ClamAV is an open source (GPLv2) anti-virus toolkit.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
clamav/libclamav/bytecode_vm.c

421 lines
12 KiB

/*
* Execute ClamAV bytecode.
*
* Copyright (C) 2009 Sourcefire, Inc.
*
* Authors: Török Edvin
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*/
#if HAVE_CONFIG_H
#include "clamav-config.h"
#endif
#include "clamav.h"
#include "others.h"
#include "bytecode.h"
#include "bytecode_priv.h"
#include "readdb.h"
#include <string.h>
/* These checks will also be done by the bytecode verifier, but for
* debugging purposes we have explicit checks, these should never fail! */
#ifdef CL_DEBUG
static int bcfail(const char *msg, long a, long b,
const char *file, unsigned line)
{
cli_errmsg("bytecode: check failed %s (%lx and %lx) at %s:%u\n", msg, a, b, file, line);
return CL_EARG;
}
#define CHECK_FUNCID(funcid) do { if (funcid >= bc->num_func) return \
bcfail("funcid out of bounds!",funcid, bc->num_func,__FILE__,__LINE__); } while(0)
#define CHECK_EQ(a, b) do { if ((a) != (b)) return \
bcfail("Values "#a" and "#b" don't match!",(a),(b),__FILE__,__LINE__); } while(0)
#define CHECK_GT(a, b) do {if ((a) <= (b)) return \
bcfail("Condition failed "#a" > "#b,(a),(b), __FILE__, __LINE__); } while(0)
#else
#define CHECK_FUNCID(x)
#define CHECK_EQ(a,b)
#define CHECK_GT(a,b)
#endif
/* Get the operand of a binary operator, upper bits
* (beyond the size of the operand) may have random values.
* Use this when the active bits of the result of a binop are the same
* regardless of the state of the inactive (high) bits of their operands.
* For example (a + b)&mask == ((a&mask) + (b&mask))
* but (a / b)&mask != ((a&mask) / (b&mask))
* */
#define BINOPNOMOD(i) (values[inst->u.binop[i]].v)
#define UNOPNOMOD(i) (values[inst->u.binop[i]].v)
/* get the operand of a binary operator, upper bits are cleared */
#define type2mask(t) (inst->type == 64 ? ~0ull : (1ull << inst->type)-1)
#define BINOP(i) (BINOPNOMOD(i)&type2mask(inst->type))
#define UNOP(x) (UNOPNOMOD(i)&typemask(inst->type))
/* get the operand as a signed value.
* Warning: this assumes that result type is same as operand type.
* This is usually true, except for icmp_* and select.
* For icmp_* we fix it up in the loader. */
#define SIGNEXT(a, from) CLI_SRS(((int64_t)(a)) << (64-(from)), (64-(from)))
#define BINOPS(i) SIGNEXT(BINOPNOMOD(i), inst->type)
#define CASTOP (values[inst->u.cast.source].v& inst->u.cast.mask)
#undef always_inline
#define always_inline
static always_inline int jump(const struct cli_bc_func *func, uint16_t bbid, struct cli_bc_bb **bb, const struct cli_bc_inst **inst,
unsigned *bb_inst)
{
CHECK_GT(func->numBB, bbid);
*bb = &func->BB[bbid];
*inst = (*bb)->insts;
*bb_inst = 0;
return 0;
}
#define STACK_CHUNKSIZE 16384
struct stack_chunk {
struct stack_chunk *prev;
unsigned used;
union {
void *align;
char data[STACK_CHUNKSIZE];
} u;
};
struct stack {
struct stack_chunk* chunk;
uint16_t last_size;
};
static always_inline void* cli_stack_alloc(struct stack *stack, unsigned bytes)
{
struct stack_chunk *chunk = stack->chunk;
uint16_t last_size_off;
/* last_size is stored after data */
/* align bytes to pointer size */
bytes = (bytes + sizeof(uint16_t) + sizeof(void*)) & ~(sizeof(void*)-1);
last_size_off = bytes - 2;
if (chunk && (chunk->used + bytes <= STACK_CHUNKSIZE)) {
/* there is still room in this chunk */
void *ret;
*(uint16_t*)&chunk->u.data[chunk->used + last_size_off] = stack->last_size;
stack->last_size = bytes/sizeof(void*);
ret = chunk->u.data + chunk->used;
chunk->used += bytes;
return ret;
}
if(bytes >= STACK_CHUNKSIZE) {
cli_errmsg("cli_stack_alloc: Attempt to allocate more than STACK_CHUNKSIZE bytes!\n");
return NULL;
}
/* not enough room here, allocate new chunk */
chunk = cli_malloc(sizeof(*stack->chunk));
if (!chunk)
return NULL;
*(uint16_t*)&chunk->u.data[last_size_off] = stack->last_size;
stack->last_size = bytes/sizeof(void*);
chunk->used = bytes;
chunk->prev = stack->chunk;
stack->chunk = chunk;
return chunk->u.data;
}
static always_inline void cli_stack_free(struct stack *stack, void *data)
{
uint16_t last_size;
struct stack_chunk *chunk = stack->chunk;
if (!chunk) {
cli_errmsg("cli_stack_free: stack empty!\n");
return;
}
if ((chunk->u.data + chunk->used) != ((char*)data + stack->last_size*sizeof(void*))) {
cli_errmsg("cli_stack_free: wrong free order: %p, expected %p\n",
data, chunk->u.data + chunk->used - stack->last_size*sizeof(void*));
return;
}
last_size = *(uint16_t*)&chunk->u.data[chunk->used-2];
if (chunk->used < stack->last_size*sizeof(void*)) {
cli_errmsg("cli_stack_free: last_size is corrupt!\n");
return;
}
chunk->used -= stack->last_size*sizeof(void*);
stack->last_size = last_size;
if (!chunk->used) {
stack->chunk = chunk->prev;
free(chunk);
}
}
static void cli_stack_destroy(struct stack *stack)
{
struct stack_chunk *chunk = stack->chunk;
while (chunk) {
stack->chunk = chunk->prev;
free(chunk);
chunk = stack->chunk;
}
}
struct stack_entry {
struct stack_entry *prev;
const struct cli_bc_func *func;
struct cli_bc_value *ret;
struct cli_bc_bb *bb;
unsigned bb_inst;
struct cli_bc_value *values;
};
static always_inline struct stack_entry *allocate_stack(struct stack *stack,
struct stack_entry *prev,
const struct cli_bc_func *func,
const struct cli_bc_func *func_old,
struct cli_bc_value *ret,
struct cli_bc_bb *bb,
unsigned bb_inst)
{
unsigned i;
struct cli_bc_value *values;
const unsigned numValues = func->numValues + func->numConstants;
struct stack_entry *entry = cli_stack_alloc(stack, sizeof(*entry) + sizeof(*values)*numValues);
if (!entry)
return NULL;
entry->prev = prev;
entry->func = func_old;
entry->ret = ret;
entry->bb = bb;
entry->bb_inst = bb_inst;
/* we allocated room for values right after stack_entry! */
entry->values = values = (struct cli_bc_value*)&entry[1];
memcpy(&values[func->numValues], func->constants,
sizeof(*values)*func->numConstants);
return entry;
}
static always_inline struct stack_entry *pop_stack(struct stack *stack,
struct stack_entry *stack_entry,
const struct cli_bc_func **func,
struct cli_bc_value **ret,
struct cli_bc_bb **bb,
unsigned *bb_inst)
{
void *data;
*func = stack_entry->func;
*ret = stack_entry->ret;
*bb = stack_entry->bb;
*bb_inst = stack_entry->bb_inst;
data = stack_entry;
stack_entry = stack_entry->prev;
cli_stack_free(stack, data);
return stack_entry;
}
int cli_vm_execute(const struct cli_bc *bc, struct cli_bc_ctx *ctx, const struct cli_bc_func *func, const struct cli_bc_inst *inst)
{
uint64_t tmp;
unsigned i, stack_depth=0, bb_inst=0, stop=0 ;
struct cli_bc_func *func2;
struct stack stack;
struct stack_entry *stack_entry = NULL;
struct cli_bc_bb *bb = NULL;
struct cli_bc_value *values = ctx->values;
struct cli_bc_value *value, *old_values;
memset(&stack, 0, sizeof(stack));
do {
value = &values[inst->dest];
CHECK_GT(func->numValues+func->numConstants, value - values);
switch (inst->opcode) {
case OP_ADD:
value->v = BINOPNOMOD(0) + BINOPNOMOD(1);
break;
case OP_SUB:
value->v = BINOPNOMOD(0) - BINOPNOMOD(1);
break;
case OP_MUL:
value->v = BINOPNOMOD(0) * BINOPNOMOD(1);
break;
case OP_UDIV:
{
uint64_t d = BINOP(1);
if (UNLIKELY(!d)) {
cli_dbgmsg("bytecode attempted to execute udiv#0\n");
return CL_EBYTECODE;
}
value->v = BINOP(0) / d;
break;
}
case OP_SDIV:
{
int64_t a = BINOPS(0);
int64_t b = BINOPS(1);
if (UNLIKELY(b == 0 || (b == -1 && a == (-9223372036854775807LL-1LL)))) {
cli_dbgmsg("bytecode attempted to execute sdiv#0\n");
return CL_EBYTECODE;
}
value->v = a / b;
break;
}
case OP_UREM:
{
uint64_t d = BINOP(1);
if (UNLIKELY(!d)) {
cli_dbgmsg("bytecode attempted to execute urem#0\n");
return CL_EBYTECODE;
}
value->v = BINOP(0) % d;
break;
}
case OP_SREM:
{
int64_t a = BINOPS(0);
int64_t b = BINOPS(1);
if (UNLIKELY(b == 0 || (b == -1 && (a == -9223372036854775807LL-1LL)))) {
cli_dbgmsg("bytecode attempted to execute srem#0\n");
return CL_EBYTECODE;
}
value->v = a % b;
break;
}
case OP_SHL:
value->v = BINOPNOMOD(0) << BINOP(1);
break;
case OP_LSHR:
value->v = BINOP(0) >> BINOP(1);
break;
case OP_ASHR:
{
int64_t v = BINOPS(0);
value->v = CLI_SRS(v, BINOP(1));
break;
}
case OP_AND:
value->v = BINOPNOMOD(0) & BINOPNOMOD(1);
break;
case OP_OR:
value->v = BINOPNOMOD(0) | BINOPNOMOD(1);
break;
case OP_XOR:
value->v = BINOPNOMOD(0) ^ BINOPNOMOD(1);
break;
case OP_SEXT:
/* mask is number of src bits here, not a mask! */
value->v = SIGNEXT(values[inst->u.cast.source].v, inst->u.cast.mask);
break;
case OP_TRUNC:
/* fall-through */
case OP_ZEXT:
value->v = CASTOP;
break;
case OP_BRANCH:
stop = jump(func, (values[inst->u.branch.condition].v&1) ?
inst->u.branch.br_true : inst->u.branch.br_false,
&bb, &inst, &bb_inst);
continue;
case OP_JMP:
stop = jump(func, inst->u.jump, &bb, &inst, &bb_inst);
continue;
case OP_RET:
CHECK_GT(stack_depth, 0);
tmp = values[inst->u.unaryop].v;
stack_entry = pop_stack(&stack, stack_entry, &func, &value, &bb,
&bb_inst);
values = stack_entry ? stack_entry->values : ctx->values;
CHECK_GT(func->numValues+func->numConstants, value-values);
CHECK_GT(value-values, -1);
value->v = tmp;
if (!bb) {
stop = CL_BREAK;
continue;
}
inst = &bb->insts[bb_inst];
break;
case OP_ICMP_EQ:
value->v = BINOP(0) == BINOP(1) ? 1 : 0;
break;
case OP_ICMP_NE:
value->v = BINOP(0) != BINOP(1) ? 1 : 0;
break;
case OP_ICMP_UGT:
value->v = BINOP(0) > BINOP(1) ? 1 : 0;
break;
case OP_ICMP_UGE:
value->v = BINOP(0) >= BINOP(1) ? 1 : 0;
break;
case OP_ICMP_ULT:
value->v = BINOP(0) < BINOP(1) ? 1 : 0;
break;
case OP_ICMP_ULE:
value->v = BINOP(0) <= BINOP(1) ? 1 : 0;
break;
case OP_ICMP_SGT:
value->v = BINOPS(0) > BINOPS(1) ? 1 : 0;
break;
case OP_ICMP_SGE:
value->v = BINOPS(0) >= BINOPS(1) ? 1 : 0;
break;
case OP_ICMP_SLE:
value->v = BINOPS(0) <= BINOPS(1) ? 1 : 0;
break;
case OP_ICMP_SLT:
value->v = BINOPS(0) < BINOPS(1) ? 1 : 0;
break;
case OP_SELECT:
value->v = (values[inst->u.three[0]].v&1) ?
values[inst->u.three[1]].v : values[inst->u.three[2]].v;
break;
case OP_CALL_DIRECT:
CHECK_FUNCID(inst->u.ops.funcid);
func2 = &bc->funcs[inst->u.ops.funcid];
CHECK_EQ(func2->numArgs, inst->u.ops.numOps);
old_values = values;
stack_entry = allocate_stack(&stack, stack_entry, func2, func, value,
bb, bb_inst);
values = stack_entry->values;
// cli_dbgmsg("Executing %d\n", inst->u.ops.funcid);
for (i=0;i<func2->numArgs;i++)
values[i] = old_values[inst->u.ops.ops[i]];
func = func2;
CHECK_GT(func->numBB, 0);
stop = jump(func, 0, &bb, &inst, &bb_inst);
stack_depth++;
continue;
case OP_COPY:
BINOPNOMOD(1) = BINOPNOMOD(0);
break;
default:
cli_errmsg("Opcode %u is not implemented yet!\n", inst->opcode);
stop = CL_EARG;
break;
}
bb_inst++;
inst++;
CHECK_GT(bb->numInsts, bb_inst);
} while (stop == CL_SUCCESS);
cli_stack_destroy(&stack);
return stop == CL_BREAK ? CL_SUCCESS : stop;
}