|
|
|
|
/*-------------------------------------------------------------------------
|
|
|
|
|
*
|
|
|
|
|
* pathnode.h
|
|
|
|
|
* prototypes for pathnode.c, relnode.c.
|
|
|
|
|
*
|
|
|
|
|
*
|
|
|
|
|
* Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
|
|
|
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
|
|
|
*
|
|
|
|
|
* src/include/optimizer/pathnode.h
|
|
|
|
|
*
|
|
|
|
|
*-------------------------------------------------------------------------
|
|
|
|
|
*/
|
|
|
|
|
#ifndef PATHNODE_H
|
|
|
|
|
#define PATHNODE_H
|
|
|
|
|
|
Support Parallel Append plan nodes.
When we create an Append node, we can spread out the workers over the
subplans instead of piling on to each subplan one at a time, which
should typically be a bit more efficient, both because the startup
cost of any plan executed entirely by one worker is paid only once and
also because of reduced contention. We can also construct Append
plans using a mix of partial and non-partial subplans, which may allow
for parallelism in places that otherwise couldn't support it.
Unfortunately, this patch doesn't handle the important case of
parallelizing UNION ALL by running each branch in a separate worker;
the executor infrastructure is added here, but more planner work is
needed.
Amit Khandekar, Robert Haas, Amul Sul, reviewed and tested by
Ashutosh Bapat, Amit Langote, Rafia Sabih, Amit Kapila, and
Rajkumar Raghuwanshi.
Discussion: http://postgr.es/m/CAJ3gD9dy0K_E8r727heqXoBmWZ83HwLFwdcaSSmBQ1+S+vRuUQ@mail.gmail.com
8 years ago
|
|
|
#include "nodes/bitmapset.h"
|
|
|
|
|
#include "nodes/pathnodes.h"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* prototypes for pathnode.c
|
|
|
|
|
*/
|
|
|
|
|
extern int compare_path_costs(Path *path1, Path *path2,
|
|
|
|
|
CostSelector criterion);
|
|
|
|
|
extern int compare_fractional_path_costs(Path *path1, Path *path2,
|
|
|
|
|
double fraction);
|
|
|
|
|
extern void set_cheapest(RelOptInfo *parent_rel);
|
|
|
|
|
extern void add_path(RelOptInfo *parent_rel, Path *new_path);
|
|
|
|
|
extern bool add_path_precheck(RelOptInfo *parent_rel,
|
|
|
|
|
Cost startup_cost, Cost total_cost,
|
|
|
|
|
List *pathkeys, Relids required_outer);
|
|
|
|
|
extern void add_partial_path(RelOptInfo *parent_rel, Path *new_path);
|
|
|
|
|
extern bool add_partial_path_precheck(RelOptInfo *parent_rel,
|
|
|
|
|
Cost total_cost, List *pathkeys);
|
|
|
|
|
|
Revise parameterized-path mechanism to fix assorted issues.
This patch adjusts the treatment of parameterized paths so that all paths
with the same parameterization (same set of required outer rels) for the
same relation will have the same rowcount estimate. We cache the rowcount
estimates to ensure that property, and hopefully save a few cycles too.
Doing this makes it practical for add_path_precheck to operate without
a rowcount estimate: it need only assume that paths with different
parameterizations never dominate each other, which is close enough to
true anyway for coarse filtering, because normally a more-parameterized
path should yield fewer rows thanks to having more join clauses to apply.
In add_path, we do the full nine yards of comparing rowcount estimates
along with everything else, so that we can discard parameterized paths that
don't actually have an advantage. This fixes some issues I'd found with
add_path rejecting parameterized paths on the grounds that they were more
expensive than not-parameterized ones, even though they yielded many fewer
rows and hence would be cheaper once subsequent joining was considered.
To make the same-rowcounts assumption valid, we have to require that any
parameterized path enforce *all* join clauses that could be obtained from
the particular set of outer rels, even if not all of them are useful for
indexing. This is required at both base scans and joins. It's a good
thing anyway since the net impact is that join quals are checked at the
lowest practical level in the join tree. Hence, discard the original
rather ad-hoc mechanism for choosing parameterization joinquals, and build
a better one that has a more principled rule for when clauses can be moved.
The original rule was actually buggy anyway for lack of knowledge about
which relations are part of an outer join's outer side; getting this right
requires adding an outer_relids field to RestrictInfo.
14 years ago
|
|
|
extern Path *create_seqscan_path(PlannerInfo *root, RelOptInfo *rel,
|
|
|
|
|
Relids required_outer, int parallel_workers);
|
|
|
|
|
extern Path *create_samplescan_path(PlannerInfo *root, RelOptInfo *rel,
|
|
|
|
|
Relids required_outer);
|
|
|
|
|
extern IndexPath *create_index_path(PlannerInfo *root,
|
|
|
|
|
IndexOptInfo *index,
|
|
|
|
|
List *indexclauses,
|
|
|
|
|
List *indexorderbys,
|
|
|
|
|
List *indexorderbycols,
|
|
|
|
|
List *pathkeys,
|
|
|
|
|
ScanDirection indexscandir,
|
|
|
|
|
bool indexonly,
|
|
|
|
|
Relids required_outer,
|
|
|
|
|
double loop_count,
|
|
|
|
|
bool partial_path);
|
|
|
|
|
extern BitmapHeapPath *create_bitmap_heap_path(PlannerInfo *root,
|
|
|
|
|
RelOptInfo *rel,
|
|
|
|
|
Path *bitmapqual,
|
|
|
|
|
Relids required_outer,
|
|
|
|
|
double loop_count,
|
|
|
|
|
int parallel_degree);
|
|
|
|
|
extern BitmapAndPath *create_bitmap_and_path(PlannerInfo *root,
|
|
|
|
|
RelOptInfo *rel,
|
|
|
|
|
List *bitmapquals);
|
|
|
|
|
extern BitmapOrPath *create_bitmap_or_path(PlannerInfo *root,
|
|
|
|
|
RelOptInfo *rel,
|
|
|
|
|
List *bitmapquals);
|
|
|
|
|
extern TidPath *create_tidscan_path(PlannerInfo *root, RelOptInfo *rel,
|
|
|
|
|
List *tidquals, Relids required_outer);
|
|
|
|
|
extern TidRangePath *create_tidrangescan_path(PlannerInfo *root,
|
|
|
|
|
RelOptInfo *rel,
|
|
|
|
|
List *tidrangequals,
|
|
|
|
|
Relids required_outer);
|
Support partition pruning at execution time
Existing partition pruning is only able to work at plan time, for query
quals that appear in the parsed query. This is good but limiting, as
there can be parameters that appear later that can be usefully used to
further prune partitions.
This commit adds support for pruning subnodes of Append which cannot
possibly contain any matching tuples, during execution, by evaluating
Params to determine the minimum set of subnodes that can possibly match.
We support more than just simple Params in WHERE clauses. Support
additionally includes:
1. Parameterized Nested Loop Joins: The parameter from the outer side of the
join can be used to determine the minimum set of inner side partitions to
scan.
2. Initplans: Once an initplan has been executed we can then determine which
partitions match the value from the initplan.
Partition pruning is performed in two ways. When Params external to the plan
are found to match the partition key we attempt to prune away unneeded Append
subplans during the initialization of the executor. This allows us to bypass
the initialization of non-matching subplans meaning they won't appear in the
EXPLAIN or EXPLAIN ANALYZE output.
For parameters whose value is only known during the actual execution
then the pruning of these subplans must wait. Subplans which are
eliminated during this stage of pruning are still visible in the EXPLAIN
output. In order to determine if pruning has actually taken place, the
EXPLAIN ANALYZE must be viewed. If a certain Append subplan was never
executed due to the elimination of the partition then the execution
timing area will state "(never executed)". Whereas, if, for example in
the case of parameterized nested loops, the number of loops stated in
the EXPLAIN ANALYZE output for certain subplans may appear lower than
others due to the subplan having been scanned fewer times. This is due
to the list of matching subnodes having to be evaluated whenever a
parameter which was found to match the partition key changes.
This commit required some additional infrastructure that permits the
building of a data structure which is able to perform the translation of
the matching partition IDs, as returned by get_matching_partitions, into
the list index of a subpaths list, as exist in node types such as
Append, MergeAppend and ModifyTable. This allows us to translate a list
of clauses into a Bitmapset of all the subpath indexes which must be
included to satisfy the clause list.
Author: David Rowley, based on an earlier effort by Beena Emerson
Reviewers: Amit Langote, Robert Haas, Amul Sul, Rajkumar Raghuwanshi,
Jesper Pedersen
Discussion: https://postgr.es/m/CAOG9ApE16ac-_VVZVvv0gePSgkg_BwYEV1NBqZFqDR2bBE0X0A@mail.gmail.com
8 years ago
|
|
|
extern AppendPath *create_append_path(PlannerInfo *root, RelOptInfo *rel,
|
|
|
|
|
List *subpaths, List *partial_subpaths,
|
|
|
|
|
List *pathkeys, Relids required_outer,
|
|
|
|
|
int parallel_workers, bool parallel_aware,
|
|
|
|
|
double rows);
|
|
|
|
|
extern MergeAppendPath *create_merge_append_path(PlannerInfo *root,
|
|
|
|
|
RelOptInfo *rel,
|
|
|
|
|
List *subpaths,
|
|
|
|
|
List *pathkeys,
|
|
|
|
|
Relids required_outer);
|
In the planner, replace an empty FROM clause with a dummy RTE.
The fact that "SELECT expression" has no base relations has long been a
thorn in the side of the planner. It makes it hard to flatten a sub-query
that looks like that, or is a trivial VALUES() item, because the planner
generally uses relid sets to identify sub-relations, and such a sub-query
would have an empty relid set if we flattened it. prepjointree.c contains
some baroque logic that works around this in certain special cases --- but
there is a much better answer. We can replace an empty FROM clause with a
dummy RTE that acts like a table of one row and no columns, and then there
are no such corner cases to worry about. Instead we need some logic to
get rid of useless dummy RTEs, but that's simpler and covers more cases
than what was there before.
For really trivial cases, where the query is just "SELECT expression" and
nothing else, there's a hazard that adding the extra RTE makes for a
noticeable slowdown; even though it's not much processing, there's not
that much for the planner to do overall. However testing says that the
penalty is very small, close to the noise level. In more complex queries,
this is able to find optimizations that we could not find before.
The new RTE type is called RTE_RESULT, since the "scan" plan type it
gives rise to is a Result node (the same plan we produced for a "SELECT
expression" query before). To avoid confusion, rename the old ResultPath
path type to GroupResultPath, reflecting that it's only used in degenerate
grouping cases where we know the query produces just one grouped row.
(It wouldn't work to unify the two cases, because there are different
rules about where the associated quals live during query_planner.)
Note: although this touches readfuncs.c, I don't think a catversion
bump is required, because the added case can't occur in stored rules,
only plans.
Patch by me, reviewed by David Rowley and Mark Dilger
Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us
7 years ago
|
|
|
extern GroupResultPath *create_group_result_path(PlannerInfo *root,
|
|
|
|
|
RelOptInfo *rel,
|
|
|
|
|
PathTarget *target,
|
|
|
|
|
List *havingqual);
|
|
|
|
|
extern MaterialPath *create_material_path(RelOptInfo *rel, Path *subpath);
|
|
|
|
|
extern UniquePath *create_unique_path(PlannerInfo *root, RelOptInfo *rel,
|
|
|
|
|
Path *subpath, SpecialJoinInfo *sjinfo);
|
Add a Gather executor node.
A Gather executor node runs any number of copies of a plan in an equal
number of workers and merges all of the results into a single tuple
stream. It can also run the plan itself, if the workers are
unavailable or haven't started up yet. It is intended to work with
the Partial Seq Scan node which will be added in future commits.
It could also be used to implement parallel query of a different sort
by itself, without help from Partial Seq Scan, if the single_copy mode
is used. In that mode, a worker executes the plan, and the parallel
leader does not, merely collecting the worker's results. So, a Gather
node could be inserted into a plan to split the execution of that plan
across two processes. Nested Gather nodes aren't currently supported,
but we might want to add support for that in the future.
There's nothing in the planner to actually generate Gather nodes yet,
so it's not quite time to break out the champagne. But we're getting
close.
Amit Kapila. Some designs suggestions were provided by me, and I also
reviewed the patch. Single-copy mode, documentation, and other minor
changes also by me.
10 years ago
|
|
|
extern GatherPath *create_gather_path(PlannerInfo *root,
|
|
|
|
|
RelOptInfo *rel, Path *subpath, PathTarget *target,
|
|
|
|
|
Relids required_outer, double *rows);
|
|
|
|
|
extern GatherMergePath *create_gather_merge_path(PlannerInfo *root,
|
|
|
|
|
RelOptInfo *rel,
|
|
|
|
|
Path *subpath,
|
|
|
|
|
PathTarget *target,
|
|
|
|
|
List *pathkeys,
|
|
|
|
|
Relids required_outer,
|
|
|
|
|
double *rows);
|
Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is. This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps. Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step. We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.
In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan. It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation. (A couple of regression test outputs change in consequence of
that. However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)
There is a great deal left to do here. This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations. (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.) I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.
Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
10 years ago
|
|
|
extern SubqueryScanPath *create_subqueryscan_path(PlannerInfo *root,
|
|
|
|
|
RelOptInfo *rel, Path *subpath,
|
|
|
|
|
List *pathkeys, Relids required_outer);
|
|
|
|
|
extern Path *create_functionscan_path(PlannerInfo *root, RelOptInfo *rel,
|
|
|
|
|
List *pathkeys, Relids required_outer);
|
|
|
|
|
extern Path *create_valuesscan_path(PlannerInfo *root, RelOptInfo *rel,
|
|
|
|
|
Relids required_outer);
|
|
|
|
|
extern Path *create_tablefuncscan_path(PlannerInfo *root, RelOptInfo *rel,
|
|
|
|
|
Relids required_outer);
|
|
|
|
|
extern Path *create_ctescan_path(PlannerInfo *root, RelOptInfo *rel,
|
|
|
|
|
Relids required_outer);
|
|
|
|
|
extern Path *create_namedtuplestorescan_path(PlannerInfo *root, RelOptInfo *rel,
|
|
|
|
|
Relids required_outer);
|
In the planner, replace an empty FROM clause with a dummy RTE.
The fact that "SELECT expression" has no base relations has long been a
thorn in the side of the planner. It makes it hard to flatten a sub-query
that looks like that, or is a trivial VALUES() item, because the planner
generally uses relid sets to identify sub-relations, and such a sub-query
would have an empty relid set if we flattened it. prepjointree.c contains
some baroque logic that works around this in certain special cases --- but
there is a much better answer. We can replace an empty FROM clause with a
dummy RTE that acts like a table of one row and no columns, and then there
are no such corner cases to worry about. Instead we need some logic to
get rid of useless dummy RTEs, but that's simpler and covers more cases
than what was there before.
For really trivial cases, where the query is just "SELECT expression" and
nothing else, there's a hazard that adding the extra RTE makes for a
noticeable slowdown; even though it's not much processing, there's not
that much for the planner to do overall. However testing says that the
penalty is very small, close to the noise level. In more complex queries,
this is able to find optimizations that we could not find before.
The new RTE type is called RTE_RESULT, since the "scan" plan type it
gives rise to is a Result node (the same plan we produced for a "SELECT
expression" query before). To avoid confusion, rename the old ResultPath
path type to GroupResultPath, reflecting that it's only used in degenerate
grouping cases where we know the query produces just one grouped row.
(It wouldn't work to unify the two cases, because there are different
rules about where the associated quals live during query_planner.)
Note: although this touches readfuncs.c, I don't think a catversion
bump is required, because the added case can't occur in stored rules,
only plans.
Patch by me, reviewed by David Rowley and Mark Dilger
Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us
7 years ago
|
|
|
extern Path *create_resultscan_path(PlannerInfo *root, RelOptInfo *rel,
|
|
|
|
|
Relids required_outer);
|
|
|
|
|
extern Path *create_worktablescan_path(PlannerInfo *root, RelOptInfo *rel,
|
|
|
|
|
Relids required_outer);
|
|
|
|
|
extern ForeignPath *create_foreignscan_path(PlannerInfo *root, RelOptInfo *rel,
|
|
|
|
|
PathTarget *target,
|
|
|
|
|
double rows, Cost startup_cost, Cost total_cost,
|
|
|
|
|
List *pathkeys,
|
|
|
|
|
Relids required_outer,
|
|
|
|
|
Path *fdw_outerpath,
|
|
|
|
|
List *fdw_private);
|
Split create_foreignscan_path() into three functions.
Up to now postgres_fdw has been using create_foreignscan_path() to
generate not only base-relation paths, but also paths for foreign joins
and foreign upperrels. This is wrong, because create_foreignscan_path()
calls get_baserel_parampathinfo() which will only do the right thing for
baserels. It accidentally fails to fail for unparameterized paths, which
are the only ones postgres_fdw (thought it) was handling, but we really
need different APIs for the baserel and join cases.
In HEAD, the best thing to do seems to be to split up the baserel,
joinrel, and upperrel cases into three functions so that they can
have different APIs. I haven't actually given create_foreign_join_path
a different API in this commit: we should spend a bit of time thinking
about just what we want to do there, since perhaps FDWs would want to
do something different from the build-up-a-join-pairwise approach that
get_joinrel_parampathinfo expects. In the meantime, since postgres_fdw
isn't prepared to generate parameterized joins anyway, just give it a
defense against trying to plan joins with lateral refs.
In addition (and this is what triggered this whole mess) fix bug #15613
from Srinivasan S A, by teaching file_fdw and postgres_fdw that plain
baserel foreign paths still have outer refs if the relation has
lateral_relids. Add some assertions in relnode.c to catch future
occurrences of the same error --- in particular, to catch other FDWs
doing that, but also as backstop against core-code mistakes like the
one fixed by commit bdd9a99aa.
Bug #15613 also needs to be fixed in the back branches, but the
appropriate fix will look quite a bit different there, since we don't
want to assume that existing FDWs get the word right away.
Discussion: https://postgr.es/m/15613-092be1be9576c728@postgresql.org
7 years ago
|
|
|
extern ForeignPath *create_foreign_join_path(PlannerInfo *root, RelOptInfo *rel,
|
|
|
|
|
PathTarget *target,
|
|
|
|
|
double rows, Cost startup_cost, Cost total_cost,
|
|
|
|
|
List *pathkeys,
|
|
|
|
|
Relids required_outer,
|
|
|
|
|
Path *fdw_outerpath,
|
|
|
|
|
List *fdw_private);
|
Split create_foreignscan_path() into three functions.
Up to now postgres_fdw has been using create_foreignscan_path() to
generate not only base-relation paths, but also paths for foreign joins
and foreign upperrels. This is wrong, because create_foreignscan_path()
calls get_baserel_parampathinfo() which will only do the right thing for
baserels. It accidentally fails to fail for unparameterized paths, which
are the only ones postgres_fdw (thought it) was handling, but we really
need different APIs for the baserel and join cases.
In HEAD, the best thing to do seems to be to split up the baserel,
joinrel, and upperrel cases into three functions so that they can
have different APIs. I haven't actually given create_foreign_join_path
a different API in this commit: we should spend a bit of time thinking
about just what we want to do there, since perhaps FDWs would want to
do something different from the build-up-a-join-pairwise approach that
get_joinrel_parampathinfo expects. In the meantime, since postgres_fdw
isn't prepared to generate parameterized joins anyway, just give it a
defense against trying to plan joins with lateral refs.
In addition (and this is what triggered this whole mess) fix bug #15613
from Srinivasan S A, by teaching file_fdw and postgres_fdw that plain
baserel foreign paths still have outer refs if the relation has
lateral_relids. Add some assertions in relnode.c to catch future
occurrences of the same error --- in particular, to catch other FDWs
doing that, but also as backstop against core-code mistakes like the
one fixed by commit bdd9a99aa.
Bug #15613 also needs to be fixed in the back branches, but the
appropriate fix will look quite a bit different there, since we don't
want to assume that existing FDWs get the word right away.
Discussion: https://postgr.es/m/15613-092be1be9576c728@postgresql.org
7 years ago
|
|
|
extern ForeignPath *create_foreign_upper_path(PlannerInfo *root, RelOptInfo *rel,
|
|
|
|
|
PathTarget *target,
|
|
|
|
|
double rows, Cost startup_cost, Cost total_cost,
|
|
|
|
|
List *pathkeys,
|
|
|
|
|
Path *fdw_outerpath,
|
|
|
|
|
List *fdw_private);
|
|
|
|
|
|
|
|
|
|
extern Relids calc_nestloop_required_outer(Relids outerrelids,
|
|
|
|
|
Relids outer_paramrels,
|
|
|
|
|
Relids innerrelids,
|
|
|
|
|
Relids inner_paramrels);
|
|
|
|
|
extern Relids calc_non_nestloop_required_outer(Path *outer_path, Path *inner_path);
|
|
|
|
|
|
|
|
|
|
extern NestPath *create_nestloop_path(PlannerInfo *root,
|
|
|
|
|
RelOptInfo *joinrel,
|
|
|
|
|
JoinType jointype,
|
|
|
|
|
JoinCostWorkspace *workspace,
|
|
|
|
|
JoinPathExtraData *extra,
|
|
|
|
|
Path *outer_path,
|
|
|
|
|
Path *inner_path,
|
|
|
|
|
List *restrict_clauses,
|
|
|
|
|
List *pathkeys,
|
|
|
|
|
Relids required_outer);
|
|
|
|
|
|
|
|
|
|
extern MergePath *create_mergejoin_path(PlannerInfo *root,
|
|
|
|
|
RelOptInfo *joinrel,
|
|
|
|
|
JoinType jointype,
|
|
|
|
|
JoinCostWorkspace *workspace,
|
|
|
|
|
JoinPathExtraData *extra,
|
|
|
|
|
Path *outer_path,
|
|
|
|
|
Path *inner_path,
|
|
|
|
|
List *restrict_clauses,
|
|
|
|
|
List *pathkeys,
|
|
|
|
|
Relids required_outer,
|
|
|
|
|
List *mergeclauses,
|
|
|
|
|
List *outersortkeys,
|
|
|
|
|
List *innersortkeys);
|
|
|
|
|
|
|
|
|
|
extern HashPath *create_hashjoin_path(PlannerInfo *root,
|
|
|
|
|
RelOptInfo *joinrel,
|
|
|
|
|
JoinType jointype,
|
|
|
|
|
JoinCostWorkspace *workspace,
|
|
|
|
|
JoinPathExtraData *extra,
|
|
|
|
|
Path *outer_path,
|
|
|
|
|
Path *inner_path,
|
|
|
|
|
bool parallel_hash,
|
|
|
|
|
List *restrict_clauses,
|
|
|
|
|
Relids required_outer,
|
|
|
|
|
List *hashclauses);
|
|
|
|
|
|
Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is. This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps. Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step. We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.
In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan. It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation. (A couple of regression test outputs change in consequence of
that. However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)
There is a great deal left to do here. This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations. (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.) I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.
Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
10 years ago
|
|
|
extern ProjectionPath *create_projection_path(PlannerInfo *root,
|
|
|
|
|
RelOptInfo *rel,
|
|
|
|
|
Path *subpath,
|
|
|
|
|
PathTarget *target);
|
Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is. This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps. Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step. We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.
In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan. It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation. (A couple of regression test outputs change in consequence of
that. However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)
There is a great deal left to do here. This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations. (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.) I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.
Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
10 years ago
|
|
|
extern Path *apply_projection_to_path(PlannerInfo *root,
|
|
|
|
|
RelOptInfo *rel,
|
|
|
|
|
Path *path,
|
|
|
|
|
PathTarget *target);
|
Move targetlist SRF handling from expression evaluation to new executor node.
Evaluation of set returning functions (SRFs_ in the targetlist (like SELECT
generate_series(1,5)) so far was done in the expression evaluation (i.e.
ExecEvalExpr()) and projection (i.e. ExecProject/ExecTargetList) code.
This meant that most executor nodes performing projection, and most
expression evaluation functions, had to deal with the possibility that an
evaluated expression could return a set of return values.
That's bad because it leads to repeated code in a lot of places. It also,
and that's my (Andres's) motivation, made it a lot harder to implement a
more efficient way of doing expression evaluation.
To fix this, introduce a new executor node (ProjectSet) that can evaluate
targetlists containing one or more SRFs. To avoid the complexity of the old
way of handling nested expressions returning sets (e.g. having to pass up
ExprDoneCond, and dealing with arguments to functions returning sets etc.),
those SRFs can only be at the top level of the node's targetlist. The
planner makes sure (via split_pathtarget_at_srfs()) that SRF evaluation is
only necessary in ProjectSet nodes and that SRFs are only present at the
top level of the node's targetlist. If there are nested SRFs the planner
creates multiple stacked ProjectSet nodes. The ProjectSet nodes always get
input from an underlying node.
We also discussed and prototyped evaluating targetlist SRFs using ROWS
FROM(), but that turned out to be more complicated than we'd hoped.
While moving SRF evaluation to ProjectSet would allow to retain the old
"least common multiple" behavior when multiple SRFs are present in one
targetlist (i.e. continue returning rows until all SRFs are at the end of
their input at the same time), we decided to instead only return rows till
all SRFs are exhausted, returning NULL for already exhausted ones. We
deemed the previous behavior to be too confusing, unexpected and actually
not particularly useful.
As a side effect, the previously prohibited case of multiple set returning
arguments to a function, is now allowed. Not because it's particularly
desirable, but because it ends up working and there seems to be no argument
for adding code to prohibit it.
Currently the behavior for COALESCE and CASE containing SRFs has changed,
returning multiple rows from the expression, even when the SRF containing
"arm" of the expression is not evaluated. That's because the SRFs are
evaluated in a separate ProjectSet node. As that's quite confusing, we're
likely to instead prohibit SRFs in those places. But that's still being
discussed, and the code would reside in places not touched here, so that's
a task for later.
There's a lot of, now superfluous, code dealing with set return expressions
around. But as the changes to get rid of those are verbose largely boring,
it seems better for readability to keep the cleanup as a separate commit.
Author: Tom Lane and Andres Freund
Discussion: https://postgr.es/m/20160822214023.aaxz5l4igypowyri@alap3.anarazel.de
9 years ago
|
|
|
extern ProjectSetPath *create_set_projection_path(PlannerInfo *root,
|
|
|
|
|
RelOptInfo *rel,
|
|
|
|
|
Path *subpath,
|
|
|
|
|
PathTarget *target);
|
Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is. This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps. Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step. We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.
In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan. It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation. (A couple of regression test outputs change in consequence of
that. However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)
There is a great deal left to do here. This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations. (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.) I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.
Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
10 years ago
|
|
|
extern SortPath *create_sort_path(PlannerInfo *root,
|
|
|
|
|
RelOptInfo *rel,
|
|
|
|
|
Path *subpath,
|
|
|
|
|
List *pathkeys,
|
|
|
|
|
double limit_tuples);
|
|
|
|
|
extern IncrementalSortPath *create_incremental_sort_path(PlannerInfo *root,
|
|
|
|
|
RelOptInfo *rel,
|
|
|
|
|
Path *subpath,
|
|
|
|
|
List *pathkeys,
|
|
|
|
|
int presorted_keys,
|
|
|
|
|
double limit_tuples);
|
Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is. This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps. Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step. We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.
In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan. It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation. (A couple of regression test outputs change in consequence of
that. However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)
There is a great deal left to do here. This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations. (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.) I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.
Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
10 years ago
|
|
|
extern GroupPath *create_group_path(PlannerInfo *root,
|
|
|
|
|
RelOptInfo *rel,
|
|
|
|
|
Path *subpath,
|
|
|
|
|
List *groupClause,
|
|
|
|
|
List *qual,
|
|
|
|
|
double numGroups);
|
Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is. This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps. Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step. We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.
In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan. It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation. (A couple of regression test outputs change in consequence of
that. However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)
There is a great deal left to do here. This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations. (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.) I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.
Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
10 years ago
|
|
|
extern UpperUniquePath *create_upper_unique_path(PlannerInfo *root,
|
|
|
|
|
RelOptInfo *rel,
|
|
|
|
|
Path *subpath,
|
|
|
|
|
int numCols,
|
|
|
|
|
double numGroups);
|
Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is. This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps. Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step. We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.
In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan. It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation. (A couple of regression test outputs change in consequence of
that. However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)
There is a great deal left to do here. This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations. (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.) I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.
Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
10 years ago
|
|
|
extern AggPath *create_agg_path(PlannerInfo *root,
|
|
|
|
|
RelOptInfo *rel,
|
|
|
|
|
Path *subpath,
|
|
|
|
|
PathTarget *target,
|
|
|
|
|
AggStrategy aggstrategy,
|
|
|
|
|
AggSplit aggsplit,
|
|
|
|
|
List *groupClause,
|
|
|
|
|
List *qual,
|
|
|
|
|
const AggClauseCosts *aggcosts,
|
|
|
|
|
double numGroups);
|
Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is. This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps. Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step. We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.
In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan. It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation. (A couple of regression test outputs change in consequence of
that. However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)
There is a great deal left to do here. This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations. (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.) I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.
Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
10 years ago
|
|
|
extern GroupingSetsPath *create_groupingsets_path(PlannerInfo *root,
|
|
|
|
|
RelOptInfo *rel,
|
|
|
|
|
Path *subpath,
|
|
|
|
|
List *having_qual,
|
|
|
|
|
AggStrategy aggstrategy,
|
|
|
|
|
List *rollups,
|
|
|
|
|
const AggClauseCosts *agg_costs,
|
|
|
|
|
double numGroups);
|
Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is. This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps. Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step. We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.
In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan. It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation. (A couple of regression test outputs change in consequence of
that. However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)
There is a great deal left to do here. This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations. (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.) I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.
Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
10 years ago
|
|
|
extern MinMaxAggPath *create_minmaxagg_path(PlannerInfo *root,
|
|
|
|
|
RelOptInfo *rel,
|
|
|
|
|
PathTarget *target,
|
|
|
|
|
List *mmaggregates,
|
|
|
|
|
List *quals);
|
Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is. This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps. Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step. We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.
In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan. It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation. (A couple of regression test outputs change in consequence of
that. However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)
There is a great deal left to do here. This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations. (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.) I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.
Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
10 years ago
|
|
|
extern WindowAggPath *create_windowagg_path(PlannerInfo *root,
|
|
|
|
|
RelOptInfo *rel,
|
|
|
|
|
Path *subpath,
|
|
|
|
|
PathTarget *target,
|
|
|
|
|
List *windowFuncs,
|
|
|
|
|
WindowClause *winclause);
|
Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is. This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps. Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step. We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.
In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan. It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation. (A couple of regression test outputs change in consequence of
that. However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)
There is a great deal left to do here. This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations. (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.) I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.
Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
10 years ago
|
|
|
extern SetOpPath *create_setop_path(PlannerInfo *root,
|
|
|
|
|
RelOptInfo *rel,
|
|
|
|
|
Path *subpath,
|
|
|
|
|
SetOpCmd cmd,
|
|
|
|
|
SetOpStrategy strategy,
|
|
|
|
|
List *distinctList,
|
|
|
|
|
AttrNumber flagColIdx,
|
|
|
|
|
int firstFlag,
|
|
|
|
|
double numGroups,
|
|
|
|
|
double outputRows);
|
Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is. This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps. Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step. We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.
In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan. It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation. (A couple of regression test outputs change in consequence of
that. However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)
There is a great deal left to do here. This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations. (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.) I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.
Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
10 years ago
|
|
|
extern RecursiveUnionPath *create_recursiveunion_path(PlannerInfo *root,
|
|
|
|
|
RelOptInfo *rel,
|
|
|
|
|
Path *leftpath,
|
|
|
|
|
Path *rightpath,
|
|
|
|
|
PathTarget *target,
|
|
|
|
|
List *distinctList,
|
|
|
|
|
int wtParam,
|
|
|
|
|
double numGroups);
|
Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is. This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps. Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step. We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.
In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan. It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation. (A couple of regression test outputs change in consequence of
that. However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)
There is a great deal left to do here. This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations. (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.) I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.
Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
10 years ago
|
|
|
extern LockRowsPath *create_lockrows_path(PlannerInfo *root, RelOptInfo *rel,
|
|
|
|
|
Path *subpath, List *rowMarks, int epqParam);
|
Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is. This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps. Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step. We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.
In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan. It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation. (A couple of regression test outputs change in consequence of
that. However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)
There is a great deal left to do here. This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations. (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.) I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.
Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
10 years ago
|
|
|
extern ModifyTablePath *create_modifytable_path(PlannerInfo *root,
|
|
|
|
|
RelOptInfo *rel,
|
|
|
|
|
CmdType operation, bool canSetTag,
|
|
|
|
|
Index nominalRelation, Index rootRelation,
|
|
|
|
|
bool partColsUpdated,
|
|
|
|
|
List *resultRelations, List *subpaths,
|
|
|
|
|
List *subroots,
|
|
|
|
|
List *withCheckOptionLists, List *returningLists,
|
|
|
|
|
List *rowMarks, OnConflictExpr *onconflict,
|
|
|
|
|
int epqParam);
|
Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is. This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps. Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step. We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.
In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan. It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation. (A couple of regression test outputs change in consequence of
that. However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)
There is a great deal left to do here. This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations. (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.) I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.
Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
10 years ago
|
|
|
extern LimitPath *create_limit_path(PlannerInfo *root, RelOptInfo *rel,
|
|
|
|
|
Path *subpath,
|
|
|
|
|
Node *limitOffset, Node *limitCount,
|
|
|
|
|
LimitOption limitOption,
|
|
|
|
|
int64 offset_est, int64 count_est);
|
|
|
|
|
extern void adjust_limit_rows_costs(double *rows,
|
|
|
|
|
Cost *startup_cost, Cost *total_cost,
|
|
|
|
|
int64 offset_est, int64 count_est);
|
Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is. This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps. Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step. We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.
In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan. It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation. (A couple of regression test outputs change in consequence of
that. However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)
There is a great deal left to do here. This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations. (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.) I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.
Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
10 years ago
|
|
|
|
Revise parameterized-path mechanism to fix assorted issues.
This patch adjusts the treatment of parameterized paths so that all paths
with the same parameterization (same set of required outer rels) for the
same relation will have the same rowcount estimate. We cache the rowcount
estimates to ensure that property, and hopefully save a few cycles too.
Doing this makes it practical for add_path_precheck to operate without
a rowcount estimate: it need only assume that paths with different
parameterizations never dominate each other, which is close enough to
true anyway for coarse filtering, because normally a more-parameterized
path should yield fewer rows thanks to having more join clauses to apply.
In add_path, we do the full nine yards of comparing rowcount estimates
along with everything else, so that we can discard parameterized paths that
don't actually have an advantage. This fixes some issues I'd found with
add_path rejecting parameterized paths on the grounds that they were more
expensive than not-parameterized ones, even though they yielded many fewer
rows and hence would be cheaper once subsequent joining was considered.
To make the same-rowcounts assumption valid, we have to require that any
parameterized path enforce *all* join clauses that could be obtained from
the particular set of outer rels, even if not all of them are useful for
indexing. This is required at both base scans and joins. It's a good
thing anyway since the net impact is that join quals are checked at the
lowest practical level in the join tree. Hence, discard the original
rather ad-hoc mechanism for choosing parameterization joinquals, and build
a better one that has a more principled rule for when clauses can be moved.
The original rule was actually buggy anyway for lack of knowledge about
which relations are part of an outer join's outer side; getting this right
requires adding an outer_relids field to RestrictInfo.
14 years ago
|
|
|
extern Path *reparameterize_path(PlannerInfo *root, Path *path,
|
|
|
|
|
Relids required_outer,
|
|
|
|
|
double loop_count);
|
Basic partition-wise join functionality.
Instead of joining two partitioned tables in their entirety we can, if
it is an equi-join on the partition keys, join the matching partitions
individually. This involves teaching the planner about "other join"
rels, which are related to regular join rels in the same way that
other member rels are related to baserels. This can use significantly
more CPU time and memory than regular join planning, because there may
now be a set of "other" rels not only for every base relation but also
for every join relation. In most practical cases, this probably
shouldn't be a problem, because (1) it's probably unusual to join many
tables each with many partitions using the partition keys for all
joins and (2) if you do that scenario then you probably have a big
enough machine to handle the increased memory cost of planning and (3)
the resulting plan is highly likely to be better, so what you spend in
planning you'll make up on the execution side. All the same, for now,
turn this feature off by default.
Currently, we can only perform joins between two tables whose
partitioning schemes are absolutely identical. It would be nice to
cope with other scenarios, such as extra partitions on one side or the
other with no match on the other side, but that will have to wait for
a future patch.
Ashutosh Bapat, reviewed and tested by Rajkumar Raghuwanshi, Amit
Langote, Rafia Sabih, Thomas Munro, Dilip Kumar, Antonin Houska, Amit
Khandekar, and by me. A few final adjustments by me.
Discussion: http://postgr.es/m/CAFjFpRfQ8GrQvzp3jA2wnLqrHmaXna-urjm_UY9BqXj=EaDTSA@mail.gmail.com
Discussion: http://postgr.es/m/CAFjFpRcitjfrULr5jfuKWRPsGUX0LQ0k8-yG0Qw2+1LBGNpMdw@mail.gmail.com
8 years ago
|
|
|
extern Path *reparameterize_path_by_child(PlannerInfo *root, Path *path,
|
|
|
|
|
RelOptInfo *child_rel);
|
Revise parameterized-path mechanism to fix assorted issues.
This patch adjusts the treatment of parameterized paths so that all paths
with the same parameterization (same set of required outer rels) for the
same relation will have the same rowcount estimate. We cache the rowcount
estimates to ensure that property, and hopefully save a few cycles too.
Doing this makes it practical for add_path_precheck to operate without
a rowcount estimate: it need only assume that paths with different
parameterizations never dominate each other, which is close enough to
true anyway for coarse filtering, because normally a more-parameterized
path should yield fewer rows thanks to having more join clauses to apply.
In add_path, we do the full nine yards of comparing rowcount estimates
along with everything else, so that we can discard parameterized paths that
don't actually have an advantage. This fixes some issues I'd found with
add_path rejecting parameterized paths on the grounds that they were more
expensive than not-parameterized ones, even though they yielded many fewer
rows and hence would be cheaper once subsequent joining was considered.
To make the same-rowcounts assumption valid, we have to require that any
parameterized path enforce *all* join clauses that could be obtained from
the particular set of outer rels, even if not all of them are useful for
indexing. This is required at both base scans and joins. It's a good
thing anyway since the net impact is that join quals are checked at the
lowest practical level in the join tree. Hence, discard the original
rather ad-hoc mechanism for choosing parameterization joinquals, and build
a better one that has a more principled rule for when clauses can be moved.
The original rule was actually buggy anyway for lack of knowledge about
which relations are part of an outer join's outer side; getting this right
requires adding an outer_relids field to RestrictInfo.
14 years ago
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* prototypes for relnode.c
|
|
|
|
|
*/
|
|
|
|
|
extern void setup_simple_rel_arrays(PlannerInfo *root);
|
|
|
|
|
extern void expand_planner_arrays(PlannerInfo *root, int add_size);
|
|
|
|
|
extern RelOptInfo *build_simple_rel(PlannerInfo *root, int relid,
|
|
|
|
|
RelOptInfo *parent);
|
|
|
|
|
extern RelOptInfo *find_base_rel(PlannerInfo *root, int relid);
|
|
|
|
|
extern RelOptInfo *find_join_rel(PlannerInfo *root, Relids relids);
|
|
|
|
|
extern RelOptInfo *build_join_rel(PlannerInfo *root,
|
|
|
|
|
Relids joinrelids,
|
|
|
|
|
RelOptInfo *outer_rel,
|
|
|
|
|
RelOptInfo *inner_rel,
|
|
|
|
|
SpecialJoinInfo *sjinfo,
|
|
|
|
|
List **restrictlist_ptr);
|
Still more fixes for planner's handling of LATERAL references.
More fuzz testing by Andreas Seltenreich exposed that the planner did not
cope well with chains of lateral references. If relation X references Y
laterally, and Y references Z laterally, then we will have to scan X on the
inside of a nestloop with Z, so for all intents and purposes X is laterally
dependent on Z too. The planner did not understand this and would generate
intermediate joins that could not be used. While that was usually harmless
except for wasting some planning cycles, under the right circumstances it
would lead to "failed to build any N-way joins" or "could not devise a
query plan" planner failures.
To fix that, convert the existing per-relation lateral_relids and
lateral_referencers relid sets into their transitive closures; that is,
they now show all relations on which a rel is directly or indirectly
laterally dependent. This not only fixes the chained-reference problem
but allows some of the relevant tests to be made substantially simpler
and faster, since they can be reduced to simple bitmap manipulations
instead of searches of the LateralJoinInfo list.
Also, when a PlaceHolderVar that is due to be evaluated at a join contains
lateral references, we should treat those references as indirect lateral
dependencies of each of the join's base relations. This prevents us from
trying to join any individual base relations to the lateral reference
source before the join is formed, which again cannot work.
Andreas' testing also exposed another oversight in the "dangerous
PlaceHolderVar" test added in commit 85e5e222b1dd02f1. Simply rejecting
unsafe join paths in joinpath.c is insufficient, because in some cases
we will end up rejecting *all* possible paths for a particular join, again
leading to "could not devise a query plan" failures. The restriction has
to be known also to join_is_legal and its cohort functions, so that they
will not select a join for which that will happen. I chose to move the
supporting logic into joinrels.c where the latter functions are.
Back-patch to 9.3 where LATERAL support was introduced.
10 years ago
|
|
|
extern Relids min_join_parameterization(PlannerInfo *root,
|
|
|
|
|
Relids joinrelids,
|
|
|
|
|
RelOptInfo *outer_rel,
|
|
|
|
|
RelOptInfo *inner_rel);
|
Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is. This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps. Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step. We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.
In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan. It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation. (A couple of regression test outputs change in consequence of
that. However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)
There is a great deal left to do here. This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations. (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.) I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.
Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
10 years ago
|
|
|
extern RelOptInfo *fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind,
|
|
|
|
|
Relids relids);
|
Fix some more problems with nested append relations.
As of commit a87c72915 (which later got backpatched as far as 9.1),
we're explicitly supporting the notion that append relations can be
nested; this can occur when UNION ALL constructs are nested, or when
a UNION ALL contains a table with inheritance children.
Bug #11457 from Nelson Page, as well as an earlier report from Elvis
Pranskevichus, showed that there were still nasty bugs associated with such
cases: in particular the EquivalenceClass mechanism could try to generate
"join" clauses connecting an appendrel child to some grandparent appendrel,
which would result in assertion failures or bogus plans.
Upon investigation I concluded that all current callers of
find_childrel_appendrelinfo() need to be fixed to explicitly consider
multiple levels of parent appendrels. The most complex fix was in
processing of "broken" EquivalenceClasses, which are ECs for which we have
been unable to generate all the derived equality clauses we would like to
because of missing cross-type equality operators in the underlying btree
operator family. That code path is more or less entirely untested by
the regression tests to date, because no standard opfamilies have such
holes in them. So I wrote a new regression test script to try to exercise
it a bit, which turned out to be quite a worthwhile activity as it exposed
existing bugs in all supported branches.
The present patch is essentially the same as far back as 9.2, which is
where parameterized paths were introduced. In 9.0 and 9.1, we only need
to back-patch a small fragment of commit 5b7b5518d, which fixes failure to
propagate out the original WHERE clauses when a broken EC contains constant
members. (The regression test case results show that these older branches
are noticeably stupider than 9.2+ in terms of the quality of the plans
generated; but we don't really care about plan quality in such cases,
only that the plan not be outright wrong. A more invasive fix in the
older branches would not be a good idea anyway from a plan-stability
standpoint.)
11 years ago
|
|
|
extern Relids find_childrel_parents(PlannerInfo *root, RelOptInfo *rel);
|
Revise parameterized-path mechanism to fix assorted issues.
This patch adjusts the treatment of parameterized paths so that all paths
with the same parameterization (same set of required outer rels) for the
same relation will have the same rowcount estimate. We cache the rowcount
estimates to ensure that property, and hopefully save a few cycles too.
Doing this makes it practical for add_path_precheck to operate without
a rowcount estimate: it need only assume that paths with different
parameterizations never dominate each other, which is close enough to
true anyway for coarse filtering, because normally a more-parameterized
path should yield fewer rows thanks to having more join clauses to apply.
In add_path, we do the full nine yards of comparing rowcount estimates
along with everything else, so that we can discard parameterized paths that
don't actually have an advantage. This fixes some issues I'd found with
add_path rejecting parameterized paths on the grounds that they were more
expensive than not-parameterized ones, even though they yielded many fewer
rows and hence would be cheaper once subsequent joining was considered.
To make the same-rowcounts assumption valid, we have to require that any
parameterized path enforce *all* join clauses that could be obtained from
the particular set of outer rels, even if not all of them are useful for
indexing. This is required at both base scans and joins. It's a good
thing anyway since the net impact is that join quals are checked at the
lowest practical level in the join tree. Hence, discard the original
rather ad-hoc mechanism for choosing parameterization joinquals, and build
a better one that has a more principled rule for when clauses can be moved.
The original rule was actually buggy anyway for lack of knowledge about
which relations are part of an outer join's outer side; getting this right
requires adding an outer_relids field to RestrictInfo.
14 years ago
|
|
|
extern ParamPathInfo *get_baserel_parampathinfo(PlannerInfo *root,
|
|
|
|
|
RelOptInfo *baserel,
|
|
|
|
|
Relids required_outer);
|
Revise parameterized-path mechanism to fix assorted issues.
This patch adjusts the treatment of parameterized paths so that all paths
with the same parameterization (same set of required outer rels) for the
same relation will have the same rowcount estimate. We cache the rowcount
estimates to ensure that property, and hopefully save a few cycles too.
Doing this makes it practical for add_path_precheck to operate without
a rowcount estimate: it need only assume that paths with different
parameterizations never dominate each other, which is close enough to
true anyway for coarse filtering, because normally a more-parameterized
path should yield fewer rows thanks to having more join clauses to apply.
In add_path, we do the full nine yards of comparing rowcount estimates
along with everything else, so that we can discard parameterized paths that
don't actually have an advantage. This fixes some issues I'd found with
add_path rejecting parameterized paths on the grounds that they were more
expensive than not-parameterized ones, even though they yielded many fewer
rows and hence would be cheaper once subsequent joining was considered.
To make the same-rowcounts assumption valid, we have to require that any
parameterized path enforce *all* join clauses that could be obtained from
the particular set of outer rels, even if not all of them are useful for
indexing. This is required at both base scans and joins. It's a good
thing anyway since the net impact is that join quals are checked at the
lowest practical level in the join tree. Hence, discard the original
rather ad-hoc mechanism for choosing parameterization joinquals, and build
a better one that has a more principled rule for when clauses can be moved.
The original rule was actually buggy anyway for lack of knowledge about
which relations are part of an outer join's outer side; getting this right
requires adding an outer_relids field to RestrictInfo.
14 years ago
|
|
|
extern ParamPathInfo *get_joinrel_parampathinfo(PlannerInfo *root,
|
|
|
|
|
RelOptInfo *joinrel,
|
|
|
|
|
Path *outer_path,
|
|
|
|
|
Path *inner_path,
|
|
|
|
|
SpecialJoinInfo *sjinfo,
|
|
|
|
|
Relids required_outer,
|
|
|
|
|
List **restrict_clauses);
|
Revise parameterized-path mechanism to fix assorted issues.
This patch adjusts the treatment of parameterized paths so that all paths
with the same parameterization (same set of required outer rels) for the
same relation will have the same rowcount estimate. We cache the rowcount
estimates to ensure that property, and hopefully save a few cycles too.
Doing this makes it practical for add_path_precheck to operate without
a rowcount estimate: it need only assume that paths with different
parameterizations never dominate each other, which is close enough to
true anyway for coarse filtering, because normally a more-parameterized
path should yield fewer rows thanks to having more join clauses to apply.
In add_path, we do the full nine yards of comparing rowcount estimates
along with everything else, so that we can discard parameterized paths that
don't actually have an advantage. This fixes some issues I'd found with
add_path rejecting parameterized paths on the grounds that they were more
expensive than not-parameterized ones, even though they yielded many fewer
rows and hence would be cheaper once subsequent joining was considered.
To make the same-rowcounts assumption valid, we have to require that any
parameterized path enforce *all* join clauses that could be obtained from
the particular set of outer rels, even if not all of them are useful for
indexing. This is required at both base scans and joins. It's a good
thing anyway since the net impact is that join quals are checked at the
lowest practical level in the join tree. Hence, discard the original
rather ad-hoc mechanism for choosing parameterization joinquals, and build
a better one that has a more principled rule for when clauses can be moved.
The original rule was actually buggy anyway for lack of knowledge about
which relations are part of an outer join's outer side; getting this right
requires adding an outer_relids field to RestrictInfo.
14 years ago
|
|
|
extern ParamPathInfo *get_appendrel_parampathinfo(RelOptInfo *appendrel,
|
|
|
|
|
Relids required_outer);
|
|
|
|
|
extern ParamPathInfo *find_param_path_info(RelOptInfo *rel,
|
|
|
|
|
Relids required_outer);
|
Basic partition-wise join functionality.
Instead of joining two partitioned tables in their entirety we can, if
it is an equi-join on the partition keys, join the matching partitions
individually. This involves teaching the planner about "other join"
rels, which are related to regular join rels in the same way that
other member rels are related to baserels. This can use significantly
more CPU time and memory than regular join planning, because there may
now be a set of "other" rels not only for every base relation but also
for every join relation. In most practical cases, this probably
shouldn't be a problem, because (1) it's probably unusual to join many
tables each with many partitions using the partition keys for all
joins and (2) if you do that scenario then you probably have a big
enough machine to handle the increased memory cost of planning and (3)
the resulting plan is highly likely to be better, so what you spend in
planning you'll make up on the execution side. All the same, for now,
turn this feature off by default.
Currently, we can only perform joins between two tables whose
partitioning schemes are absolutely identical. It would be nice to
cope with other scenarios, such as extra partitions on one side or the
other with no match on the other side, but that will have to wait for
a future patch.
Ashutosh Bapat, reviewed and tested by Rajkumar Raghuwanshi, Amit
Langote, Rafia Sabih, Thomas Munro, Dilip Kumar, Antonin Houska, Amit
Khandekar, and by me. A few final adjustments by me.
Discussion: http://postgr.es/m/CAFjFpRfQ8GrQvzp3jA2wnLqrHmaXna-urjm_UY9BqXj=EaDTSA@mail.gmail.com
Discussion: http://postgr.es/m/CAFjFpRcitjfrULr5jfuKWRPsGUX0LQ0k8-yG0Qw2+1LBGNpMdw@mail.gmail.com
8 years ago
|
|
|
extern RelOptInfo *build_child_join_rel(PlannerInfo *root,
|
|
|
|
|
RelOptInfo *outer_rel, RelOptInfo *inner_rel,
|
|
|
|
|
RelOptInfo *parent_joinrel, List *restrictlist,
|
|
|
|
|
SpecialJoinInfo *sjinfo, JoinType jointype);
|
|
|
|
|
|
Phase 2 of pgindent updates.
Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.
Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using
the published version of pg_bsd_indent, but a hacked-up version that
tried to minimize the amount of movement of comments to the right of
code. The situation of interest is where such a comment has to be
moved to the right of its default placement at column 33 because there's
code there. BSD indent has always moved right in units of tab stops
in such cases --- but in the previous incarnation, indent was working
in 8-space tab stops, while now it knows we use 4-space tabs. So the
net result is that in about half the cases, such comments are placed
one tab stop left of before. This is better all around: it leaves
more room on the line for comment text, and it means that in such
cases the comment uniformly starts at the next 4-space tab stop after
the code, rather than sometimes one and sometimes two tabs after.
Also, ensure that comments following #endif are indented the same
as comments following other preprocessor commands such as #else.
That inconsistency turns out to have been self-inflicted damage
from a poorly-thought-through post-indent "fixup" in pgindent.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
9 years ago
|
|
|
#endif /* PATHNODE_H */
|