ClamAV is an open source (GPLv2) anti-virus toolkit.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
clamav/clamav-devel/libclamav/matcher-ac.c

585 lines
14 KiB

/*
* C implementation of the Aho-Corasick pattern matching algorithm. It's based
* on the ScannerDaemon's version (coded in Java) by Kurt Huwig and
* http://www-sr.informatik.uni-tuebingen.de/~buehler/AC/AC.html
* Thanks to Kurt Huwig for pointing me to this page.
*
* Copyright (C) 2002 - 2006 Tomasz Kojm <tkojm@clamav.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*/
#if HAVE_CONFIG_H
#include "clamav-config.h"
#endif
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#include "clamav.h"
#include "others.h"
#include "matcher.h"
#include "matcher-ac.h"
#include "defaults.h"
#include "filetypes.h"
#include "cltypes.h"
struct nodelist {
struct cli_ac_node *node;
struct nodelist *next;
};
unsigned short ac_depth = AC_DEFAULT_DEPTH;
int cli_ac_addpatt(struct cli_matcher *root, struct cli_ac_patt *pattern)
{
struct cli_ac_node *pos, *next;
int i;
if(pattern->length < ac_depth)
return CL_EPATSHORT;
pos = root->ac_root;
for(i = 0; i < ac_depth; i++) {
next = pos->trans[((unsigned char) pattern->pattern[i]) & 0xff];
if(!next) {
next = (struct cli_ac_node *) cli_calloc(1, sizeof(struct cli_ac_node));
if(!next) {
cli_errmsg("cli_ac_addpatt(): Unable to allocate AC node (%u bytes)\n", sizeof(struct cli_ac_node));
return CL_EMEM;
}
root->ac_nodes++;
root->ac_nodetable = (struct cli_ac_node **) cli_realloc(root->ac_nodetable, (root->ac_nodes) * sizeof(struct cli_ac_node *));
if(root->ac_nodetable == NULL) {
cli_errmsg("cli_ac_addpatt(): Unable to realloc nodetable (%u bytes)\n", (root->ac_nodes) * sizeof(struct cli_matcher *));
return CL_EMEM;
}
root->ac_nodetable[root->ac_nodes - 1] = next;
pos->trans[((unsigned char) pattern->pattern[i]) & 0xff] = next;
}
pos = next;
}
pos->islast = 1;
pattern->next = pos->list;
pos->list = pattern;
return CL_SUCCESS;
}
static int cli_enqueue(struct nodelist **bfs, struct cli_ac_node *n)
{
struct nodelist *new;
new = (struct nodelist *) cli_calloc(1, sizeof(struct nodelist));
if (new == NULL) {
cli_errmsg("cli_enqueue(): Unable to allocate node list (%u bytes)\n", sizeof(struct nodelist));
return CL_EMEM;
}
new->next = *bfs;
new->node = n;
*bfs = new;
return CL_SUCCESS;
}
static struct cli_ac_node *cli_dequeue(struct nodelist **bfs)
{
struct nodelist *handler, *prev = NULL;
struct cli_ac_node *pt;
handler = *bfs;
while(handler && handler->next) {
prev = handler;
handler = handler->next;
}
if(!handler) {
return NULL;
} else {
pt = handler->node;
free(handler);
if(prev)
prev->next = NULL;
else
*bfs = NULL;
return pt;
}
}
static int cli_maketrans(struct cli_matcher *root)
{
struct nodelist *bfs = NULL;
struct cli_ac_node *ac_root = root->ac_root, *child, *node;
int i, ret;
ac_root->fail = NULL;
if((ret = cli_enqueue(&bfs, ac_root)) != 0) {
return ret;
}
while((node = cli_dequeue(&bfs))) {
if(node->islast)
continue;
for(i = 0; i < 256; i++) {
child = node->trans[i];
if(!child) {
if(node->fail)
node->trans[i] = (node->fail)->trans[i];
else
node->trans[i] = ac_root;
} else {
if(node->fail)
child->fail = (node->fail)->trans[i];
else
child->fail = ac_root;
if((ret = cli_enqueue(&bfs, child)) != 0) {
return ret;
}
}
}
}
return CL_SUCCESS;
}
int cli_ac_buildtrie(struct cli_matcher *root)
{
if(!root)
return CL_EMALFDB;
if(!root->ac_root) {
cli_dbgmsg("cli_ac_buildtrie(): AC pattern matcher is not initialised\n");
return CL_SUCCESS;
}
return cli_maketrans(root);
}
static void cli_freepatt(struct cli_ac_patt *list)
{
struct cli_ac_patt *handler, *prev;
int i;
handler = list;
while(handler) {
if(handler->prefix)
free(handler->prefix);
else
free(handler->pattern);
free(handler->virname);
if(handler->offset && (!handler->sigid || handler->partno == 1))
free(handler->offset);
if(handler->alt) {
free(handler->altn);
for(i = 0; i < handler->alt; i++)
free(handler->altc[i]);
free(handler->altc);
}
prev = handler;
handler = handler->next;
free(prev);
}
}
void cli_ac_free(struct cli_matcher *root)
{
unsigned int i;
for(i = 0; i < root->ac_nodes; i++) {
cli_freepatt(root->ac_nodetable[i]->list);
free(root->ac_nodetable[i]);
}
if(root->ac_nodetable)
free(root->ac_nodetable);
if(root->ac_root)
free(root->ac_root);
}
inline static int cli_findpos(const unsigned char *buffer, unsigned int depth, unsigned int offset, unsigned int length, const struct cli_ac_patt *pattern)
{
unsigned int bufferpos = offset + depth;
unsigned int postfixend = offset + length;
unsigned int i, j, alt = pattern->alt_pattern, found;
if(pattern->prefix)
if(pattern->prefix_length > offset)
return 0;
if(bufferpos >= length)
bufferpos %= length;
for(i = depth; i < pattern->length; i++) {
if(bufferpos == postfixend)
return 0;
if(pattern->pattern[i] == CLI_ALT) {
found = 0;
for(j = 0; j < pattern->altn[alt]; j++) {
if(pattern->altc[alt][j] == buffer[bufferpos]) {
found = 1;
break;
}
}
if(!found)
return 0;
alt++;
} else if(pattern->pattern[i] != CLI_IGN && (unsigned char) pattern->pattern[i] != buffer[bufferpos])
return 0;
bufferpos++;
if(bufferpos == length)
bufferpos = 0;
}
if(pattern->prefix) {
alt = 0;
bufferpos = offset - pattern->prefix_length;
for(i = 0; i < pattern->prefix_length; i++) {
if(pattern->prefix[i] == CLI_ALT) {
found = 0;
for(j = 0; j < pattern->altn[alt]; j++) {
if(pattern->altc[alt][j] == buffer[bufferpos]) {
found = 1;
break;
}
}
if(!found)
return 0;
alt++;
} else if(pattern->prefix[i] != CLI_IGN && (unsigned char) pattern->prefix[i] != buffer[bufferpos])
return 0;
bufferpos++;
}
}
return 1;
}
int cli_ac_initdata(struct cli_ac_data *data, unsigned int partsigs, unsigned int tracklen)
{
unsigned int i, j;
if(!data) {
cli_errmsg("cli_ac_init(): data == NULL\n");
return CL_ENULLARG;
}
data->partsigs = partsigs;
if(!partsigs)
return CL_SUCCESS;
data->partcnt = (unsigned int *) cli_calloc(partsigs, sizeof(unsigned int));
if(!data->partcnt) {
cli_errmsg("cli_ac_init(): unable to cli_calloc(%u, %u)\n", partsigs, sizeof(unsigned int));
return CL_EMEM;
}
data->offcnt = (uint8_t *) cli_calloc(partsigs, sizeof(uint8_t));
if(!data->offcnt) {
cli_errmsg("cli_ac_init(): unable to cli_calloc(%u, %u)\n", partsigs, sizeof(uint8_t));
free(data->partcnt);
return CL_EMEM;
}
data->offidx = (uint8_t *) cli_calloc(partsigs, sizeof(uint8_t));
if(!data->offidx) {
cli_errmsg("cli_ac_init(): unable to cli_calloc(%u, %u)\n", partsigs, sizeof(uint8_t));
free(data->partcnt);
free(data->offcnt);
return CL_EMEM;
}
data->maxshift = (int *) cli_malloc(partsigs * sizeof(int));
if(!data->maxshift) {
cli_errmsg("cli_ac_init(): unable to cli_malloc(%u)\n", partsigs * sizeof(int));
free(data->partcnt);
free(data->offcnt);
free(data->offidx);
return CL_EMEM;
}
memset(data->maxshift, -1, partsigs * sizeof(int));
data->partoff = (unsigned int **) cli_calloc(partsigs, sizeof(unsigned int *));
if(!data->partoff) {
cli_errmsg("cli_ac_init(): unable to cli_calloc(%u, %u)\n", partsigs, sizeof(unsigned int));
free(data->partcnt);
free(data->offcnt);
free(data->offidx);
free(data->maxshift);
return CL_EMEM;
}
/* The number of multipart signatures is rather small so we already
* allocate the memory for all parts here instead of using a runtime
* allocation in cli_ac_scanbuff()
*/
for(i = 0; i < partsigs; i++) {
data->partoff[i] = (unsigned int *) cli_calloc(tracklen, sizeof(unsigned int));
if(!data->partoff[i]) {
for(j = 0; j < i; j++)
free(data->partoff[j]);
free(data->partoff);
free(data->partcnt);
free(data->offcnt);
free(data->offidx);
free(data->maxshift);
cli_errmsg("cli_ac_init(): unable to cli_calloc(%u, %u)\n", tracklen, sizeof(unsigned int));
return CL_EMEM;
}
}
return CL_SUCCESS;
}
void cli_ac_freedata(struct cli_ac_data *data)
{
unsigned int i;
if(data && data->partsigs) {
free(data->partcnt);
free(data->offcnt);
free(data->offidx);
free(data->maxshift);
for(i = 0; i < data->partsigs; i++)
free(data->partoff[i]);
free(data->partoff);
}
}
int cli_ac_scanbuff(const unsigned char *buffer, unsigned int length, const char **virname, const struct cli_matcher *root, struct cli_ac_data *mdata, unsigned short otfrec, unsigned long int offset, unsigned short ftype, int fd, struct cli_matched_type **ftoffset)
{
struct cli_ac_node *current;
struct cli_ac_patt *pt;
int type = CL_CLEAN, t, j;
unsigned int i, position, curroff;
uint8_t offnum, found;
struct cli_matched_type *tnode;
struct cli_target_info info;
if(!root->ac_root)
return CL_CLEAN;
if(!mdata) {
cli_errmsg("cli_ac_scanbuff(): mdata == NULL\n");
return CL_ENULLARG;
}
memset(&info, 0, sizeof(info));
current = root->ac_root;
for(i = 0; i < length; i++) {
current = current->trans[buffer[i] & 0xff];
if(current->islast) {
position = i - ac_depth + 1;
pt = current->list;
while(pt) {
if(cli_findpos(buffer, ac_depth, position, length, pt)) {
curroff = offset + position - pt->prefix_length;
if((pt->offset || pt->target) && (!pt->sigid || pt->partno == 1)) {
if(ftype == CL_TYPE_UNKNOWN_TEXT)
t = type;
else
t = ftype;
if((fd == -1 && !t) || !cli_validatesig(t, pt->offset, curroff, &info, fd, pt->virname)) {
pt = pt->next;
continue;
}
}
if(pt->sigid) { /* it's a partial signature */
if(mdata->partcnt[pt->sigid - 1] + 1 == pt->partno) {
offnum = mdata->offcnt[pt->sigid - 1];
if(offnum < AC_DEFAULT_TRACKLEN) {
mdata->partoff[pt->sigid - 1][offnum] = curroff + pt->length;
if(mdata->maxshift[pt->sigid - 1] == -1 || ((int) (mdata->partoff[pt->sigid - 1][offnum] - mdata->partoff[pt->sigid - 1][0]) <= mdata->maxshift[pt->sigid - 1]))
mdata->offcnt[pt->sigid - 1]++;
} else {
if(mdata->maxshift[pt->sigid - 1] == -1 || ((int) (curroff + pt->length - mdata->partoff[pt->sigid - 1][0]) <= mdata->maxshift[pt->sigid - 1])) {
if(!(mdata->offidx[pt->sigid - 1] %= AC_DEFAULT_TRACKLEN))
mdata->offidx[pt->sigid - 1]++;
mdata->partoff[pt->sigid - 1][mdata->offidx[pt->sigid - 1]] = curroff + pt->length;
mdata->offidx[pt->sigid - 1]++;
}
}
} else if(mdata->partcnt[pt->sigid - 1] + 2 == pt->partno) {
found = 0;
for(j = mdata->offcnt[pt->sigid - 1] - 1; j >= 0; j--) {
found = 1;
if(pt->maxdist)
if(curroff - mdata->partoff[pt->sigid - 1][j] > pt->maxdist)
found = 0;
if(found && pt->mindist)
if(curroff - mdata->partoff[pt->sigid - 1][j] < pt->mindist)
found = 0;
if(found)
break;
}
if(found) {
mdata->maxshift[pt->sigid - 1] = mdata->partoff[pt->sigid - 1][j] + pt->maxdist - curroff;
mdata->partoff[pt->sigid - 1][0] = curroff + pt->length;
mdata->offcnt[pt->sigid - 1] = 1;
if(++mdata->partcnt[pt->sigid - 1] + 1 == pt->parts) {
if(pt->type) {
if(otfrec) {
if(pt->type > type || pt->type >= CL_TYPE_SFX) {
cli_dbgmsg("Matched signature for file type %s\n", pt->virname);
type = pt->type;
if(ftoffset && (!*ftoffset || (*ftoffset)->cnt < SFX_MAX_TESTS) && ftype == CL_TYPE_MSEXE && type >= CL_TYPE_SFX) {
if(!(tnode = cli_calloc(1, sizeof(struct cli_matched_type)))) {
cli_errmsg("cli_ac_scanbuff(): Can't allocate memory for new type node\n");
if(info.exeinfo.section)
free(info.exeinfo.section);
return CL_EMEM;
}
tnode->type = type;
tnode->offset = -1; /* we don't remember the offset of the first part */
if(*ftoffset)
tnode->cnt = (*ftoffset)->cnt + 1;
else
tnode->cnt = 1;
tnode->next = *ftoffset;
*ftoffset = tnode;
}
}
}
} else {
if(virname)
*virname = pt->virname;
if(info.exeinfo.section)
free(info.exeinfo.section);
return CL_VIRUS;
}
}
}
}
} else { /* old type signature */
if(pt->type) {
if(otfrec) {
if(pt->type > type || pt->type >= CL_TYPE_SFX) {
cli_dbgmsg("Matched signature for file type %s at %u\n", pt->virname, curroff);
type = pt->type;
if(ftoffset && (!*ftoffset ||(*ftoffset)->cnt < SFX_MAX_TESTS) && ftype == CL_TYPE_MSEXE && type >= CL_TYPE_SFX) {
if(!(tnode = cli_calloc(1, sizeof(struct cli_matched_type)))) {
cli_errmsg("cli_ac_scanbuff(): Can't allocate memory for new type node\n");
if(info.exeinfo.section)
free(info.exeinfo.section);
return CL_EMEM;
}
tnode->type = type;
tnode->offset = curroff;
if(*ftoffset)
tnode->cnt = (*ftoffset)->cnt + 1;
else
tnode->cnt = 1;
tnode->next = *ftoffset;
*ftoffset = tnode;
}
}
}
} else {
if(virname)
*virname = pt->virname;
if(info.exeinfo.section)
free(info.exeinfo.section);
return CL_VIRUS;
}
}
}
pt = pt->next;
}
current = current->fail;
}
}
if(info.exeinfo.section)
free(info.exeinfo.section);
return otfrec ? type : CL_CLEAN;
}
void cli_ac_setdepth(unsigned int depth)
{
ac_depth = depth;
}