/* mark all remaining table entries as unused */
for (sym = pos; sym < table_mask; sym++) {
reverse = sym; leaf = 0; fill = nbits;
do { leaf <<= 1; leaf |= reverse & 1; reverse >>= 1; } while (--fill);
table[leaf] = 0xFFFF;
}
/* where should the longer codes be allocated from? */
next_sym = ((table_mask >> 1) < nsyms) ? nsyms : (table_mask >> 1);
/* give ourselves room for codes to grow by up to 16 more bits.
* codes now start at bit nbits+16 and end at (nbits+16-codelength) */
pos <<= 16;
table_mask <<= 16;
bit_mask = 1 << 15;
for (bit_num = nbits+1; bit_num <= MSZIP_MAX_HUFFBITS; bit_num++) {
for (sym = 0; sym < nsyms; sym++) {
if (length[sym] != bit_num) continue;
/* leaf = the first nbits of the code, reversed */
reverse = pos >> 16; leaf = 0; fill = nbits;
do {leaf <<= 1; leaf |= reverse & 1; reverse >>= 1;} while (--fill);
for (fill = 0; fill < (bit_num - nbits); fill++) {
/* if this path hasn't been taken yet, 'allocate' two entries */
if (table[leaf] == 0xFFFF) {
table[(next_sym << 1) ] = 0xFFFF;
table[(next_sym << 1) + 1 ] = 0xFFFF;
table[leaf] = next_sym++;
}
/* follow the path and select either left or right for next bit */
leaf = (table[leaf] << 1) | ((pos >> (15 - fill)) & 1);
}
table[leaf] = sym;
if ((pos += bit_mask) > table_mask) return 1; /* table overflow */
}
bit_mask >>= 1;
}
/* full table? */
return (pos != table_mask) ? 1 : 0;
}
/* READ_HUFFSYM(tablename, var) decodes one huffman symbol from the
* bitstream using the stated table and puts it in var.
*/
#define READ_HUFFSYM(tbl, var) do { \
/* huffman symbols can be up to 16 bits long */ \
ENSURE_BITS(MSZIP_MAX_HUFFBITS); \
/* immediate table lookup of [tablebits] bits of the code */ \
sym = zip->tbl##_table[PEEK_BITS(MSZIP_##tbl##_TABLEBITS)]; \
/* is the symbol is longer than [tablebits] bits? (i=node index) */ \
if (sym >= MSZIP_##tbl##_MAXSYMBOLS) { \
/* decode remaining bits by tree traversal */ \
i = MSZIP_##tbl##_TABLEBITS - 1; \
do { \
/* check next bit. error if we run out of bits before decode */ \
if (i++ > MSZIP_MAX_HUFFBITS) { \
D(("out of bits in huffman decode")) \
return INF_ERR_HUFFSYM; \
} \
/* double node index and add 0 (left branch) or 1 (right) */ \
sym = zip->tbl##_table[(sym << 1) | ((bit_buffer >> i) & 1)]; \
/* while we are still in node indicies, not decoded symbols */ \
} while (sym >= MSZIP_##tbl##_MAXSYMBOLS); \
} \
/* result */ \
(var) = sym; \
/* look up the code length of that symbol and discard those bits */ \
i = zip->tbl##_len[sym]; \
REMOVE_BITS(i); \
} while (0)
static int zip_read_lens(struct mszipd_stream *zip) {
/* for the bit buffer and huffman decoding */
register unsigned int bit_buffer;
register int bits_left;
unsigned char *i_ptr, *i_end;
/* bitlen Huffman codes -- immediate lookup, 7 bit max code length */
unsigned short bl_table[(1 << 7)];
unsigned char bl_len[19];
unsigned char lens[MSZIP_LITERAL_MAXSYMBOLS + MSZIP_DISTANCE_MAXSYMBOLS];
unsigned int lit_codes, dist_codes, code, last_code=0, bitlen_codes, i, run;
RESTORE_BITS;
/* read the number of codes */
READ_BITS(lit_codes, 5); lit_codes += 257;
READ_BITS(dist_codes, 5); dist_codes += 1;
READ_BITS(bitlen_codes, 4); bitlen_codes += 4;
if (lit_codes > MSZIP_LITERAL_MAXSYMBOLS) return INF_ERR_SYMLENS;
if (dist_codes > MSZIP_DISTANCE_MAXSYMBOLS) return INF_ERR_SYMLENS;
/* read in the bit lengths in their unusual order */
for (i = 0; i < bitlen_codes; i++) READ_BITS(bl_len[bitlen_order[i]], 3);
while (i < 19) bl_len[bitlen_order[i++]] = 0;
/* create decoding table with an immediate lookup */
if (make_decode_table(19, 7, &bl_len[0], &bl_table[0])) {
return INF_ERR_BITLENTBL;
}
/* read literal / distance code lengths */
for (i = 0; i < (lit_codes + dist_codes); i++) {
/* single-level huffman lookup */
ENSURE_BITS(7);
code = bl_table[PEEK_BITS(7)];
REMOVE_BITS(bl_len[code]);
if (code < 16) lens[i] = last_code = code;
else {
switch (code) {
case 16: READ_BITS(run, 2); run += 3; code = last_code; break;
case 17: READ_BITS(run, 3); run += 3; code = 0; break;
case 18: READ_BITS(run, 7); run += 11; code = 0; break;
default: D(("bad code!: %u", code)) return INF_ERR_BADBITLEN;
}
if ((i + run) > (lit_codes + dist_codes)) return INF_ERR_BITOVERRUN;
while (run--) lens[i++] = code;
i--;
}
}
/* copy LITERAL code lengths and clear any remaining */
i = lit_codes;
zip->sys->copy(&lens[0], &zip->LITERAL_len[0], i);
while (i < MSZIP_LITERAL_MAXSYMBOLS) zip->LITERAL_len[i++] = 0;
i = dist_codes;
zip->sys->copy(&lens[lit_codes], &zip->DISTANCE_len[0], i);
while (i < MSZIP_DISTANCE_MAXSYMBOLS) zip->DISTANCE_len[i++] = 0;
STORE_BITS;
return 0;
}
/* a clean implementation of RFC 1951 / inflate */
static int inflate(struct mszipd_stream *zip) {
unsigned int last_block, block_type, distance, length, this_run, i;
/* for the bit buffer and huffman decoding */
register unsigned int bit_buffer;
register int bits_left;
register unsigned short sym;
unsigned char *i_ptr, *i_end;
RESTORE_BITS;
do {
/* read in last block bit */
READ_BITS(last_block, 1);
/* read in block type */
READ_BITS(block_type, 2);
D(("block_type=%u last_block=%u", block_type, last_block))
if (block_type == 0) {
/* uncompressed block */
unsigned char lens_buf[4];
/* go to byte boundary */
i = bits_left & 7; REMOVE_BITS(i);
/* read 4 bytes of data, emptying the bit-buffer if necessary */
for (i = 0; (bits_left >= 8); i++) {
if (i == 4) return INF_ERR_BITBUF;
lens_buf[i] = PEEK_BITS(8);
REMOVE_BITS(8);
}
if (bits_left != 0) return INF_ERR_BITBUF;
while (i < 4) {
if (i_ptr >= i_end) {
if (zipd_read_input(zip)) return zip->error;
i_ptr = zip->i_ptr;
i_end = zip->i_end;
}
lens_buf[i++] = *i_ptr++;
}
/* get the length and its complement */
length = lens_buf[0] | (lens_buf[1] << 8);
i = lens_buf[2] | (lens_buf[3] << 8);
if (length != (~i & 0xFFFF)) return INF_ERR_COMPLEMENT;
/* read and copy the uncompressed data into the window */
while (length > 0) {
if (i_ptr >= i_end) {
if (zipd_read_input(zip)) return zip->error;
i_ptr = zip->i_ptr;
i_end = zip->i_end;
}
this_run = length;
if (this_run > (unsigned int)(i_end - i_ptr)) this_run = i_end - i_ptr;
if (this_run > (MSZIP_FRAME_SIZE - zip->window_posn))
this_run = MSZIP_FRAME_SIZE - zip->window_posn;
zip->sys->copy(i_ptr, &zip->window[zip->window_posn], this_run);
zip->window_posn += this_run;
i_ptr += this_run;
length -= this_run;
if (zip->window_posn == MSZIP_FRAME_SIZE) {
if (zip->flush_window(zip, MSZIP_FRAME_SIZE)) return INF_ERR_FLUSH;
zip->window_posn = 0;
}
}
}
else if ((block_type == 1) || (block_type == 2)) {
/* Huffman-compressed LZ77 block */
unsigned int window_posn, match_posn, code;
if (block_type == 1) {
/* block with fixed Huffman codes */
i = 0;
while (i < 144) zip->LITERAL_len[i++] = 8;
while (i < 256) zip->LITERAL_len[i++] = 9;
while (i < 280) zip->LITERAL_len[i++] = 7;
while (i < 288) zip->LITERAL_len[i++] = 8;
for (i = 0; i < 32; i++) zip->DISTANCE_len[i] = 5;
}
else {
/* block with dynamic Huffman codes */
STORE_BITS;
if ((i = zip_read_lens(zip))) return i;
RESTORE_BITS;
}
/* now huffman lengths are read for either kind of block,
* create huffman decoding tables */
if (make_decode_table(MSZIP_LITERAL_MAXSYMBOLS, MSZIP_LITERAL_TABLEBITS,
&zip->LITERAL_len[0], &zip->LITERAL_table[0]))
{
return INF_ERR_LITERALTBL;
}
if (make_decode_table(MSZIP_DISTANCE_MAXSYMBOLS,MSZIP_DISTANCE_TABLEBITS,
&zip->DISTANCE_len[0], &zip->DISTANCE_table[0]))
{
return INF_ERR_DISTANCETBL;
}
/* decode forever until end of block code */
window_posn = zip->window_posn;
while (1) {
READ_HUFFSYM(LITERAL, code);
if (code < 256) {
zip->window[window_posn++] = (unsigned char) code;
if (window_posn == MSZIP_FRAME_SIZE) {
if (zip->flush_window(zip, MSZIP_FRAME_SIZE)) return INF_ERR_FLUSH;
window_posn = 0;
}
}
else if (code == 256) {
/* END OF BLOCK CODE: loop break point */
break;
}
else {
code -= 257;
if (code > 29) return INF_ERR_LITCODE;
READ_BITS_T(length, lit_extrabits[code]);
length += lit_lengths[code];
READ_HUFFSYM(DISTANCE, code);
if (code > 30) return INF_ERR_DISTCODE;
READ_BITS_T(distance, dist_extrabits[code]);
distance += dist_offsets[code];
/* match position is window position minus distance. If distance
* is more than window position numerically, it must 'wrap
* around' the frame size. */
match_posn = ((distance > window_posn) ? MSZIP_FRAME_SIZE : 0)
+ window_posn - distance;
/* copy match */
if (length < 12) {
/* short match, use slower loop but no loop setup code */
while (length--) {
zip->window[window_posn++] = zip->window[match_posn++];
match_posn &= MSZIP_FRAME_SIZE - 1;
if (window_posn == MSZIP_FRAME_SIZE) {
if (zip->flush_window(zip, MSZIP_FRAME_SIZE))
return INF_ERR_FLUSH;
window_posn = 0;
}
}
}
else {
/* longer match, use faster loop but with setup expense */
unsigned char *runsrc, *rundest;
do {
this_run = length;
if ((match_posn + this_run) > MSZIP_FRAME_SIZE)
this_run = MSZIP_FRAME_SIZE - match_posn;
if ((window_posn + this_run) > MSZIP_FRAME_SIZE)
this_run = MSZIP_FRAME_SIZE - window_posn;
rundest = &zip->window[window_posn]; window_posn += this_run;
runsrc = &zip->window[match_posn]; match_posn += this_run;
length -= this_run;
while (this_run--) *rundest++ = *runsrc++;
/* flush if necessary */
if (window_posn == MSZIP_FRAME_SIZE) {
if (zip->flush_window(zip, MSZIP_FRAME_SIZE))
return INF_ERR_FLUSH;
window_posn = 0;
}
if (match_posn == MSZIP_FRAME_SIZE) match_posn = 0;
} while (length > 0);
}
} /* else (code >= 257) */
} /* while (forever) -- break point at 'code == 256' */
zip->window_posn = window_posn;
}
else {
/* block_type == 3 -- bad block type */
return INF_ERR_BLOCKTYPE;
}
} while (!last_block);
/* flush the remaining data */
if (zip->window_posn) {
if (zip->flush_window(zip, zip->window_posn)) return INF_ERR_FLUSH;
}
STORE_BITS;
/* return success */
return 0;
}
/* inflate() calls this whenever the window should be flushed. As
* MSZIP only expands to the size of the window, the implementation used
* simply keeps track of the amount of data flushed, and if more than 32k
* is flushed, an error is raised.
*/
static int mszipd_flush_window(struct mszipd_stream *zip,
unsigned int data_flushed)
{
zip->bytes_output += data_flushed;
if (zip->bytes_output > MSZIP_FRAME_SIZE) {
D(("overflow: %u bytes flushed, total is now %u",
data_flushed, zip->bytes_output))
return 1;
}
return 0;
}
struct mszipd_stream *mszipd_init(struct mspack_system *system,
struct mspack_file *input,
struct mspack_file *output,
int input_buffer_size,
int repair_mode)
{
struct mszipd_stream *zip;
if (!system) return NULL;
input_buffer_size = (input_buffer_size + 1) & -2;
if (!input_buffer_size) return NULL;
/* allocate decompression state */
if (!(zip = system->alloc(system, sizeof(struct mszipd_stream)))) {
return NULL;
}
/* allocate input buffer */
zip->inbuf = system->alloc(system, (size_t) input_buffer_size);
if (!zip->inbuf) {
system->free(zip);
return NULL;
}
/* initialise decompression state */
zip->sys = system;
zip->input = input;
zip->output = output;
zip->inbuf_size = input_buffer_size;
zip->error = MSPACK_ERR_OK;
zip->repair_mode = repair_mode;
zip->flush_window = &mszipd_flush_window;
zip->input_end = 0;
zip->i_ptr = zip->i_end = &zip->inbuf[0];
zip->o_ptr = zip->o_end = NULL;
zip->bit_buffer = 0; zip->bits_left = 0;
return zip;
}
int mszipd_decompress(struct mszipd_stream *zip, off_t out_bytes) {
/* for the bit buffer */
register unsigned int bit_buffer;
register int bits_left;
unsigned char *i_ptr, *i_end;
int i, state, error;
/* easy answers */
if (!zip || (out_bytes < 0)) return MSPACK_ERR_ARGS;
if (zip->error) return zip->error;
/* flush out any stored-up bytes before we begin */
i = zip->o_end - zip->o_ptr;
if ((off_t) i > out_bytes) i = (int) out_bytes;
if (i) {
if (zip->sys->write(zip->output, zip->o_ptr, i) != i) {
return zip->error = MSPACK_ERR_WRITE;
}
zip->o_ptr += i;
out_bytes -= i;
}
if (out_bytes == 0) return MSPACK_ERR_OK;
while (out_bytes > 0) {
/* unpack another block */
RESTORE_BITS;
/* skip to next read 'CK' header */
i = bits_left & 7; REMOVE_BITS(i); /* align to bytestream */
state = 0;
do {
READ_BITS(i, 8);
if (i == 'C') state = 1;
else if ((state == 1) && (i == 'K')) state = 2;
else state = 0;
} while (state != 2);
/* inflate a block, repair and realign if necessary */
zip->window_posn = 0;
zip->bytes_output = 0;
STORE_BITS;
if ((error = inflate(zip))) {
D(("inflate error %d", i))
if (zip->repair_mode) {
zip->sys->message(NULL, "MSZIP error, %u bytes of data lost.",
MSZIP_FRAME_SIZE - zip->bytes_output);
for (i = zip->bytes_output; i < MSZIP_FRAME_SIZE; i++) {
zip->window[i] = '\0';
}
zip->bytes_output = MSZIP_FRAME_SIZE;
}
else {
return zip->error = (error > 0) ? error : MSPACK_ERR_DECRUNCH;
}
}
zip->o_ptr = &zip->window[0];
zip->o_end = &zip->o_ptr[zip->bytes_output];
/* write a frame */
i = (out_bytes < (off_t)zip->bytes_output) ?
(int)out_bytes : zip->bytes_output;
if (zip->sys->write(zip->output, zip->o_ptr, i) != i) {
return zip->error = MSPACK_ERR_WRITE;
}
/* mspack errors (i.e. read errors) are fatal and can't be recovered */
if ((error > 0) && zip->repair_mode) return error;
zip->o_ptr += i;
out_bytes -= i;
}
if (out_bytes) {
D(("bytes left to output"))
return zip->error = MSPACK_ERR_DECRUNCH;
}
return MSPACK_ERR_OK;
}
void mszipd_free(struct mszipd_stream *zip) {
struct mspack_system *sys;
if (zip) {
sys = zip->sys;
sys->free(zip->inbuf);
sys->free(zip);
}
}