ClamAV is an open source (GPLv2) anti-virus toolkit.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
clamav/libclamav/bytecode_api.h

655 lines
21 KiB

/*
* Copyright (C) 2009-2010 Sourcefire, Inc.
* All rights reserved.
* Authors: Török Edvin
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/** @file */
#ifndef BYTECODE_API_H
#define BYTECODE_API_H
#ifdef __CLAMBC__
#include "bytecode_execs.h"
#include "bytecode_pe.h"
#include "bytecode_disasm.h"
#endif
#ifndef __CLAMBC__
#include "execs.h"
struct DISASM_RESULT;
#endif
/** Bytecode trigger kind */
enum BytecodeKind {
/** generic bytecode, not tied a specific hook */
BC_GENERIC=0,
_BC_START_HOOKS=256,
/** triggered by a logical signature */
BC_LOGICAL=256,
/** a PE unpacker */
BC_PE_UNPACKER,
_BC_LAST_HOOK
};
static const unsigned PE_INVALID_RVA = 0xFFFFFFFF ;
/** LibClamAV functionality level constants */
enum FunctionalityLevels {
FUNC_LEVEL_096 = 51,
FUNC_LEVEL_096_dev
};
#ifdef __CLAMBC__
/* --------------- BEGIN GLOBALS -------------------------------------------- */
/** @brief Logical signature match counts
*
* This is a low-level variable, use the Macros in bytecode_local.h instead to
* access it.
* */
extern const uint32_t __clambc_match_counts[64];
/** @brief Logical signature match offsets
* This is a low-level variable, use the Macros in bytecode_local.h instead to
* access it.
*/
extern const uint32_t __clambc_match_offsets[64];
/** PE data, if this is a PE hook */
extern const struct cli_pe_hook_data __clambc_pedata;
/** File size (max 4G) */
extern const uint32_t __clambc_filesize[1];
/** Kind of the bytecode */
const uint16_t __clambc_kind;
/* ---------------- END GLOBALS --------------------------------------------- */
/* ---------------- BEGIN 0.96 APIs (don't touch) --------------------------- */
/** Test api.
@param a 0xf00dbeef
@param b 0xbeeff00d
@return 0x12345678 if parameters match, 0x55 otherwise
*/
uint32_t test1(uint32_t a, uint32_t b);
/**
* @brief Reads specified amount of bytes from the current file
* into a buffer. Also moves current position in the file.
*
* @param[in] size amount of bytes to read
* @param[out] data pointer to buffer where data is read into
* @return amount read.
*/
int32_t read(uint8_t *data, int32_t size);
enum {
/**set file position to specified absolute position */
SEEK_SET=0,
/**set file position relative to current position */
SEEK_CUR,
/**set file position relative to file end*/
SEEK_END
};
/**
* @brief Writes the specified amount of bytes from a buffer to the
* current temporary file.
* @param[in] data pointer to buffer of data to write
* @param[in] size amount of bytes to write
* \p size bytes to temporary file, from the buffer pointed to
* byte
* @return amount of bytes successfully written
*/
int32_t write(uint8_t *data, int32_t size);
/**
* @brief Changes the current file position to the specified one.
* @sa SEEK_SET, SEEK_CUR, SEEK_END
* @param[in] pos offset (absolute or relative depending on \p whence param)
* @param[in] whence one of \p SEEK_SET, \p SEEK_CUR, \p SEEK_END
* @return absolute position in file
*/
int32_t seek(int32_t pos, uint32_t whence);
/**
* Sets the name of the virus found.
*
* @param[in] name the name of the virus
* @param[in] len length of the virusname
* @return 0
*/
uint32_t setvirusname(const uint8_t *name, uint32_t len);
/**
* Prints a debug message.
*
* @param[in] str Message to print
* @param[in] len length of message to print
* @return 0
*/
uint32_t debug_print_str(const uint8_t *str, uint32_t len);
/**
* Prints a number as a debug message.
* This is like \p debug_print_str_nonl!
*
* @param[in] a number to print
* @return 0
*/
uint32_t debug_print_uint(uint32_t a);
/**
* Disassembles starting from current file position, the specified amount of
* bytes.
* @param[out] result pointer to struct holding result
* @param[in] len how many bytes to disassemble
* @return 0 for success
*
* You can use lseek to disassemble starting from a different location.
* This is a low-level API, the result is in ClamAV type-8 signature format
* (64 bytes/instruction).
* \sa DisassembleAt
*/
uint32_t disasm_x86(struct DISASM_RESULT* result, uint32_t len);
/* tracing API */
/* a scope: lexical block, function, or compile unit */
uint32_t trace_directory(const uint8_t* directory, uint32_t dummy);
uint32_t trace_scope(const uint8_t* newscope, uint32_t scopeid);
uint32_t trace_source(const uint8_t* srcfile, uint32_t line);
uint32_t trace_op(const uint8_t* opname, uint32_t column);
uint32_t trace_value(const uint8_t* name, uint32_t v);
uint32_t trace_ptr(const uint8_t* ptr, uint32_t dummy);
/** Converts a RVA (Relative Virtual Address) to
* an absolute PE file offset.
* @param rva a rva address from the PE file
* @return absolute file offset mapped to the \p rva,
* or PE_INVALID_RVA if the \p rva is invalid.
*/
uint32_t pe_rawaddr(uint32_t rva);
/** Looks for the specified sequence of bytes in the current file.
* @param[in] data the sequence of bytes to look for
* @param len length of \p data, cannot be more than 1024
* @return offset in the current file if match is found, -1 otherwise */
int32_t file_find(const uint8_t* data, uint32_t len);
/** Read a single byte from current file
* @param offset file offset
* @return byte at offset \p off in the current file, or -1 if offset is
* invalid */
int32_t file_byteat(uint32_t offset);
/** Allocates memory. Currently this memory is freed automatically on exit
from the bytecode, and there is no way to free it sooner.
@param size amount of memory to allocate in bytes
@return pointer to allocated memory */
void* malloc(uint32_t size);
/** Test api2.
* @param a 0xf00d
* @return 0xd00f if parameter matches, 0x5555 otherwise */
uint32_t test2(uint32_t a);
/** Gets information about the specified PE section.
* @param[out] section PE section information will be stored here
* @param[in] num PE section number */
int32_t get_pe_section(struct cli_exe_section *section, uint32_t num);
/** Fills the specified buffer with at least \p fill bytes.
* @param[out] buffer the buffer to fill
* @param[in] len length of buffer
* @param[in] filled how much of the buffer is currently filled
* @param[in] cursor position of cursor in buffer
* @param[in] fill amount of bytes to fill in (0 is valid)
* @return <0 on error,
* 0 on EOF,
* number bytes available in buffer (starting from 0)
* The character at the cursor will be at position 0 after this call.
*/
int32_t fill_buffer(uint8_t* buffer, uint32_t len, uint32_t filled,
uint32_t cursor, uint32_t fill);
/**
* Prepares for extracting a new file, if we've already extracted one it scans
* it.
* @param[in] id an id for the new file (for example position in container)
* @return 1 if previous extracted file was infected
*/
int32_t extract_new(int32_t id);
/**
* Reads a number in the specified radix starting from the current position.
* Non-numeric characters are ignored.
* @param[in] radix 10 or 16
* @return the number read
*/
int32_t read_number(uint32_t radix);
/**
* Creates a new hashset and returns its id.
* @return ID for new hashset */
int32_t hashset_new(void);
/**
* Add a new 32-bit key to the hashset.
* @param hs ID of hashset (from hashset_new)
* @param key the key to add
* @return 0 on success */
int32_t hashset_add(int32_t hs, uint32_t key);
/**
* Remove a 32-bit key from the hashset.
* @param hs ID of hashset (from hashset_new)
* @param key the key to add
* @return 0 on success */
int32_t hashset_remove(int32_t hs, uint32_t key);
/**
* Returns whether the hashset contains the specified key.
* @param hs ID of hashset (from hashset_new)
* @param key the key to lookup
* @return 1 if found, 0 if not found, <0 on invalid hashset ID */
int32_t hashset_contains(int32_t hs, uint32_t key);
/**
* Deallocates the memory used by the specified hashset.
* Trying to use the hashset after this will result in an error.
* The hashset may not be used after this.
* All hashsets are automatically deallocated when bytecode
* finishes execution.
* @param id ID of hashset (from hashset_new)
* @return 0 on success */
int32_t hashset_done(int32_t id);
/**
* Returns whether the hashset is empty.
* @param id of hashset (from hashset_new)
* @return 0 on success */
int32_t hashset_empty(int32_t id);
/**
* Creates a new pipe with the specified buffer size
* @param size size of buffer
* @return ID of newly created buffer_pipe */
int32_t buffer_pipe_new(uint32_t size);
/**
* Same as buffer_pipe_new, except the pipe's input is tied
* to the current file, at the specified position.
* @param pos starting position of pipe input in current file
* @return ID of newly created buffer_pipe */
int32_t buffer_pipe_new_fromfile(uint32_t pos);
/**
* Returns the amount of bytes available to read.
* @param id ID of buffer_pipe
* @return amount of bytes available to read */
uint32_t buffer_pipe_read_avail(int32_t id);
/**
* Returns a pointer to the buffer for reading.
* The 'amount' parameter should be obtained by a call to
* buffer_pipe_read_avail().
* @param id ID of buffer_pipe
* @param amount to read
* @return pointer to buffer, or NULL if buffer has less than
specified amount */
uint8_t *buffer_pipe_read_get(int32_t id, uint32_t amount);
/**
* Updates read cursor in buffer_pipe.
* @param id ID of buffer_pipe
* @param amount amount of bytes to move read cursor
* @return 0 on success */
int32_t buffer_pipe_read_stopped(int32_t id, uint32_t amount);
/**
* Returns the amount of bytes available for writing.
* @param id ID of buffer_pipe
* @return amount of bytes available for writing */
uint32_t buffer_pipe_write_avail(int32_t id);
/**
* Returns pointer to writable buffer.
* The 'amount' parameter should be obtained by a call to
* buffer_pipe_write_avail().
* @param id ID of buffer_pipe
* @param size amount of bytes to write
* @return pointer to write buffer, or NULL if requested amount
is more than what is available in the buffer */
uint8_t *buffer_pipe_write_get(int32_t id, uint32_t size);
/**
* Updates the write cursor in buffer_pipe.
* @param id ID of buffer_pipe
* @param amount amount of bytes to move write cursor
* @return 0 on success */
int32_t buffer_pipe_write_stopped(int32_t id, uint32_t amount);
/**
* Deallocate memory used by buffer.
* After this all attempts to use this buffer will result in error.
* All buffer_pipes are automatically deallocated when bytecode
* finishes execution.
* @param id ID of buffer_pipe
* @return 0 on success */
int32_t buffer_pipe_done(int32_t id);
/**
* Initializes inflate data structures for decompressing data
* 'from_buffer' and writing uncompressed uncompressed data 'to_buffer'.
* @param from_buffer ID of buffer_pipe to read compressed data from
* @param to_buffer ID of buffer_pipe to write decompressed data to
* @param windowBits (see zlib documentation)
* @return ID of newly created inflate data structure, <0 on failure */
int32_t inflate_init(int32_t from_buffer, int32_t to_buffer, int32_t windowBits);
/**
* Inflate all available data in the input buffer, and write to output buffer.
* Stops when the input buffer becomes empty, or write buffer becomes full.
* Also attempts to recover from corrupted inflate stream (via inflateSync).
* This function can be called repeatedly on success after filling the input
* buffer, and flushing the output buffer.
* The inflate stream is done processing when 0 bytes are available from output
* buffer, and input buffer is not empty.
* @param id ID of inflate data structure
* @return 0 on success, zlib error code otherwise */
int32_t inflate_process(int32_t id);
/**
* Deallocates inflate data structure.
* Using the inflate data structure after this will result in an error.
* All inflate data structures are automatically deallocated when bytecode
* finishes execution.
* @param id ID of inflate data structure
* @return 0 on success.*/
int32_t inflate_done(int32_t id);
/**
* Report a runtime error at the specified locationID.
* @param locationid (line << 8) | (column&0xff)
* @return 0 */
int32_t bytecode_rt_error(int32_t locationid);
/**
* Initializes JS normalizer for reading 'from_buffer'.
* Normalized JS will be written to a single tempfile,
* one normalized JS per line, and automatically scanned
* when the bytecode finishes execution.
* @param from_buffer ID of buffer_pipe to read javascript from
* @return ID of JS normalizer, <0 on failure */
int32_t jsnorm_init(int32_t from_buffer);
/**
* Normalize all javascript from the input buffer, and write to tempfile.
* You can call this function repeatedly on success, if you (re)fill the input
* buffer.
* @param id ID of JS normalizer
* @return 0 on success, <0 on failure */
int32_t jsnorm_process(int32_t id);
/**
* Flushes JS normalizer.
* @param id ID of js normalizer to flush */
int32_t jsnorm_done(int32_t id);
/* ---------------- END 0.96 APIs (don't touch) --------------------------- */
/* ---------------- BEGIN 0.96.1 APIs ------------------------------------- */
/** --------------- math -----------------*/
/**
* Returns 2^26*log2(a/b)
* @param a input
* @param b input
* @return 2^26*log2(a/b)
*/
int32_t ilog2(uint32_t a, uint32_t b);
/**
* Returns c*a^b.
* @param a integer
* @param b integer
* @param c integer
* @return c*pow(a,b)
*/
int32_t ipow(int32_t a, int32_t b, int32_t c);
/**
* Returns exp(a/b)*c
* @param a integer
* @param b integer
* @param c integer
* @return c*exp(a/b)
*/
uint32_t iexp(int32_t a, int32_t b, int32_t c);
/**
* Returns c*sin(a/b).
* @param a integer
* @param b integer
* @param c integer
* @return c*sin(a/b)
*/
int32_t isin(int32_t a, int32_t b, int32_t c);
/**
* Returns c*cos(a/b).
* @param a integer
* @param b integer
* @param c integer
* @return c*sin(a/b)
*/
int32_t icos(int32_t a, int32_t b, int32_t c);
/** --------------- string operations -----------------*/
/**
* Return position of match, -1 otherwise.
* @param haystack buffer to search
* @param haysize size of \p haystack
* @param needle substring to search
* @param needlesize size of needle
* @return location of match, -1 otherwise
*/
int32_t memstr(const uint8_t* haystack, int32_t haysize,
const uint8_t* needle, int32_t needlesize);
/**
* Returns hexadecimal characters \p hex1 and \p hex2 converted to 8-bit
* number.
* @param hex1 hexadecimal character
* @param hex2 hexadecimal character
* @return hex1 hex2 converted to 8-bit integer, -1 on error
*/
int32_t hex2ui(uint32_t hex1, uint32_t hex2);
/**
* Converts string to positive number.
* @param str buffer
* @param size size of \p str
* @return >0 string converted to number if possible, -1 on error
*/
int32_t atoi(const uint8_t* str, int32_t size);
/**
* Prints a debug message with a trailing newline,
* but preceded by 'LibClamAV debug'.
* @param str the string
* @param len length of \p str
* @return 0
*/
uint32_t debug_print_str_start(const uint8_t *str, uint32_t len);
/**
* Prints a debug message with a trailing newline,
* and not preceded by 'LibClamAV debug'.
* @param str the string
* @param len length of \p str
* @return 0
*/
uint32_t debug_print_str_nonl(const uint8_t *str, uint32_t len);
/**
* Returns an approximation for the entropy of \p buffer.
* @param buffer input buffer
* @param size size of buffer
* @return entropy estimation * 2^26
*/
uint32_t entropy_buffer(uint8_t* buffer, int32_t size);
/* ------------------ data structures -------------------- */
/**
* Creates a new map and returns its id.
* @param keysize size of key
* @param valuesize size of value, if 0 then value is allocated separately
* @return ID of new map */
int32_t map_new(int32_t keysize, int32_t valuesize);
/**
* Inserts the specified key/value pair into the map.
* @param id id of table
* @param key key
* @param ksize size of \p key
* @return 0 - if key existed before
1 - if key didn't exist before
<0 - if ksize doesn't match keysize specified at table creation
*/
int32_t map_addkey(const uint8_t *key, int32_t ksize, int32_t id);
/**
* Sets the value for the last inserted key with map_addkey.
* @param id id of table
* @param value value
* @param vsize size of \p value
* @return 0 - if update was successful
<0 - if there is no last key
*/
int32_t map_setvalue(const uint8_t *value, int32_t vsize, int32_t id);
/**
* Remove an element from the map.
* @param id id of map
* @param key key
* @param ksize size of key
* @return 0 on success, key was present
1 if key was not present
<0 if ksize doesn't match keysize specified at table creation
*/
int32_t map_remove(const uint8_t* key, int32_t ksize, int32_t id);
/**
* Looks up key in map.
* The map remember the last looked up key (so you can retrieve the
* value).
*
* @param id id of map
* @param key key
* @param ksize size of key
* @return 0 - if not found
1 - if found
<0 - if ksize doesn't match the size specified at table creation
*/
int32_t map_find(const uint8_t* key, int32_t ksize, int32_t id);
/**
* Returns the size of value obtained during last map_find.
* @param id id of map.
* @return size of value
*/
int32_t map_getvaluesize(int32_t id);
/**
* Returns the value obtained during last map_find.
* @param id id of map.
* @param size size of value (obtained from map_getvaluesize)
* @return value
*/
uint8_t* map_getvalue(int32_t id, int32_t size);
/**
* Deallocates the memory used by the specified map.
* Trying to use the map after this will result in an error.
* All maps are automatically deallocated when the bytecode finishes
* execution.
*/
int32_t map_done(int32_t id);
/** -------------- file operations --------------------- */
/** Looks for the specified sequence of bytes in the current file, up to the
* specified position.
* @param[in] data the sequence of bytes to look for
* @param len length of \p data, cannot be more than 1024
* @param maxpos maximum position to look for a match,
* note that this is 1 byte after the end of last possible match:
* match_pos + \p len < \p maxpos
* @return offset in the current file if match is found, -1 otherwise */
int32_t file_find_limit(const uint8_t *data, uint32_t len, int32_t maxpos);
/** ------------- engine query ------------------------ */
/**
* Returns the current engine (feature) functionality level.
*/
uint32_t engine_functionality_level(void);
/**
* Returns the current engine (dconf) functionality level.
*/
uint32_t engine_dconf_level(void);
/**
* Returns the current engine's scan options.
*/
uint32_t engine_scan_options(void);
/**
* Returns the current engine's db options.
*/
uint32_t engine_db_options(void);
/* ---------------- scan control --------------------------- */
/**
* Sets the container type for the currently extracted file.
* @param container container type (CL_TYPE_*)
* @return current setting for container (CL_TYPE_ANY default)
*/
int32_t extract_set_container(uint32_t container);
/**
* Toggles the read/seek API to read from the currently extracted file, and
* back.
* You must call seek after switching inputs to position the cursor to a valid
* position.
* @param extracted_file 1 - switch to reading from extracted file,
0 - switch back to original input
* @return -1 on error (if no extracted file exists)
0 on success
*/
int32_t input_switch(int32_t extracted_file);
/* ---------------- END 0.96.1 APIs ------------------------------------- */
#endif
#endif