RLS fixes, new hooks, and new test module
In prepend_row_security_policies(), defaultDeny was always true, so if
there were any hook policies, the RLS policies on the table would just
get discarded. Fixed to start off with defaultDeny as false and then
properly set later if we detect that only the default deny policy exists
for the internal policies.
The infinite recursion detection in fireRIRrules() didn't properly
manage the activeRIRs list in the case of WCOs, so it would incorrectly
report infinite recusion if the same relation with RLS appeared more
than once in the rtable, for example "UPDATE t ... FROM t ...".
Further, the RLS expansion code in fireRIRrules() was handling RLS in
the main loop through the rtable, which lead to RTEs being visited twice
if they contained sublink subqueries, which
prepend_row_security_policies() attempted to handle by exiting early if
the RTE already had securityQuals. That doesn't work, however, since
if the query involved a security barrier view on top of a table with
RLS, the RTE would already have securityQuals (from the view) by the
time fireRIRrules() was invoked, and so the table's RLS policies would
be ignored. This is fixed in fireRIRrules() by handling RLS in a
separate loop at the end, after dealing with any other sublink
subqueries, thus ensuring that each RTE is only visited once for RLS
expansion.
The inheritance planner code didn't correctly handle non-target
relations with RLS, which would get turned into subqueries during
planning. Thus an update of the form "UPDATE t1 ... FROM t2 ..." where
t1 has inheritance and t2 has RLS quals would fail. Fix by making sure
to copy in and update the securityQuals when they exist for non-target
relations.
process_policies() was adding WCOs to non-target relations, which is
unnecessary, and could lead to a lot of wasted time in the rewriter and
the planner. Fix by only adding WCO policies when working on the result
relation. Also in process_policies, we should be copying the USING
policies to the WITH CHECK policies on a per-policy basis, fix by moving
the copying up into the per-policy loop.
Lastly, as noted by Dean, we were simply adding policies returned by the
hook provided to the list of quals being AND'd, meaning that they would
actually restrict records returned and there was no option to have
internal policies and hook-based policies work together permissively (as
all internal policies currently work). Instead, explicitly add support
for both permissive and restrictive policies by having a hook for each
and combining the results appropriately. To ensure this is all done
correctly, add a new test module (test_rls_hooks) to test the various
combinations of internal, permissive, and restrictive hook policies.
Largely from Dean Rasheed (thanks!):
CAEZATCVmFUfUOwwhnBTcgi6AquyjQ0-1fyKd0T3xBWJvn+xsFA@mail.gmail.com
Author: Dean Rasheed, though I added the new hooks and test module.
11 years ago
|
|
|
/*--------------------------------------------------------------------------
|
|
|
|
|
*
|
|
|
|
|
* test_rls_hooks.c
|
|
|
|
|
* Code for testing RLS hooks.
|
RLS fixes, new hooks, and new test module
In prepend_row_security_policies(), defaultDeny was always true, so if
there were any hook policies, the RLS policies on the table would just
get discarded. Fixed to start off with defaultDeny as false and then
properly set later if we detect that only the default deny policy exists
for the internal policies.
The infinite recursion detection in fireRIRrules() didn't properly
manage the activeRIRs list in the case of WCOs, so it would incorrectly
report infinite recusion if the same relation with RLS appeared more
than once in the rtable, for example "UPDATE t ... FROM t ...".
Further, the RLS expansion code in fireRIRrules() was handling RLS in
the main loop through the rtable, which lead to RTEs being visited twice
if they contained sublink subqueries, which
prepend_row_security_policies() attempted to handle by exiting early if
the RTE already had securityQuals. That doesn't work, however, since
if the query involved a security barrier view on top of a table with
RLS, the RTE would already have securityQuals (from the view) by the
time fireRIRrules() was invoked, and so the table's RLS policies would
be ignored. This is fixed in fireRIRrules() by handling RLS in a
separate loop at the end, after dealing with any other sublink
subqueries, thus ensuring that each RTE is only visited once for RLS
expansion.
The inheritance planner code didn't correctly handle non-target
relations with RLS, which would get turned into subqueries during
planning. Thus an update of the form "UPDATE t1 ... FROM t2 ..." where
t1 has inheritance and t2 has RLS quals would fail. Fix by making sure
to copy in and update the securityQuals when they exist for non-target
relations.
process_policies() was adding WCOs to non-target relations, which is
unnecessary, and could lead to a lot of wasted time in the rewriter and
the planner. Fix by only adding WCO policies when working on the result
relation. Also in process_policies, we should be copying the USING
policies to the WITH CHECK policies on a per-policy basis, fix by moving
the copying up into the per-policy loop.
Lastly, as noted by Dean, we were simply adding policies returned by the
hook provided to the list of quals being AND'd, meaning that they would
actually restrict records returned and there was no option to have
internal policies and hook-based policies work together permissively (as
all internal policies currently work). Instead, explicitly add support
for both permissive and restrictive policies by having a hook for each
and combining the results appropriately. To ensure this is all done
correctly, add a new test module (test_rls_hooks) to test the various
combinations of internal, permissive, and restrictive hook policies.
Largely from Dean Rasheed (thanks!):
CAEZATCVmFUfUOwwhnBTcgi6AquyjQ0-1fyKd0T3xBWJvn+xsFA@mail.gmail.com
Author: Dean Rasheed, though I added the new hooks and test module.
11 years ago
|
|
|
*
|
|
|
|
|
* Copyright (c) 2015-2020, PostgreSQL Global Development Group
|
RLS fixes, new hooks, and new test module
In prepend_row_security_policies(), defaultDeny was always true, so if
there were any hook policies, the RLS policies on the table would just
get discarded. Fixed to start off with defaultDeny as false and then
properly set later if we detect that only the default deny policy exists
for the internal policies.
The infinite recursion detection in fireRIRrules() didn't properly
manage the activeRIRs list in the case of WCOs, so it would incorrectly
report infinite recusion if the same relation with RLS appeared more
than once in the rtable, for example "UPDATE t ... FROM t ...".
Further, the RLS expansion code in fireRIRrules() was handling RLS in
the main loop through the rtable, which lead to RTEs being visited twice
if they contained sublink subqueries, which
prepend_row_security_policies() attempted to handle by exiting early if
the RTE already had securityQuals. That doesn't work, however, since
if the query involved a security barrier view on top of a table with
RLS, the RTE would already have securityQuals (from the view) by the
time fireRIRrules() was invoked, and so the table's RLS policies would
be ignored. This is fixed in fireRIRrules() by handling RLS in a
separate loop at the end, after dealing with any other sublink
subqueries, thus ensuring that each RTE is only visited once for RLS
expansion.
The inheritance planner code didn't correctly handle non-target
relations with RLS, which would get turned into subqueries during
planning. Thus an update of the form "UPDATE t1 ... FROM t2 ..." where
t1 has inheritance and t2 has RLS quals would fail. Fix by making sure
to copy in and update the securityQuals when they exist for non-target
relations.
process_policies() was adding WCOs to non-target relations, which is
unnecessary, and could lead to a lot of wasted time in the rewriter and
the planner. Fix by only adding WCO policies when working on the result
relation. Also in process_policies, we should be copying the USING
policies to the WITH CHECK policies on a per-policy basis, fix by moving
the copying up into the per-policy loop.
Lastly, as noted by Dean, we were simply adding policies returned by the
hook provided to the list of quals being AND'd, meaning that they would
actually restrict records returned and there was no option to have
internal policies and hook-based policies work together permissively (as
all internal policies currently work). Instead, explicitly add support
for both permissive and restrictive policies by having a hook for each
and combining the results appropriately. To ensure this is all done
correctly, add a new test module (test_rls_hooks) to test the various
combinations of internal, permissive, and restrictive hook policies.
Largely from Dean Rasheed (thanks!):
CAEZATCVmFUfUOwwhnBTcgi6AquyjQ0-1fyKd0T3xBWJvn+xsFA@mail.gmail.com
Author: Dean Rasheed, though I added the new hooks and test module.
11 years ago
|
|
|
*
|
|
|
|
|
* IDENTIFICATION
|
|
|
|
|
* src/test/modules/test_rls_hooks/test_rls_hooks.c
|
|
|
|
|
*
|
|
|
|
|
* -------------------------------------------------------------------------
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
#include "postgres.h"
|
|
|
|
|
|
|
|
|
|
#include "catalog/pg_type.h"
|
RLS fixes, new hooks, and new test module
In prepend_row_security_policies(), defaultDeny was always true, so if
there were any hook policies, the RLS policies on the table would just
get discarded. Fixed to start off with defaultDeny as false and then
properly set later if we detect that only the default deny policy exists
for the internal policies.
The infinite recursion detection in fireRIRrules() didn't properly
manage the activeRIRs list in the case of WCOs, so it would incorrectly
report infinite recusion if the same relation with RLS appeared more
than once in the rtable, for example "UPDATE t ... FROM t ...".
Further, the RLS expansion code in fireRIRrules() was handling RLS in
the main loop through the rtable, which lead to RTEs being visited twice
if they contained sublink subqueries, which
prepend_row_security_policies() attempted to handle by exiting early if
the RTE already had securityQuals. That doesn't work, however, since
if the query involved a security barrier view on top of a table with
RLS, the RTE would already have securityQuals (from the view) by the
time fireRIRrules() was invoked, and so the table's RLS policies would
be ignored. This is fixed in fireRIRrules() by handling RLS in a
separate loop at the end, after dealing with any other sublink
subqueries, thus ensuring that each RTE is only visited once for RLS
expansion.
The inheritance planner code didn't correctly handle non-target
relations with RLS, which would get turned into subqueries during
planning. Thus an update of the form "UPDATE t1 ... FROM t2 ..." where
t1 has inheritance and t2 has RLS quals would fail. Fix by making sure
to copy in and update the securityQuals when they exist for non-target
relations.
process_policies() was adding WCOs to non-target relations, which is
unnecessary, and could lead to a lot of wasted time in the rewriter and
the planner. Fix by only adding WCO policies when working on the result
relation. Also in process_policies, we should be copying the USING
policies to the WITH CHECK policies on a per-policy basis, fix by moving
the copying up into the per-policy loop.
Lastly, as noted by Dean, we were simply adding policies returned by the
hook provided to the list of quals being AND'd, meaning that they would
actually restrict records returned and there was no option to have
internal policies and hook-based policies work together permissively (as
all internal policies currently work). Instead, explicitly add support
for both permissive and restrictive policies by having a hook for each
and combining the results appropriately. To ensure this is all done
correctly, add a new test module (test_rls_hooks) to test the various
combinations of internal, permissive, and restrictive hook policies.
Largely from Dean Rasheed (thanks!):
CAEZATCVmFUfUOwwhnBTcgi6AquyjQ0-1fyKd0T3xBWJvn+xsFA@mail.gmail.com
Author: Dean Rasheed, though I added the new hooks and test module.
11 years ago
|
|
|
#include "fmgr.h"
|
|
|
|
|
#include "miscadmin.h"
|
|
|
|
|
#include "nodes/makefuncs.h"
|
|
|
|
|
#include "parser/parse_clause.h"
|
|
|
|
|
#include "parser/parse_collate.h"
|
|
|
|
|
#include "parser/parse_node.h"
|
|
|
|
|
#include "parser/parse_relation.h"
|
|
|
|
|
#include "rewrite/rowsecurity.h"
|
|
|
|
|
#include "test_rls_hooks.h"
|
|
|
|
|
#include "utils/acl.h"
|
|
|
|
|
#include "utils/rel.h"
|
|
|
|
|
#include "utils/relcache.h"
|
RLS fixes, new hooks, and new test module
In prepend_row_security_policies(), defaultDeny was always true, so if
there were any hook policies, the RLS policies on the table would just
get discarded. Fixed to start off with defaultDeny as false and then
properly set later if we detect that only the default deny policy exists
for the internal policies.
The infinite recursion detection in fireRIRrules() didn't properly
manage the activeRIRs list in the case of WCOs, so it would incorrectly
report infinite recusion if the same relation with RLS appeared more
than once in the rtable, for example "UPDATE t ... FROM t ...".
Further, the RLS expansion code in fireRIRrules() was handling RLS in
the main loop through the rtable, which lead to RTEs being visited twice
if they contained sublink subqueries, which
prepend_row_security_policies() attempted to handle by exiting early if
the RTE already had securityQuals. That doesn't work, however, since
if the query involved a security barrier view on top of a table with
RLS, the RTE would already have securityQuals (from the view) by the
time fireRIRrules() was invoked, and so the table's RLS policies would
be ignored. This is fixed in fireRIRrules() by handling RLS in a
separate loop at the end, after dealing with any other sublink
subqueries, thus ensuring that each RTE is only visited once for RLS
expansion.
The inheritance planner code didn't correctly handle non-target
relations with RLS, which would get turned into subqueries during
planning. Thus an update of the form "UPDATE t1 ... FROM t2 ..." where
t1 has inheritance and t2 has RLS quals would fail. Fix by making sure
to copy in and update the securityQuals when they exist for non-target
relations.
process_policies() was adding WCOs to non-target relations, which is
unnecessary, and could lead to a lot of wasted time in the rewriter and
the planner. Fix by only adding WCO policies when working on the result
relation. Also in process_policies, we should be copying the USING
policies to the WITH CHECK policies on a per-policy basis, fix by moving
the copying up into the per-policy loop.
Lastly, as noted by Dean, we were simply adding policies returned by the
hook provided to the list of quals being AND'd, meaning that they would
actually restrict records returned and there was no option to have
internal policies and hook-based policies work together permissively (as
all internal policies currently work). Instead, explicitly add support
for both permissive and restrictive policies by having a hook for each
and combining the results appropriately. To ensure this is all done
correctly, add a new test module (test_rls_hooks) to test the various
combinations of internal, permissive, and restrictive hook policies.
Largely from Dean Rasheed (thanks!):
CAEZATCVmFUfUOwwhnBTcgi6AquyjQ0-1fyKd0T3xBWJvn+xsFA@mail.gmail.com
Author: Dean Rasheed, though I added the new hooks and test module.
11 years ago
|
|
|
|
|
|
|
|
PG_MODULE_MAGIC;
|
|
|
|
|
|
|
|
|
|
/* Saved hook values in case of unload */
|
|
|
|
|
static row_security_policy_hook_type prev_row_security_policy_hook_permissive = NULL;
|
|
|
|
|
static row_security_policy_hook_type prev_row_security_policy_hook_restrictive = NULL;
|
|
|
|
|
|
|
|
|
|
void _PG_init(void);
|
|
|
|
|
void _PG_fini(void);
|
RLS fixes, new hooks, and new test module
In prepend_row_security_policies(), defaultDeny was always true, so if
there were any hook policies, the RLS policies on the table would just
get discarded. Fixed to start off with defaultDeny as false and then
properly set later if we detect that only the default deny policy exists
for the internal policies.
The infinite recursion detection in fireRIRrules() didn't properly
manage the activeRIRs list in the case of WCOs, so it would incorrectly
report infinite recusion if the same relation with RLS appeared more
than once in the rtable, for example "UPDATE t ... FROM t ...".
Further, the RLS expansion code in fireRIRrules() was handling RLS in
the main loop through the rtable, which lead to RTEs being visited twice
if they contained sublink subqueries, which
prepend_row_security_policies() attempted to handle by exiting early if
the RTE already had securityQuals. That doesn't work, however, since
if the query involved a security barrier view on top of a table with
RLS, the RTE would already have securityQuals (from the view) by the
time fireRIRrules() was invoked, and so the table's RLS policies would
be ignored. This is fixed in fireRIRrules() by handling RLS in a
separate loop at the end, after dealing with any other sublink
subqueries, thus ensuring that each RTE is only visited once for RLS
expansion.
The inheritance planner code didn't correctly handle non-target
relations with RLS, which would get turned into subqueries during
planning. Thus an update of the form "UPDATE t1 ... FROM t2 ..." where
t1 has inheritance and t2 has RLS quals would fail. Fix by making sure
to copy in and update the securityQuals when they exist for non-target
relations.
process_policies() was adding WCOs to non-target relations, which is
unnecessary, and could lead to a lot of wasted time in the rewriter and
the planner. Fix by only adding WCO policies when working on the result
relation. Also in process_policies, we should be copying the USING
policies to the WITH CHECK policies on a per-policy basis, fix by moving
the copying up into the per-policy loop.
Lastly, as noted by Dean, we were simply adding policies returned by the
hook provided to the list of quals being AND'd, meaning that they would
actually restrict records returned and there was no option to have
internal policies and hook-based policies work together permissively (as
all internal policies currently work). Instead, explicitly add support
for both permissive and restrictive policies by having a hook for each
and combining the results appropriately. To ensure this is all done
correctly, add a new test module (test_rls_hooks) to test the various
combinations of internal, permissive, and restrictive hook policies.
Largely from Dean Rasheed (thanks!):
CAEZATCVmFUfUOwwhnBTcgi6AquyjQ0-1fyKd0T3xBWJvn+xsFA@mail.gmail.com
Author: Dean Rasheed, though I added the new hooks and test module.
11 years ago
|
|
|
|
|
|
|
|
/* Install hooks */
|
|
|
|
|
void
|
|
|
|
|
_PG_init(void)
|
RLS fixes, new hooks, and new test module
In prepend_row_security_policies(), defaultDeny was always true, so if
there were any hook policies, the RLS policies on the table would just
get discarded. Fixed to start off with defaultDeny as false and then
properly set later if we detect that only the default deny policy exists
for the internal policies.
The infinite recursion detection in fireRIRrules() didn't properly
manage the activeRIRs list in the case of WCOs, so it would incorrectly
report infinite recusion if the same relation with RLS appeared more
than once in the rtable, for example "UPDATE t ... FROM t ...".
Further, the RLS expansion code in fireRIRrules() was handling RLS in
the main loop through the rtable, which lead to RTEs being visited twice
if they contained sublink subqueries, which
prepend_row_security_policies() attempted to handle by exiting early if
the RTE already had securityQuals. That doesn't work, however, since
if the query involved a security barrier view on top of a table with
RLS, the RTE would already have securityQuals (from the view) by the
time fireRIRrules() was invoked, and so the table's RLS policies would
be ignored. This is fixed in fireRIRrules() by handling RLS in a
separate loop at the end, after dealing with any other sublink
subqueries, thus ensuring that each RTE is only visited once for RLS
expansion.
The inheritance planner code didn't correctly handle non-target
relations with RLS, which would get turned into subqueries during
planning. Thus an update of the form "UPDATE t1 ... FROM t2 ..." where
t1 has inheritance and t2 has RLS quals would fail. Fix by making sure
to copy in and update the securityQuals when they exist for non-target
relations.
process_policies() was adding WCOs to non-target relations, which is
unnecessary, and could lead to a lot of wasted time in the rewriter and
the planner. Fix by only adding WCO policies when working on the result
relation. Also in process_policies, we should be copying the USING
policies to the WITH CHECK policies on a per-policy basis, fix by moving
the copying up into the per-policy loop.
Lastly, as noted by Dean, we were simply adding policies returned by the
hook provided to the list of quals being AND'd, meaning that they would
actually restrict records returned and there was no option to have
internal policies and hook-based policies work together permissively (as
all internal policies currently work). Instead, explicitly add support
for both permissive and restrictive policies by having a hook for each
and combining the results appropriately. To ensure this is all done
correctly, add a new test module (test_rls_hooks) to test the various
combinations of internal, permissive, and restrictive hook policies.
Largely from Dean Rasheed (thanks!):
CAEZATCVmFUfUOwwhnBTcgi6AquyjQ0-1fyKd0T3xBWJvn+xsFA@mail.gmail.com
Author: Dean Rasheed, though I added the new hooks and test module.
11 years ago
|
|
|
{
|
|
|
|
|
/* Save values for unload */
|
|
|
|
|
prev_row_security_policy_hook_permissive = row_security_policy_hook_permissive;
|
|
|
|
|
prev_row_security_policy_hook_restrictive = row_security_policy_hook_restrictive;
|
|
|
|
|
|
|
|
|
|
/* Set our hooks */
|
|
|
|
|
row_security_policy_hook_permissive = test_rls_hooks_permissive;
|
|
|
|
|
row_security_policy_hook_restrictive = test_rls_hooks_restrictive;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Uninstall hooks */
|
|
|
|
|
void
|
|
|
|
|
_PG_fini(void)
|
RLS fixes, new hooks, and new test module
In prepend_row_security_policies(), defaultDeny was always true, so if
there were any hook policies, the RLS policies on the table would just
get discarded. Fixed to start off with defaultDeny as false and then
properly set later if we detect that only the default deny policy exists
for the internal policies.
The infinite recursion detection in fireRIRrules() didn't properly
manage the activeRIRs list in the case of WCOs, so it would incorrectly
report infinite recusion if the same relation with RLS appeared more
than once in the rtable, for example "UPDATE t ... FROM t ...".
Further, the RLS expansion code in fireRIRrules() was handling RLS in
the main loop through the rtable, which lead to RTEs being visited twice
if they contained sublink subqueries, which
prepend_row_security_policies() attempted to handle by exiting early if
the RTE already had securityQuals. That doesn't work, however, since
if the query involved a security barrier view on top of a table with
RLS, the RTE would already have securityQuals (from the view) by the
time fireRIRrules() was invoked, and so the table's RLS policies would
be ignored. This is fixed in fireRIRrules() by handling RLS in a
separate loop at the end, after dealing with any other sublink
subqueries, thus ensuring that each RTE is only visited once for RLS
expansion.
The inheritance planner code didn't correctly handle non-target
relations with RLS, which would get turned into subqueries during
planning. Thus an update of the form "UPDATE t1 ... FROM t2 ..." where
t1 has inheritance and t2 has RLS quals would fail. Fix by making sure
to copy in and update the securityQuals when they exist for non-target
relations.
process_policies() was adding WCOs to non-target relations, which is
unnecessary, and could lead to a lot of wasted time in the rewriter and
the planner. Fix by only adding WCO policies when working on the result
relation. Also in process_policies, we should be copying the USING
policies to the WITH CHECK policies on a per-policy basis, fix by moving
the copying up into the per-policy loop.
Lastly, as noted by Dean, we were simply adding policies returned by the
hook provided to the list of quals being AND'd, meaning that they would
actually restrict records returned and there was no option to have
internal policies and hook-based policies work together permissively (as
all internal policies currently work). Instead, explicitly add support
for both permissive and restrictive policies by having a hook for each
and combining the results appropriately. To ensure this is all done
correctly, add a new test module (test_rls_hooks) to test the various
combinations of internal, permissive, and restrictive hook policies.
Largely from Dean Rasheed (thanks!):
CAEZATCVmFUfUOwwhnBTcgi6AquyjQ0-1fyKd0T3xBWJvn+xsFA@mail.gmail.com
Author: Dean Rasheed, though I added the new hooks and test module.
11 years ago
|
|
|
{
|
|
|
|
|
row_security_policy_hook_permissive = prev_row_security_policy_hook_permissive;
|
|
|
|
|
row_security_policy_hook_restrictive = prev_row_security_policy_hook_restrictive;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Return permissive policies to be added
|
|
|
|
|
*/
|
|
|
|
|
List *
|
RLS fixes, new hooks, and new test module
In prepend_row_security_policies(), defaultDeny was always true, so if
there were any hook policies, the RLS policies on the table would just
get discarded. Fixed to start off with defaultDeny as false and then
properly set later if we detect that only the default deny policy exists
for the internal policies.
The infinite recursion detection in fireRIRrules() didn't properly
manage the activeRIRs list in the case of WCOs, so it would incorrectly
report infinite recusion if the same relation with RLS appeared more
than once in the rtable, for example "UPDATE t ... FROM t ...".
Further, the RLS expansion code in fireRIRrules() was handling RLS in
the main loop through the rtable, which lead to RTEs being visited twice
if they contained sublink subqueries, which
prepend_row_security_policies() attempted to handle by exiting early if
the RTE already had securityQuals. That doesn't work, however, since
if the query involved a security barrier view on top of a table with
RLS, the RTE would already have securityQuals (from the view) by the
time fireRIRrules() was invoked, and so the table's RLS policies would
be ignored. This is fixed in fireRIRrules() by handling RLS in a
separate loop at the end, after dealing with any other sublink
subqueries, thus ensuring that each RTE is only visited once for RLS
expansion.
The inheritance planner code didn't correctly handle non-target
relations with RLS, which would get turned into subqueries during
planning. Thus an update of the form "UPDATE t1 ... FROM t2 ..." where
t1 has inheritance and t2 has RLS quals would fail. Fix by making sure
to copy in and update the securityQuals when they exist for non-target
relations.
process_policies() was adding WCOs to non-target relations, which is
unnecessary, and could lead to a lot of wasted time in the rewriter and
the planner. Fix by only adding WCO policies when working on the result
relation. Also in process_policies, we should be copying the USING
policies to the WITH CHECK policies on a per-policy basis, fix by moving
the copying up into the per-policy loop.
Lastly, as noted by Dean, we were simply adding policies returned by the
hook provided to the list of quals being AND'd, meaning that they would
actually restrict records returned and there was no option to have
internal policies and hook-based policies work together permissively (as
all internal policies currently work). Instead, explicitly add support
for both permissive and restrictive policies by having a hook for each
and combining the results appropriately. To ensure this is all done
correctly, add a new test module (test_rls_hooks) to test the various
combinations of internal, permissive, and restrictive hook policies.
Largely from Dean Rasheed (thanks!):
CAEZATCVmFUfUOwwhnBTcgi6AquyjQ0-1fyKd0T3xBWJvn+xsFA@mail.gmail.com
Author: Dean Rasheed, though I added the new hooks and test module.
11 years ago
|
|
|
test_rls_hooks_permissive(CmdType cmdtype, Relation relation)
|
|
|
|
|
{
|
|
|
|
|
List *policies = NIL;
|
|
|
|
|
RowSecurityPolicy *policy = palloc0(sizeof(RowSecurityPolicy));
|
|
|
|
|
Datum role;
|
|
|
|
|
FuncCall *n;
|
|
|
|
|
Node *e;
|
|
|
|
|
ColumnRef *c;
|
|
|
|
|
ParseState *qual_pstate;
|
Make parser rely more heavily on the ParseNamespaceItem data structure.
When I added the ParseNamespaceItem data structure (in commit 5ebaaa494),
it wasn't very tightly integrated into the parser's APIs. In the wake of
adding p_rtindex to that struct (commit b541e9acc), there is a good reason
to make more use of it: by passing around ParseNamespaceItem pointers
instead of bare RTE pointers, we can get rid of various messy methods for
passing back or deducing the rangetable index of an RTE during parsing.
Hence, refactor the addRangeTableEntryXXX functions to build and return
a ParseNamespaceItem struct, not just the RTE proper; and replace
addRTEtoQuery with addNSItemToQuery, which is passed a ParseNamespaceItem
rather than building one internally.
Also, add per-column data (a ParseNamespaceColumn array) to each
ParseNamespaceItem. These arrays are built during addRangeTableEntryXXX,
where we have column type data at hand so that it's nearly free to fill
the data structure. Later, when we need to build Vars referencing RTEs,
we can use the ParseNamespaceColumn info to avoid the rather expensive
operations done in get_rte_attribute_type() or expandRTE().
get_rte_attribute_type() is indeed dead code now, so I've removed it.
This makes for a useful improvement in parse analysis speed, around 20%
in one moderately-complex test query.
The ParseNamespaceColumn structs also include Var identity information
(varno/varattno). That info isn't actually being used in this patch,
except that p_varno == 0 is a handy test for a dropped column.
A follow-on patch will make more use of it.
Discussion: https://postgr.es/m/2461.1577764221@sss.pgh.pa.us
6 years ago
|
|
|
ParseNamespaceItem *nsitem;
|
|
|
|
|
|
|
|
|
|
if (strcmp(RelationGetRelationName(relation), "rls_test_permissive") != 0 &&
|
|
|
|
|
strcmp(RelationGetRelationName(relation), "rls_test_both") != 0)
|
RLS fixes, new hooks, and new test module
In prepend_row_security_policies(), defaultDeny was always true, so if
there were any hook policies, the RLS policies on the table would just
get discarded. Fixed to start off with defaultDeny as false and then
properly set later if we detect that only the default deny policy exists
for the internal policies.
The infinite recursion detection in fireRIRrules() didn't properly
manage the activeRIRs list in the case of WCOs, so it would incorrectly
report infinite recusion if the same relation with RLS appeared more
than once in the rtable, for example "UPDATE t ... FROM t ...".
Further, the RLS expansion code in fireRIRrules() was handling RLS in
the main loop through the rtable, which lead to RTEs being visited twice
if they contained sublink subqueries, which
prepend_row_security_policies() attempted to handle by exiting early if
the RTE already had securityQuals. That doesn't work, however, since
if the query involved a security barrier view on top of a table with
RLS, the RTE would already have securityQuals (from the view) by the
time fireRIRrules() was invoked, and so the table's RLS policies would
be ignored. This is fixed in fireRIRrules() by handling RLS in a
separate loop at the end, after dealing with any other sublink
subqueries, thus ensuring that each RTE is only visited once for RLS
expansion.
The inheritance planner code didn't correctly handle non-target
relations with RLS, which would get turned into subqueries during
planning. Thus an update of the form "UPDATE t1 ... FROM t2 ..." where
t1 has inheritance and t2 has RLS quals would fail. Fix by making sure
to copy in and update the securityQuals when they exist for non-target
relations.
process_policies() was adding WCOs to non-target relations, which is
unnecessary, and could lead to a lot of wasted time in the rewriter and
the planner. Fix by only adding WCO policies when working on the result
relation. Also in process_policies, we should be copying the USING
policies to the WITH CHECK policies on a per-policy basis, fix by moving
the copying up into the per-policy loop.
Lastly, as noted by Dean, we were simply adding policies returned by the
hook provided to the list of quals being AND'd, meaning that they would
actually restrict records returned and there was no option to have
internal policies and hook-based policies work together permissively (as
all internal policies currently work). Instead, explicitly add support
for both permissive and restrictive policies by having a hook for each
and combining the results appropriately. To ensure this is all done
correctly, add a new test module (test_rls_hooks) to test the various
combinations of internal, permissive, and restrictive hook policies.
Largely from Dean Rasheed (thanks!):
CAEZATCVmFUfUOwwhnBTcgi6AquyjQ0-1fyKd0T3xBWJvn+xsFA@mail.gmail.com
Author: Dean Rasheed, though I added the new hooks and test module.
11 years ago
|
|
|
return NIL;
|
|
|
|
|
|
|
|
|
|
qual_pstate = make_parsestate(NULL);
|
|
|
|
|
|
Make parser rely more heavily on the ParseNamespaceItem data structure.
When I added the ParseNamespaceItem data structure (in commit 5ebaaa494),
it wasn't very tightly integrated into the parser's APIs. In the wake of
adding p_rtindex to that struct (commit b541e9acc), there is a good reason
to make more use of it: by passing around ParseNamespaceItem pointers
instead of bare RTE pointers, we can get rid of various messy methods for
passing back or deducing the rangetable index of an RTE during parsing.
Hence, refactor the addRangeTableEntryXXX functions to build and return
a ParseNamespaceItem struct, not just the RTE proper; and replace
addRTEtoQuery with addNSItemToQuery, which is passed a ParseNamespaceItem
rather than building one internally.
Also, add per-column data (a ParseNamespaceColumn array) to each
ParseNamespaceItem. These arrays are built during addRangeTableEntryXXX,
where we have column type data at hand so that it's nearly free to fill
the data structure. Later, when we need to build Vars referencing RTEs,
we can use the ParseNamespaceColumn info to avoid the rather expensive
operations done in get_rte_attribute_type() or expandRTE().
get_rte_attribute_type() is indeed dead code now, so I've removed it.
This makes for a useful improvement in parse analysis speed, around 20%
in one moderately-complex test query.
The ParseNamespaceColumn structs also include Var identity information
(varno/varattno). That info isn't actually being used in this patch,
except that p_varno == 0 is a handy test for a dropped column.
A follow-on patch will make more use of it.
Discussion: https://postgr.es/m/2461.1577764221@sss.pgh.pa.us
6 years ago
|
|
|
nsitem = addRangeTableEntryForRelation(qual_pstate,
|
|
|
|
|
relation, AccessShareLock,
|
|
|
|
|
NULL, false, false);
|
|
|
|
|
addNSItemToQuery(qual_pstate, nsitem, false, true, true);
|
RLS fixes, new hooks, and new test module
In prepend_row_security_policies(), defaultDeny was always true, so if
there were any hook policies, the RLS policies on the table would just
get discarded. Fixed to start off with defaultDeny as false and then
properly set later if we detect that only the default deny policy exists
for the internal policies.
The infinite recursion detection in fireRIRrules() didn't properly
manage the activeRIRs list in the case of WCOs, so it would incorrectly
report infinite recusion if the same relation with RLS appeared more
than once in the rtable, for example "UPDATE t ... FROM t ...".
Further, the RLS expansion code in fireRIRrules() was handling RLS in
the main loop through the rtable, which lead to RTEs being visited twice
if they contained sublink subqueries, which
prepend_row_security_policies() attempted to handle by exiting early if
the RTE already had securityQuals. That doesn't work, however, since
if the query involved a security barrier view on top of a table with
RLS, the RTE would already have securityQuals (from the view) by the
time fireRIRrules() was invoked, and so the table's RLS policies would
be ignored. This is fixed in fireRIRrules() by handling RLS in a
separate loop at the end, after dealing with any other sublink
subqueries, thus ensuring that each RTE is only visited once for RLS
expansion.
The inheritance planner code didn't correctly handle non-target
relations with RLS, which would get turned into subqueries during
planning. Thus an update of the form "UPDATE t1 ... FROM t2 ..." where
t1 has inheritance and t2 has RLS quals would fail. Fix by making sure
to copy in and update the securityQuals when they exist for non-target
relations.
process_policies() was adding WCOs to non-target relations, which is
unnecessary, and could lead to a lot of wasted time in the rewriter and
the planner. Fix by only adding WCO policies when working on the result
relation. Also in process_policies, we should be copying the USING
policies to the WITH CHECK policies on a per-policy basis, fix by moving
the copying up into the per-policy loop.
Lastly, as noted by Dean, we were simply adding policies returned by the
hook provided to the list of quals being AND'd, meaning that they would
actually restrict records returned and there was no option to have
internal policies and hook-based policies work together permissively (as
all internal policies currently work). Instead, explicitly add support
for both permissive and restrictive policies by having a hook for each
and combining the results appropriately. To ensure this is all done
correctly, add a new test module (test_rls_hooks) to test the various
combinations of internal, permissive, and restrictive hook policies.
Largely from Dean Rasheed (thanks!):
CAEZATCVmFUfUOwwhnBTcgi6AquyjQ0-1fyKd0T3xBWJvn+xsFA@mail.gmail.com
Author: Dean Rasheed, though I added the new hooks and test module.
11 years ago
|
|
|
|
|
|
|
|
role = ObjectIdGetDatum(ACL_ID_PUBLIC);
|
|
|
|
|
|
|
|
|
|
policy->policy_name = pstrdup("extension policy");
|
|
|
|
|
policy->polcmd = '*';
|
|
|
|
|
policy->roles = construct_array(&role, 1, OIDOID, sizeof(Oid), true, 'i');
|
|
|
|
|
|
RLS fixes, new hooks, and new test module
In prepend_row_security_policies(), defaultDeny was always true, so if
there were any hook policies, the RLS policies on the table would just
get discarded. Fixed to start off with defaultDeny as false and then
properly set later if we detect that only the default deny policy exists
for the internal policies.
The infinite recursion detection in fireRIRrules() didn't properly
manage the activeRIRs list in the case of WCOs, so it would incorrectly
report infinite recusion if the same relation with RLS appeared more
than once in the rtable, for example "UPDATE t ... FROM t ...".
Further, the RLS expansion code in fireRIRrules() was handling RLS in
the main loop through the rtable, which lead to RTEs being visited twice
if they contained sublink subqueries, which
prepend_row_security_policies() attempted to handle by exiting early if
the RTE already had securityQuals. That doesn't work, however, since
if the query involved a security barrier view on top of a table with
RLS, the RTE would already have securityQuals (from the view) by the
time fireRIRrules() was invoked, and so the table's RLS policies would
be ignored. This is fixed in fireRIRrules() by handling RLS in a
separate loop at the end, after dealing with any other sublink
subqueries, thus ensuring that each RTE is only visited once for RLS
expansion.
The inheritance planner code didn't correctly handle non-target
relations with RLS, which would get turned into subqueries during
planning. Thus an update of the form "UPDATE t1 ... FROM t2 ..." where
t1 has inheritance and t2 has RLS quals would fail. Fix by making sure
to copy in and update the securityQuals when they exist for non-target
relations.
process_policies() was adding WCOs to non-target relations, which is
unnecessary, and could lead to a lot of wasted time in the rewriter and
the planner. Fix by only adding WCO policies when working on the result
relation. Also in process_policies, we should be copying the USING
policies to the WITH CHECK policies on a per-policy basis, fix by moving
the copying up into the per-policy loop.
Lastly, as noted by Dean, we were simply adding policies returned by the
hook provided to the list of quals being AND'd, meaning that they would
actually restrict records returned and there was no option to have
internal policies and hook-based policies work together permissively (as
all internal policies currently work). Instead, explicitly add support
for both permissive and restrictive policies by having a hook for each
and combining the results appropriately. To ensure this is all done
correctly, add a new test module (test_rls_hooks) to test the various
combinations of internal, permissive, and restrictive hook policies.
Largely from Dean Rasheed (thanks!):
CAEZATCVmFUfUOwwhnBTcgi6AquyjQ0-1fyKd0T3xBWJvn+xsFA@mail.gmail.com
Author: Dean Rasheed, though I added the new hooks and test module.
11 years ago
|
|
|
/*
|
|
|
|
|
* policy->qual = (Expr *) makeConst(BOOLOID, -1, InvalidOid,
|
|
|
|
|
* sizeof(bool), BoolGetDatum(true), false, true);
|
|
|
|
|
*/
|
RLS fixes, new hooks, and new test module
In prepend_row_security_policies(), defaultDeny was always true, so if
there were any hook policies, the RLS policies on the table would just
get discarded. Fixed to start off with defaultDeny as false and then
properly set later if we detect that only the default deny policy exists
for the internal policies.
The infinite recursion detection in fireRIRrules() didn't properly
manage the activeRIRs list in the case of WCOs, so it would incorrectly
report infinite recusion if the same relation with RLS appeared more
than once in the rtable, for example "UPDATE t ... FROM t ...".
Further, the RLS expansion code in fireRIRrules() was handling RLS in
the main loop through the rtable, which lead to RTEs being visited twice
if they contained sublink subqueries, which
prepend_row_security_policies() attempted to handle by exiting early if
the RTE already had securityQuals. That doesn't work, however, since
if the query involved a security barrier view on top of a table with
RLS, the RTE would already have securityQuals (from the view) by the
time fireRIRrules() was invoked, and so the table's RLS policies would
be ignored. This is fixed in fireRIRrules() by handling RLS in a
separate loop at the end, after dealing with any other sublink
subqueries, thus ensuring that each RTE is only visited once for RLS
expansion.
The inheritance planner code didn't correctly handle non-target
relations with RLS, which would get turned into subqueries during
planning. Thus an update of the form "UPDATE t1 ... FROM t2 ..." where
t1 has inheritance and t2 has RLS quals would fail. Fix by making sure
to copy in and update the securityQuals when they exist for non-target
relations.
process_policies() was adding WCOs to non-target relations, which is
unnecessary, and could lead to a lot of wasted time in the rewriter and
the planner. Fix by only adding WCO policies when working on the result
relation. Also in process_policies, we should be copying the USING
policies to the WITH CHECK policies on a per-policy basis, fix by moving
the copying up into the per-policy loop.
Lastly, as noted by Dean, we were simply adding policies returned by the
hook provided to the list of quals being AND'd, meaning that they would
actually restrict records returned and there was no option to have
internal policies and hook-based policies work together permissively (as
all internal policies currently work). Instead, explicitly add support
for both permissive and restrictive policies by having a hook for each
and combining the results appropriately. To ensure this is all done
correctly, add a new test module (test_rls_hooks) to test the various
combinations of internal, permissive, and restrictive hook policies.
Largely from Dean Rasheed (thanks!):
CAEZATCVmFUfUOwwhnBTcgi6AquyjQ0-1fyKd0T3xBWJvn+xsFA@mail.gmail.com
Author: Dean Rasheed, though I added the new hooks and test module.
11 years ago
|
|
|
|
|
|
|
|
n = makeFuncCall(list_make2(makeString("pg_catalog"),
|
|
|
|
|
makeString("current_user")), NIL, 0);
|
|
|
|
|
|
|
|
|
|
c = makeNode(ColumnRef);
|
|
|
|
|
c->fields = list_make1(makeString("username"));
|
|
|
|
|
c->location = 0;
|
|
|
|
|
|
|
|
|
|
e = (Node *) makeSimpleA_Expr(AEXPR_OP, "=", (Node *) n, (Node *) c, 0);
|
RLS fixes, new hooks, and new test module
In prepend_row_security_policies(), defaultDeny was always true, so if
there were any hook policies, the RLS policies on the table would just
get discarded. Fixed to start off with defaultDeny as false and then
properly set later if we detect that only the default deny policy exists
for the internal policies.
The infinite recursion detection in fireRIRrules() didn't properly
manage the activeRIRs list in the case of WCOs, so it would incorrectly
report infinite recusion if the same relation with RLS appeared more
than once in the rtable, for example "UPDATE t ... FROM t ...".
Further, the RLS expansion code in fireRIRrules() was handling RLS in
the main loop through the rtable, which lead to RTEs being visited twice
if they contained sublink subqueries, which
prepend_row_security_policies() attempted to handle by exiting early if
the RTE already had securityQuals. That doesn't work, however, since
if the query involved a security barrier view on top of a table with
RLS, the RTE would already have securityQuals (from the view) by the
time fireRIRrules() was invoked, and so the table's RLS policies would
be ignored. This is fixed in fireRIRrules() by handling RLS in a
separate loop at the end, after dealing with any other sublink
subqueries, thus ensuring that each RTE is only visited once for RLS
expansion.
The inheritance planner code didn't correctly handle non-target
relations with RLS, which would get turned into subqueries during
planning. Thus an update of the form "UPDATE t1 ... FROM t2 ..." where
t1 has inheritance and t2 has RLS quals would fail. Fix by making sure
to copy in and update the securityQuals when they exist for non-target
relations.
process_policies() was adding WCOs to non-target relations, which is
unnecessary, and could lead to a lot of wasted time in the rewriter and
the planner. Fix by only adding WCO policies when working on the result
relation. Also in process_policies, we should be copying the USING
policies to the WITH CHECK policies on a per-policy basis, fix by moving
the copying up into the per-policy loop.
Lastly, as noted by Dean, we were simply adding policies returned by the
hook provided to the list of quals being AND'd, meaning that they would
actually restrict records returned and there was no option to have
internal policies and hook-based policies work together permissively (as
all internal policies currently work). Instead, explicitly add support
for both permissive and restrictive policies by having a hook for each
and combining the results appropriately. To ensure this is all done
correctly, add a new test module (test_rls_hooks) to test the various
combinations of internal, permissive, and restrictive hook policies.
Largely from Dean Rasheed (thanks!):
CAEZATCVmFUfUOwwhnBTcgi6AquyjQ0-1fyKd0T3xBWJvn+xsFA@mail.gmail.com
Author: Dean Rasheed, though I added the new hooks and test module.
11 years ago
|
|
|
|
|
|
|
|
policy->qual = (Expr *) transformWhereClause(qual_pstate, copyObject(e),
|
|
|
|
|
EXPR_KIND_POLICY,
|
|
|
|
|
"POLICY");
|
|
|
|
|
/* Fix up collation information */
|
|
|
|
|
assign_expr_collations(qual_pstate, (Node *) policy->qual);
|
RLS fixes, new hooks, and new test module
In prepend_row_security_policies(), defaultDeny was always true, so if
there were any hook policies, the RLS policies on the table would just
get discarded. Fixed to start off with defaultDeny as false and then
properly set later if we detect that only the default deny policy exists
for the internal policies.
The infinite recursion detection in fireRIRrules() didn't properly
manage the activeRIRs list in the case of WCOs, so it would incorrectly
report infinite recusion if the same relation with RLS appeared more
than once in the rtable, for example "UPDATE t ... FROM t ...".
Further, the RLS expansion code in fireRIRrules() was handling RLS in
the main loop through the rtable, which lead to RTEs being visited twice
if they contained sublink subqueries, which
prepend_row_security_policies() attempted to handle by exiting early if
the RTE already had securityQuals. That doesn't work, however, since
if the query involved a security barrier view on top of a table with
RLS, the RTE would already have securityQuals (from the view) by the
time fireRIRrules() was invoked, and so the table's RLS policies would
be ignored. This is fixed in fireRIRrules() by handling RLS in a
separate loop at the end, after dealing with any other sublink
subqueries, thus ensuring that each RTE is only visited once for RLS
expansion.
The inheritance planner code didn't correctly handle non-target
relations with RLS, which would get turned into subqueries during
planning. Thus an update of the form "UPDATE t1 ... FROM t2 ..." where
t1 has inheritance and t2 has RLS quals would fail. Fix by making sure
to copy in and update the securityQuals when they exist for non-target
relations.
process_policies() was adding WCOs to non-target relations, which is
unnecessary, and could lead to a lot of wasted time in the rewriter and
the planner. Fix by only adding WCO policies when working on the result
relation. Also in process_policies, we should be copying the USING
policies to the WITH CHECK policies on a per-policy basis, fix by moving
the copying up into the per-policy loop.
Lastly, as noted by Dean, we were simply adding policies returned by the
hook provided to the list of quals being AND'd, meaning that they would
actually restrict records returned and there was no option to have
internal policies and hook-based policies work together permissively (as
all internal policies currently work). Instead, explicitly add support
for both permissive and restrictive policies by having a hook for each
and combining the results appropriately. To ensure this is all done
correctly, add a new test module (test_rls_hooks) to test the various
combinations of internal, permissive, and restrictive hook policies.
Largely from Dean Rasheed (thanks!):
CAEZATCVmFUfUOwwhnBTcgi6AquyjQ0-1fyKd0T3xBWJvn+xsFA@mail.gmail.com
Author: Dean Rasheed, though I added the new hooks and test module.
11 years ago
|
|
|
|
|
|
|
|
policy->with_check_qual = copyObject(policy->qual);
|
|
|
|
|
policy->hassublinks = false;
|
|
|
|
|
|
|
|
|
|
policies = list_make1(policy);
|
|
|
|
|
|
|
|
|
|
return policies;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* Return restrictive policies to be added
|
|
|
|
|
*
|
|
|
|
|
* Note that a permissive policy must exist or the default-deny policy
|
|
|
|
|
* will be included and nothing will be visible. If no filtering should
|
|
|
|
|
* be done except for the restrictive policy, then a single "USING (true)"
|
|
|
|
|
* permissive policy can be used; see the regression tests.
|
RLS fixes, new hooks, and new test module
In prepend_row_security_policies(), defaultDeny was always true, so if
there were any hook policies, the RLS policies on the table would just
get discarded. Fixed to start off with defaultDeny as false and then
properly set later if we detect that only the default deny policy exists
for the internal policies.
The infinite recursion detection in fireRIRrules() didn't properly
manage the activeRIRs list in the case of WCOs, so it would incorrectly
report infinite recusion if the same relation with RLS appeared more
than once in the rtable, for example "UPDATE t ... FROM t ...".
Further, the RLS expansion code in fireRIRrules() was handling RLS in
the main loop through the rtable, which lead to RTEs being visited twice
if they contained sublink subqueries, which
prepend_row_security_policies() attempted to handle by exiting early if
the RTE already had securityQuals. That doesn't work, however, since
if the query involved a security barrier view on top of a table with
RLS, the RTE would already have securityQuals (from the view) by the
time fireRIRrules() was invoked, and so the table's RLS policies would
be ignored. This is fixed in fireRIRrules() by handling RLS in a
separate loop at the end, after dealing with any other sublink
subqueries, thus ensuring that each RTE is only visited once for RLS
expansion.
The inheritance planner code didn't correctly handle non-target
relations with RLS, which would get turned into subqueries during
planning. Thus an update of the form "UPDATE t1 ... FROM t2 ..." where
t1 has inheritance and t2 has RLS quals would fail. Fix by making sure
to copy in and update the securityQuals when they exist for non-target
relations.
process_policies() was adding WCOs to non-target relations, which is
unnecessary, and could lead to a lot of wasted time in the rewriter and
the planner. Fix by only adding WCO policies when working on the result
relation. Also in process_policies, we should be copying the USING
policies to the WITH CHECK policies on a per-policy basis, fix by moving
the copying up into the per-policy loop.
Lastly, as noted by Dean, we were simply adding policies returned by the
hook provided to the list of quals being AND'd, meaning that they would
actually restrict records returned and there was no option to have
internal policies and hook-based policies work together permissively (as
all internal policies currently work). Instead, explicitly add support
for both permissive and restrictive policies by having a hook for each
and combining the results appropriately. To ensure this is all done
correctly, add a new test module (test_rls_hooks) to test the various
combinations of internal, permissive, and restrictive hook policies.
Largely from Dean Rasheed (thanks!):
CAEZATCVmFUfUOwwhnBTcgi6AquyjQ0-1fyKd0T3xBWJvn+xsFA@mail.gmail.com
Author: Dean Rasheed, though I added the new hooks and test module.
11 years ago
|
|
|
*/
|
|
|
|
|
List *
|
RLS fixes, new hooks, and new test module
In prepend_row_security_policies(), defaultDeny was always true, so if
there were any hook policies, the RLS policies on the table would just
get discarded. Fixed to start off with defaultDeny as false and then
properly set later if we detect that only the default deny policy exists
for the internal policies.
The infinite recursion detection in fireRIRrules() didn't properly
manage the activeRIRs list in the case of WCOs, so it would incorrectly
report infinite recusion if the same relation with RLS appeared more
than once in the rtable, for example "UPDATE t ... FROM t ...".
Further, the RLS expansion code in fireRIRrules() was handling RLS in
the main loop through the rtable, which lead to RTEs being visited twice
if they contained sublink subqueries, which
prepend_row_security_policies() attempted to handle by exiting early if
the RTE already had securityQuals. That doesn't work, however, since
if the query involved a security barrier view on top of a table with
RLS, the RTE would already have securityQuals (from the view) by the
time fireRIRrules() was invoked, and so the table's RLS policies would
be ignored. This is fixed in fireRIRrules() by handling RLS in a
separate loop at the end, after dealing with any other sublink
subqueries, thus ensuring that each RTE is only visited once for RLS
expansion.
The inheritance planner code didn't correctly handle non-target
relations with RLS, which would get turned into subqueries during
planning. Thus an update of the form "UPDATE t1 ... FROM t2 ..." where
t1 has inheritance and t2 has RLS quals would fail. Fix by making sure
to copy in and update the securityQuals when they exist for non-target
relations.
process_policies() was adding WCOs to non-target relations, which is
unnecessary, and could lead to a lot of wasted time in the rewriter and
the planner. Fix by only adding WCO policies when working on the result
relation. Also in process_policies, we should be copying the USING
policies to the WITH CHECK policies on a per-policy basis, fix by moving
the copying up into the per-policy loop.
Lastly, as noted by Dean, we were simply adding policies returned by the
hook provided to the list of quals being AND'd, meaning that they would
actually restrict records returned and there was no option to have
internal policies and hook-based policies work together permissively (as
all internal policies currently work). Instead, explicitly add support
for both permissive and restrictive policies by having a hook for each
and combining the results appropriately. To ensure this is all done
correctly, add a new test module (test_rls_hooks) to test the various
combinations of internal, permissive, and restrictive hook policies.
Largely from Dean Rasheed (thanks!):
CAEZATCVmFUfUOwwhnBTcgi6AquyjQ0-1fyKd0T3xBWJvn+xsFA@mail.gmail.com
Author: Dean Rasheed, though I added the new hooks and test module.
11 years ago
|
|
|
test_rls_hooks_restrictive(CmdType cmdtype, Relation relation)
|
|
|
|
|
{
|
|
|
|
|
List *policies = NIL;
|
|
|
|
|
RowSecurityPolicy *policy = palloc0(sizeof(RowSecurityPolicy));
|
|
|
|
|
Datum role;
|
|
|
|
|
FuncCall *n;
|
|
|
|
|
Node *e;
|
|
|
|
|
ColumnRef *c;
|
|
|
|
|
ParseState *qual_pstate;
|
Make parser rely more heavily on the ParseNamespaceItem data structure.
When I added the ParseNamespaceItem data structure (in commit 5ebaaa494),
it wasn't very tightly integrated into the parser's APIs. In the wake of
adding p_rtindex to that struct (commit b541e9acc), there is a good reason
to make more use of it: by passing around ParseNamespaceItem pointers
instead of bare RTE pointers, we can get rid of various messy methods for
passing back or deducing the rangetable index of an RTE during parsing.
Hence, refactor the addRangeTableEntryXXX functions to build and return
a ParseNamespaceItem struct, not just the RTE proper; and replace
addRTEtoQuery with addNSItemToQuery, which is passed a ParseNamespaceItem
rather than building one internally.
Also, add per-column data (a ParseNamespaceColumn array) to each
ParseNamespaceItem. These arrays are built during addRangeTableEntryXXX,
where we have column type data at hand so that it's nearly free to fill
the data structure. Later, when we need to build Vars referencing RTEs,
we can use the ParseNamespaceColumn info to avoid the rather expensive
operations done in get_rte_attribute_type() or expandRTE().
get_rte_attribute_type() is indeed dead code now, so I've removed it.
This makes for a useful improvement in parse analysis speed, around 20%
in one moderately-complex test query.
The ParseNamespaceColumn structs also include Var identity information
(varno/varattno). That info isn't actually being used in this patch,
except that p_varno == 0 is a handy test for a dropped column.
A follow-on patch will make more use of it.
Discussion: https://postgr.es/m/2461.1577764221@sss.pgh.pa.us
6 years ago
|
|
|
ParseNamespaceItem *nsitem;
|
|
|
|
|
|
|
|
|
|
if (strcmp(RelationGetRelationName(relation), "rls_test_restrictive") != 0 &&
|
|
|
|
|
strcmp(RelationGetRelationName(relation), "rls_test_both") != 0)
|
RLS fixes, new hooks, and new test module
In prepend_row_security_policies(), defaultDeny was always true, so if
there were any hook policies, the RLS policies on the table would just
get discarded. Fixed to start off with defaultDeny as false and then
properly set later if we detect that only the default deny policy exists
for the internal policies.
The infinite recursion detection in fireRIRrules() didn't properly
manage the activeRIRs list in the case of WCOs, so it would incorrectly
report infinite recusion if the same relation with RLS appeared more
than once in the rtable, for example "UPDATE t ... FROM t ...".
Further, the RLS expansion code in fireRIRrules() was handling RLS in
the main loop through the rtable, which lead to RTEs being visited twice
if they contained sublink subqueries, which
prepend_row_security_policies() attempted to handle by exiting early if
the RTE already had securityQuals. That doesn't work, however, since
if the query involved a security barrier view on top of a table with
RLS, the RTE would already have securityQuals (from the view) by the
time fireRIRrules() was invoked, and so the table's RLS policies would
be ignored. This is fixed in fireRIRrules() by handling RLS in a
separate loop at the end, after dealing with any other sublink
subqueries, thus ensuring that each RTE is only visited once for RLS
expansion.
The inheritance planner code didn't correctly handle non-target
relations with RLS, which would get turned into subqueries during
planning. Thus an update of the form "UPDATE t1 ... FROM t2 ..." where
t1 has inheritance and t2 has RLS quals would fail. Fix by making sure
to copy in and update the securityQuals when they exist for non-target
relations.
process_policies() was adding WCOs to non-target relations, which is
unnecessary, and could lead to a lot of wasted time in the rewriter and
the planner. Fix by only adding WCO policies when working on the result
relation. Also in process_policies, we should be copying the USING
policies to the WITH CHECK policies on a per-policy basis, fix by moving
the copying up into the per-policy loop.
Lastly, as noted by Dean, we were simply adding policies returned by the
hook provided to the list of quals being AND'd, meaning that they would
actually restrict records returned and there was no option to have
internal policies and hook-based policies work together permissively (as
all internal policies currently work). Instead, explicitly add support
for both permissive and restrictive policies by having a hook for each
and combining the results appropriately. To ensure this is all done
correctly, add a new test module (test_rls_hooks) to test the various
combinations of internal, permissive, and restrictive hook policies.
Largely from Dean Rasheed (thanks!):
CAEZATCVmFUfUOwwhnBTcgi6AquyjQ0-1fyKd0T3xBWJvn+xsFA@mail.gmail.com
Author: Dean Rasheed, though I added the new hooks and test module.
11 years ago
|
|
|
return NIL;
|
|
|
|
|
|
|
|
|
|
qual_pstate = make_parsestate(NULL);
|
|
|
|
|
|
Make parser rely more heavily on the ParseNamespaceItem data structure.
When I added the ParseNamespaceItem data structure (in commit 5ebaaa494),
it wasn't very tightly integrated into the parser's APIs. In the wake of
adding p_rtindex to that struct (commit b541e9acc), there is a good reason
to make more use of it: by passing around ParseNamespaceItem pointers
instead of bare RTE pointers, we can get rid of various messy methods for
passing back or deducing the rangetable index of an RTE during parsing.
Hence, refactor the addRangeTableEntryXXX functions to build and return
a ParseNamespaceItem struct, not just the RTE proper; and replace
addRTEtoQuery with addNSItemToQuery, which is passed a ParseNamespaceItem
rather than building one internally.
Also, add per-column data (a ParseNamespaceColumn array) to each
ParseNamespaceItem. These arrays are built during addRangeTableEntryXXX,
where we have column type data at hand so that it's nearly free to fill
the data structure. Later, when we need to build Vars referencing RTEs,
we can use the ParseNamespaceColumn info to avoid the rather expensive
operations done in get_rte_attribute_type() or expandRTE().
get_rte_attribute_type() is indeed dead code now, so I've removed it.
This makes for a useful improvement in parse analysis speed, around 20%
in one moderately-complex test query.
The ParseNamespaceColumn structs also include Var identity information
(varno/varattno). That info isn't actually being used in this patch,
except that p_varno == 0 is a handy test for a dropped column.
A follow-on patch will make more use of it.
Discussion: https://postgr.es/m/2461.1577764221@sss.pgh.pa.us
6 years ago
|
|
|
nsitem = addRangeTableEntryForRelation(qual_pstate,
|
|
|
|
|
relation, AccessShareLock,
|
|
|
|
|
NULL, false, false);
|
|
|
|
|
addNSItemToQuery(qual_pstate, nsitem, false, true, true);
|
RLS fixes, new hooks, and new test module
In prepend_row_security_policies(), defaultDeny was always true, so if
there were any hook policies, the RLS policies on the table would just
get discarded. Fixed to start off with defaultDeny as false and then
properly set later if we detect that only the default deny policy exists
for the internal policies.
The infinite recursion detection in fireRIRrules() didn't properly
manage the activeRIRs list in the case of WCOs, so it would incorrectly
report infinite recusion if the same relation with RLS appeared more
than once in the rtable, for example "UPDATE t ... FROM t ...".
Further, the RLS expansion code in fireRIRrules() was handling RLS in
the main loop through the rtable, which lead to RTEs being visited twice
if they contained sublink subqueries, which
prepend_row_security_policies() attempted to handle by exiting early if
the RTE already had securityQuals. That doesn't work, however, since
if the query involved a security barrier view on top of a table with
RLS, the RTE would already have securityQuals (from the view) by the
time fireRIRrules() was invoked, and so the table's RLS policies would
be ignored. This is fixed in fireRIRrules() by handling RLS in a
separate loop at the end, after dealing with any other sublink
subqueries, thus ensuring that each RTE is only visited once for RLS
expansion.
The inheritance planner code didn't correctly handle non-target
relations with RLS, which would get turned into subqueries during
planning. Thus an update of the form "UPDATE t1 ... FROM t2 ..." where
t1 has inheritance and t2 has RLS quals would fail. Fix by making sure
to copy in and update the securityQuals when they exist for non-target
relations.
process_policies() was adding WCOs to non-target relations, which is
unnecessary, and could lead to a lot of wasted time in the rewriter and
the planner. Fix by only adding WCO policies when working on the result
relation. Also in process_policies, we should be copying the USING
policies to the WITH CHECK policies on a per-policy basis, fix by moving
the copying up into the per-policy loop.
Lastly, as noted by Dean, we were simply adding policies returned by the
hook provided to the list of quals being AND'd, meaning that they would
actually restrict records returned and there was no option to have
internal policies and hook-based policies work together permissively (as
all internal policies currently work). Instead, explicitly add support
for both permissive and restrictive policies by having a hook for each
and combining the results appropriately. To ensure this is all done
correctly, add a new test module (test_rls_hooks) to test the various
combinations of internal, permissive, and restrictive hook policies.
Largely from Dean Rasheed (thanks!):
CAEZATCVmFUfUOwwhnBTcgi6AquyjQ0-1fyKd0T3xBWJvn+xsFA@mail.gmail.com
Author: Dean Rasheed, though I added the new hooks and test module.
11 years ago
|
|
|
|
|
|
|
|
role = ObjectIdGetDatum(ACL_ID_PUBLIC);
|
|
|
|
|
|
|
|
|
|
policy->policy_name = pstrdup("extension policy");
|
|
|
|
|
policy->polcmd = '*';
|
|
|
|
|
policy->roles = construct_array(&role, 1, OIDOID, sizeof(Oid), true, 'i');
|
|
|
|
|
|
|
|
|
|
n = makeFuncCall(list_make2(makeString("pg_catalog"),
|
|
|
|
|
makeString("current_user")), NIL, 0);
|
|
|
|
|
|
|
|
|
|
c = makeNode(ColumnRef);
|
|
|
|
|
c->fields = list_make1(makeString("supervisor"));
|
|
|
|
|
c->location = 0;
|
|
|
|
|
|
|
|
|
|
e = (Node *) makeSimpleA_Expr(AEXPR_OP, "=", (Node *) n, (Node *) c, 0);
|
RLS fixes, new hooks, and new test module
In prepend_row_security_policies(), defaultDeny was always true, so if
there were any hook policies, the RLS policies on the table would just
get discarded. Fixed to start off with defaultDeny as false and then
properly set later if we detect that only the default deny policy exists
for the internal policies.
The infinite recursion detection in fireRIRrules() didn't properly
manage the activeRIRs list in the case of WCOs, so it would incorrectly
report infinite recusion if the same relation with RLS appeared more
than once in the rtable, for example "UPDATE t ... FROM t ...".
Further, the RLS expansion code in fireRIRrules() was handling RLS in
the main loop through the rtable, which lead to RTEs being visited twice
if they contained sublink subqueries, which
prepend_row_security_policies() attempted to handle by exiting early if
the RTE already had securityQuals. That doesn't work, however, since
if the query involved a security barrier view on top of a table with
RLS, the RTE would already have securityQuals (from the view) by the
time fireRIRrules() was invoked, and so the table's RLS policies would
be ignored. This is fixed in fireRIRrules() by handling RLS in a
separate loop at the end, after dealing with any other sublink
subqueries, thus ensuring that each RTE is only visited once for RLS
expansion.
The inheritance planner code didn't correctly handle non-target
relations with RLS, which would get turned into subqueries during
planning. Thus an update of the form "UPDATE t1 ... FROM t2 ..." where
t1 has inheritance and t2 has RLS quals would fail. Fix by making sure
to copy in and update the securityQuals when they exist for non-target
relations.
process_policies() was adding WCOs to non-target relations, which is
unnecessary, and could lead to a lot of wasted time in the rewriter and
the planner. Fix by only adding WCO policies when working on the result
relation. Also in process_policies, we should be copying the USING
policies to the WITH CHECK policies on a per-policy basis, fix by moving
the copying up into the per-policy loop.
Lastly, as noted by Dean, we were simply adding policies returned by the
hook provided to the list of quals being AND'd, meaning that they would
actually restrict records returned and there was no option to have
internal policies and hook-based policies work together permissively (as
all internal policies currently work). Instead, explicitly add support
for both permissive and restrictive policies by having a hook for each
and combining the results appropriately. To ensure this is all done
correctly, add a new test module (test_rls_hooks) to test the various
combinations of internal, permissive, and restrictive hook policies.
Largely from Dean Rasheed (thanks!):
CAEZATCVmFUfUOwwhnBTcgi6AquyjQ0-1fyKd0T3xBWJvn+xsFA@mail.gmail.com
Author: Dean Rasheed, though I added the new hooks and test module.
11 years ago
|
|
|
|
|
|
|
|
policy->qual = (Expr *) transformWhereClause(qual_pstate, copyObject(e),
|
|
|
|
|
EXPR_KIND_POLICY,
|
|
|
|
|
"POLICY");
|
|
|
|
|
/* Fix up collation information */
|
|
|
|
|
assign_expr_collations(qual_pstate, (Node *) policy->qual);
|
RLS fixes, new hooks, and new test module
In prepend_row_security_policies(), defaultDeny was always true, so if
there were any hook policies, the RLS policies on the table would just
get discarded. Fixed to start off with defaultDeny as false and then
properly set later if we detect that only the default deny policy exists
for the internal policies.
The infinite recursion detection in fireRIRrules() didn't properly
manage the activeRIRs list in the case of WCOs, so it would incorrectly
report infinite recusion if the same relation with RLS appeared more
than once in the rtable, for example "UPDATE t ... FROM t ...".
Further, the RLS expansion code in fireRIRrules() was handling RLS in
the main loop through the rtable, which lead to RTEs being visited twice
if they contained sublink subqueries, which
prepend_row_security_policies() attempted to handle by exiting early if
the RTE already had securityQuals. That doesn't work, however, since
if the query involved a security barrier view on top of a table with
RLS, the RTE would already have securityQuals (from the view) by the
time fireRIRrules() was invoked, and so the table's RLS policies would
be ignored. This is fixed in fireRIRrules() by handling RLS in a
separate loop at the end, after dealing with any other sublink
subqueries, thus ensuring that each RTE is only visited once for RLS
expansion.
The inheritance planner code didn't correctly handle non-target
relations with RLS, which would get turned into subqueries during
planning. Thus an update of the form "UPDATE t1 ... FROM t2 ..." where
t1 has inheritance and t2 has RLS quals would fail. Fix by making sure
to copy in and update the securityQuals when they exist for non-target
relations.
process_policies() was adding WCOs to non-target relations, which is
unnecessary, and could lead to a lot of wasted time in the rewriter and
the planner. Fix by only adding WCO policies when working on the result
relation. Also in process_policies, we should be copying the USING
policies to the WITH CHECK policies on a per-policy basis, fix by moving
the copying up into the per-policy loop.
Lastly, as noted by Dean, we were simply adding policies returned by the
hook provided to the list of quals being AND'd, meaning that they would
actually restrict records returned and there was no option to have
internal policies and hook-based policies work together permissively (as
all internal policies currently work). Instead, explicitly add support
for both permissive and restrictive policies by having a hook for each
and combining the results appropriately. To ensure this is all done
correctly, add a new test module (test_rls_hooks) to test the various
combinations of internal, permissive, and restrictive hook policies.
Largely from Dean Rasheed (thanks!):
CAEZATCVmFUfUOwwhnBTcgi6AquyjQ0-1fyKd0T3xBWJvn+xsFA@mail.gmail.com
Author: Dean Rasheed, though I added the new hooks and test module.
11 years ago
|
|
|
|
|
|
|
|
policy->with_check_qual = copyObject(policy->qual);
|
|
|
|
|
policy->hassublinks = false;
|
|
|
|
|
|
|
|
|
|
policies = list_make1(policy);
|
|
|
|
|
|
|
|
|
|
return policies;
|
|
|
|
|
}
|