You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
postgres/src/backend/optimizer/util/predtest.c

978 lines
30 KiB

/*-------------------------------------------------------------------------
*
* predtest.c
* Routines to attempt to prove logical implications between predicate
* expressions.
*
* Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/optimizer/util/predtest.c,v 1.4 2005/10/15 02:49:21 momjian Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "catalog/pg_amop.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"
#include "executor/executor.h"
#include "optimizer/clauses.h"
#include "optimizer/predtest.h"
#include "utils/catcache.h"
#include "utils/lsyscache.h"
#include "utils/syscache.h"
static bool predicate_implied_by_recurse(Node *clause, Node *predicate);
static bool predicate_refuted_by_recurse(Node *clause, Node *predicate);
static bool predicate_implied_by_simple_clause(Expr *predicate, Node *clause);
static bool predicate_refuted_by_simple_clause(Expr *predicate, Node *clause);
static bool btree_predicate_proof(Expr *predicate, Node *clause,
bool refute_it);
/*
* predicate_implied_by
* Recursively checks whether the clauses in restrictinfo_list imply
* that the given predicate is true.
*
* The top-level List structure of each list corresponds to an AND list.
* We assume that eval_const_expressions() has been applied and so there
* are no un-flattened ANDs or ORs (e.g., no AND immediately within an AND,
* including AND just below the top-level List structure).
* If this is not true we might fail to prove an implication that is
* valid, but no worse consequences will ensue.
*
* We assume the predicate has already been checked to contain only
* immutable functions and operators. (In most current uses this is true
* because the predicate is part of an index predicate that has passed
* CheckPredicate().) We dare not make deductions based on non-immutable
* functions, because they might change answers between the time we make
* the plan and the time we execute the plan.
*/
bool
predicate_implied_by(List *predicate_list, List *restrictinfo_list)
{
ListCell *item;
if (predicate_list == NIL)
return true; /* no predicate: implication is vacuous */
if (restrictinfo_list == NIL)
return false; /* no restriction: implication must fail */
/*
* In all cases where the predicate is an AND-clause,
* predicate_implied_by_recurse() will prefer to iterate over the
* predicate's components. So we can just do that to start with here, and
* eliminate the need for predicate_implied_by_recurse() to handle a bare
* List on the predicate side.
*
* Logic is: restriction must imply each of the AND'ed predicate items.
*/
foreach(item, predicate_list)
{
if (!predicate_implied_by_recurse((Node *) restrictinfo_list,
lfirst(item)))
return false;
}
return true;
}
/*
* predicate_refuted_by
* Recursively checks whether the clauses in restrictinfo_list refute
* the given predicate (that is, prove it false).
*
* This is NOT the same as !(predicate_implied_by), though it is similar
* in the technique and structure of the code.
*
* The top-level List structure of each list corresponds to an AND list.
* We assume that eval_const_expressions() has been applied and so there
* are no un-flattened ANDs or ORs (e.g., no AND immediately within an AND,
* including AND just below the top-level List structure).
* If this is not true we might fail to prove an implication that is
* valid, but no worse consequences will ensue.
*
* We assume the predicate has already been checked to contain only
* immutable functions and operators. We dare not make deductions based on
* non-immutable functions, because they might change answers between the
* time we make the plan and the time we execute the plan.
*/
bool
predicate_refuted_by(List *predicate_list, List *restrictinfo_list)
{
if (predicate_list == NIL)
return false; /* no predicate: no refutation is possible */
if (restrictinfo_list == NIL)
return false; /* no restriction: refutation must fail */
/*
* Unlike the implication case, predicate_refuted_by_recurse needs to be
* able to see the top-level AND structure on both sides --- otherwise it
* will fail to handle the case where one restriction clause is an OR that
* can refute the predicate AND as a whole, but not each predicate clause
* separately.
*/
return predicate_refuted_by_recurse((Node *) restrictinfo_list,
(Node *) predicate_list);
}
/*----------
* predicate_implied_by_recurse
* Does the predicate implication test for non-NULL restriction and
* predicate clauses.
*
* The logic followed here is ("=>" means "implies"):
* atom A => atom B iff: predicate_implied_by_simple_clause says so
* atom A => AND-expr B iff: A => each of B's components
* atom A => OR-expr B iff: A => any of B's components
* AND-expr A => atom B iff: any of A's components => B
* AND-expr A => AND-expr B iff: A => each of B's components
* AND-expr A => OR-expr B iff: A => any of B's components,
* *or* any of A's components => B
* OR-expr A => atom B iff: each of A's components => B
* OR-expr A => AND-expr B iff: A => each of B's components
* OR-expr A => OR-expr B iff: each of A's components => any of B's
*
* An "atom" is anything other than an AND or OR node. Notice that we don't
* have any special logic to handle NOT nodes; these should have been pushed
* down or eliminated where feasible by prepqual.c.
*
* We can't recursively expand either side first, but have to interleave
* the expansions per the above rules, to be sure we handle all of these
* examples:
* (x OR y) => (x OR y OR z)
* (x AND y AND z) => (x AND y)
* (x AND y) => ((x AND y) OR z)
* ((x OR y) AND z) => (x OR y)
* This is still not an exhaustive test, but it handles most normal cases
* under the assumption that both inputs have been AND/OR flattened.
*
* A bare List node on the restriction side is interpreted as an AND clause,
* in order to handle the top-level restriction List properly. However we
* need not consider a List on the predicate side since predicate_implied_by()
* already expanded it.
*
* We have to be prepared to handle RestrictInfo nodes in the restrictinfo
* tree, though not in the predicate tree.
*----------
*/
static bool
predicate_implied_by_recurse(Node *clause, Node *predicate)
{
ListCell *item;
Assert(clause != NULL);
/* skip through RestrictInfo */
if (IsA(clause, RestrictInfo))
{
clause = (Node *) ((RestrictInfo *) clause)->clause;
Assert(clause != NULL);
Assert(!IsA(clause, RestrictInfo));
}
Assert(predicate != NULL);
/*
* Since a restriction List clause is handled the same as an AND clause,
* we can avoid duplicate code like this:
*/
if (and_clause(clause))
clause = (Node *) ((BoolExpr *) clause)->args;
if (IsA(clause, List))
{
if (and_clause(predicate))
{
/* AND-clause => AND-clause if A implies each of B's items */
foreach(item, ((BoolExpr *) predicate)->args)
{
if (!predicate_implied_by_recurse(clause, lfirst(item)))
return false;
}
return true;
}
else if (or_clause(predicate))
{
/* AND-clause => OR-clause if A implies any of B's items */
/* Needed to handle (x AND y) => ((x AND y) OR z) */
foreach(item, ((BoolExpr *) predicate)->args)
{
if (predicate_implied_by_recurse(clause, lfirst(item)))
return true;
}
/* Also check if any of A's items implies B */
/* Needed to handle ((x OR y) AND z) => (x OR y) */
foreach(item, (List *) clause)
{
if (predicate_implied_by_recurse(lfirst(item), predicate))
return true;
}
return false;
}
else
{
/* AND-clause => atom if any of A's items implies B */
foreach(item, (List *) clause)
{
if (predicate_implied_by_recurse(lfirst(item), predicate))
return true;
}
return false;
}
}
else if (or_clause(clause))
{
if (or_clause(predicate))
{
/*
* OR-clause => OR-clause if each of A's items implies any of B's
* items. Messy but can't do it any more simply.
*/
foreach(item, ((BoolExpr *) clause)->args)
{
Node *citem = lfirst(item);
ListCell *item2;
foreach(item2, ((BoolExpr *) predicate)->args)
{
if (predicate_implied_by_recurse(citem, lfirst(item2)))
break;
}
if (item2 == NULL)
return false; /* doesn't imply any of B's */
}
return true;
}
else
{
/* OR-clause => AND-clause if each of A's items implies B */
/* OR-clause => atom if each of A's items implies B */
foreach(item, ((BoolExpr *) clause)->args)
{
if (!predicate_implied_by_recurse(lfirst(item), predicate))
return false;
}
return true;
}
}
else
{
if (and_clause(predicate))
{
/* atom => AND-clause if A implies each of B's items */
foreach(item, ((BoolExpr *) predicate)->args)
{
if (!predicate_implied_by_recurse(clause, lfirst(item)))
return false;
}
return true;
}
else if (or_clause(predicate))
{
/* atom => OR-clause if A implies any of B's items */
foreach(item, ((BoolExpr *) predicate)->args)
{
if (predicate_implied_by_recurse(clause, lfirst(item)))
return true;
}
return false;
}
else
{
/* atom => atom is the base case */
return predicate_implied_by_simple_clause((Expr *) predicate,
clause);
}
}
}
/*----------
* predicate_refuted_by_recurse
* Does the predicate refutation test for non-NULL restriction and
* predicate clauses.
*
* The logic followed here is ("R=>" means "refutes"):
* atom A R=> atom B iff: predicate_refuted_by_simple_clause says so
* atom A R=> AND-expr B iff: A R=> any of B's components
* atom A R=> OR-expr B iff: A R=> each of B's components
* AND-expr A R=> atom B iff: any of A's components R=> B
* AND-expr A R=> AND-expr B iff: A R=> any of B's components,
* *or* any of A's components R=> B
* AND-expr A R=> OR-expr B iff: A R=> each of B's components
* OR-expr A R=> atom B iff: each of A's components R=> B
* OR-expr A R=> AND-expr B iff: each of A's components R=> any of B's
* OR-expr A R=> OR-expr B iff: A R=> each of B's components
*
* Other comments are as for predicate_implied_by_recurse(), except that
* we have to handle a top-level AND list on both sides.
*----------
*/
static bool
predicate_refuted_by_recurse(Node *clause, Node *predicate)
{
ListCell *item;
Assert(clause != NULL);
/* skip through RestrictInfo */
if (IsA(clause, RestrictInfo))
{
clause = (Node *) ((RestrictInfo *) clause)->clause;
Assert(clause != NULL);
Assert(!IsA(clause, RestrictInfo));
}
Assert(predicate != NULL);
/*
* Since a restriction List clause is handled the same as an AND clause,
* we can avoid duplicate code like this:
*/
if (and_clause(clause))
clause = (Node *) ((BoolExpr *) clause)->args;
/* Ditto for predicate AND-clause and List */
if (and_clause(predicate))
predicate = (Node *) ((BoolExpr *) predicate)->args;
if (IsA(clause, List))
{
if (IsA(predicate, List))
{
/* AND-clause R=> AND-clause if A refutes any of B's items */
/* Needed to handle (x AND y) R=> ((!x OR !y) AND z) */
foreach(item, (List *) predicate)
{
if (predicate_refuted_by_recurse(clause, lfirst(item)))
return true;
}
/* Also check if any of A's items refutes B */
/* Needed to handle ((x OR y) AND z) R=> (!x AND !y) */
foreach(item, (List *) clause)
{
if (predicate_refuted_by_recurse(lfirst(item), predicate))
return true;
}
return false;
}
else if (or_clause(predicate))
{
/* AND-clause R=> OR-clause if A refutes each of B's items */
foreach(item, ((BoolExpr *) predicate)->args)
{
if (!predicate_refuted_by_recurse(clause, lfirst(item)))
return false;
}
return true;
}
else
{
/* AND-clause R=> atom if any of A's items refutes B */
foreach(item, (List *) clause)
{
if (predicate_refuted_by_recurse(lfirst(item), predicate))
return true;
}
return false;
}
}
else if (or_clause(clause))
{
if (or_clause(predicate))
{
/* OR-clause R=> OR-clause if A refutes each of B's items */
foreach(item, ((BoolExpr *) predicate)->args)
{
if (!predicate_refuted_by_recurse(clause, lfirst(item)))
return false;
}
return true;
}
else if (IsA(predicate, List))
{
/*
* OR-clause R=> AND-clause if each of A's items refutes any of
* B's items.
*/
foreach(item, ((BoolExpr *) clause)->args)
{
Node *citem = lfirst(item);
ListCell *item2;
foreach(item2, (List *) predicate)
{
if (predicate_refuted_by_recurse(citem, lfirst(item2)))
break;
}
if (item2 == NULL)
return false; /* citem refutes nothing */
}
return true;
}
else
{
/* OR-clause R=> atom if each of A's items refutes B */
foreach(item, ((BoolExpr *) clause)->args)
{
if (!predicate_refuted_by_recurse(lfirst(item), predicate))
return false;
}
return true;
}
}
else
{
if (IsA(predicate, List))
{
/* atom R=> AND-clause if A refutes any of B's items */
foreach(item, (List *) predicate)
{
if (predicate_refuted_by_recurse(clause, lfirst(item)))
return true;
}
return false;
}
else if (or_clause(predicate))
{
/* atom R=> OR-clause if A refutes each of B's items */
foreach(item, ((BoolExpr *) predicate)->args)
{
if (!predicate_refuted_by_recurse(clause, lfirst(item)))
return false;
}
return true;
}
else
{
/* atom R=> atom is the base case */
return predicate_refuted_by_simple_clause((Expr *) predicate,
clause);
}
}
}
/*----------
* predicate_implied_by_simple_clause
* Does the predicate implication test for a "simple clause" predicate
* and a "simple clause" restriction.
*
* We return TRUE if able to prove the implication, FALSE if not.
*
* We have three strategies for determining whether one simple clause
* implies another:
*
* A simple and general way is to see if they are equal(); this works for any
* kind of expression. (Actually, there is an implied assumption that the
* functions in the expression are immutable, ie dependent only on their input
* arguments --- but this was checked for the predicate by the caller.)
*
* When the predicate is of the form "foo IS NOT NULL", we can conclude that
* the predicate is implied if the clause is a strict operator or function
* that has "foo" as an input. In this case the clause must yield NULL when
* "foo" is NULL, which we can take as equivalent to FALSE because we know
* we are within an AND/OR subtree of a WHERE clause. (Again, "foo" is
* already known immutable, so the clause will certainly always fail.)
*
* Finally, we may be able to deduce something using knowledge about btree
* operator classes; this is encapsulated in btree_predicate_proof().
*----------
*/
static bool
predicate_implied_by_simple_clause(Expr *predicate, Node *clause)
{
/* First try the equal() test */
if (equal((Node *) predicate, clause))
return true;
/* Next try the IS NOT NULL case */
if (predicate && IsA(predicate, NullTest) &&
((NullTest *) predicate)->nulltesttype == IS_NOT_NULL)
{
Expr *nonnullarg = ((NullTest *) predicate)->arg;
if (is_opclause(clause) &&
list_member(((OpExpr *) clause)->args, nonnullarg) &&
op_strict(((OpExpr *) clause)->opno))
return true;
if (is_funcclause(clause) &&
list_member(((FuncExpr *) clause)->args, nonnullarg) &&
func_strict(((FuncExpr *) clause)->funcid))
return true;
return false; /* we can't succeed below... */
}
/* Else try btree operator knowledge */
return btree_predicate_proof(predicate, clause, false);
}
/*----------
* predicate_refuted_by_simple_clause
* Does the predicate refutation test for a "simple clause" predicate
* and a "simple clause" restriction.
*
* We return TRUE if able to prove the refutation, FALSE if not.
*
* Unlike the implication case, checking for equal() clauses isn't
* helpful. (XXX is it worth looking at "x vs NOT x" cases? Probably
* not seeing that canonicalization tries to get rid of NOTs.)
*
* When the predicate is of the form "foo IS NULL", we can conclude that
* the predicate is refuted if the clause is a strict operator or function
* that has "foo" as an input. See notes for implication case.
*
* Finally, we may be able to deduce something using knowledge about btree
* operator classes; this is encapsulated in btree_predicate_proof().
*----------
*/
static bool
predicate_refuted_by_simple_clause(Expr *predicate, Node *clause)
{
/* First try the IS NULL case */
if (predicate && IsA(predicate, NullTest) &&
((NullTest *) predicate)->nulltesttype == IS_NULL)
{
Expr *isnullarg = ((NullTest *) predicate)->arg;
if (is_opclause(clause) &&
list_member(((OpExpr *) clause)->args, isnullarg) &&
op_strict(((OpExpr *) clause)->opno))
return true;
if (is_funcclause(clause) &&
list_member(((FuncExpr *) clause)->args, isnullarg) &&
func_strict(((FuncExpr *) clause)->funcid))
return true;
return false; /* we can't succeed below... */
}
/* Else try btree operator knowledge */
return btree_predicate_proof(predicate, clause, true);
}
/*
* Define an "operator implication table" for btree operators ("strategies"),
* and a similar table for refutation.
*
* The strategy numbers defined by btree indexes (see access/skey.h) are:
* (1) < (2) <= (3) = (4) >= (5) >
* and in addition we use (6) to represent <>. <> is not a btree-indexable
* operator, but we assume here that if the equality operator of a btree
* opclass has a negator operator, the negator behaves as <> for the opclass.
*
* The interpretation of:
*
* test_op = BT_implic_table[given_op-1][target_op-1]
*
* where test_op, given_op and target_op are strategy numbers (from 1 to 6)
* of btree operators, is as follows:
*
* If you know, for some ATTR, that "ATTR given_op CONST1" is true, and you
* want to determine whether "ATTR target_op CONST2" must also be true, then
* you can use "CONST2 test_op CONST1" as a test. If this test returns true,
* then the target expression must be true; if the test returns false, then
* the target expression may be false.
*
* For example, if clause is "Quantity > 10" and pred is "Quantity > 5"
* then we test "5 <= 10" which evals to true, so clause implies pred.
*
* Similarly, the interpretation of a BT_refute_table entry is:
*
* If you know, for some ATTR, that "ATTR given_op CONST1" is true, and you
* want to determine whether "ATTR target_op CONST2" must be false, then
* you can use "CONST2 test_op CONST1" as a test. If this test returns true,
* then the target expression must be false; if the test returns false, then
* the target expression may be true.
*
* For example, if clause is "Quantity > 10" and pred is "Quantity < 5"
* then we test "5 <= 10" which evals to true, so clause refutes pred.
*
* An entry where test_op == 0 means the implication cannot be determined.
*/
#define BTLT BTLessStrategyNumber
#define BTLE BTLessEqualStrategyNumber
#define BTEQ BTEqualStrategyNumber
#define BTGE BTGreaterEqualStrategyNumber
#define BTGT BTGreaterStrategyNumber
#define BTNE 6
static const StrategyNumber BT_implic_table[6][6] = {
/*
* The target operator:
*
* LT LE EQ GE GT NE
*/
{BTGE, BTGE, 0, 0, 0, BTGE}, /* LT */
{BTGT, BTGE, 0, 0, 0, BTGT}, /* LE */
{BTGT, BTGE, BTEQ, BTLE, BTLT, BTNE}, /* EQ */
{0, 0, 0, BTLE, BTLT, BTLT}, /* GE */
{0, 0, 0, BTLE, BTLE, BTLE}, /* GT */
{0, 0, 0, 0, 0, BTEQ} /* NE */
};
static const StrategyNumber BT_refute_table[6][6] = {
/*
* The target operator:
*
* LT LE EQ GE GT NE
*/
{0, 0, BTGE, BTGE, BTGE, 0}, /* LT */
{0, 0, BTGT, BTGT, BTGE, 0}, /* LE */
{BTLE, BTLT, BTNE, BTGT, BTGE, BTEQ}, /* EQ */
{BTLE, BTLT, BTLT, 0, 0, 0}, /* GE */
{BTLE, BTLE, BTLE, 0, 0, 0}, /* GT */
{0, 0, BTEQ, 0, 0, 0} /* NE */
};
/*----------
* btree_predicate_proof
* Does the predicate implication or refutation test for a "simple clause"
* predicate and a "simple clause" restriction, when both are simple
* operator clauses using related btree operators.
*
* When refute_it == false, we want to prove the predicate true;
* when refute_it == true, we want to prove the predicate false.
* (There is enough common code to justify handling these two cases
* in one routine.) We return TRUE if able to make the proof, FALSE
* if not able to prove it.
*
* What we look for here is binary boolean opclauses of the form
* "foo op constant", where "foo" is the same in both clauses. The operators
* and constants can be different but the operators must be in the same btree
* operator class. We use the above operator implication tables to
* derive implications between nonidentical clauses. (Note: "foo" is known
* immutable, and constants are surely immutable, but we have to check that
* the operators are too. As of 8.0 it's possible for opclasses to contain
* operators that are merely stable, and we dare not make deductions with
* these.)
*----------
*/
static bool
btree_predicate_proof(Expr *predicate, Node *clause, bool refute_it)
{
Node *leftop,
*rightop;
Node *pred_var,
*clause_var;
Const *pred_const,
*clause_const;
bool pred_var_on_left,
clause_var_on_left,
pred_op_negated;
Oid pred_op,
clause_op,
pred_op_negator,
clause_op_negator,
test_op = InvalidOid;
Oid opclass_id;
bool found = false;
StrategyNumber pred_strategy,
clause_strategy,
test_strategy;
Oid clause_subtype;
Expr *test_expr;
ExprState *test_exprstate;
Datum test_result;
bool isNull;
CatCList *catlist;
int i;
EState *estate;
MemoryContext oldcontext;
/*
* Both expressions must be binary opclauses with a Const on one side, and
* identical subexpressions on the other sides. Note we don't have to
* think about binary relabeling of the Const node, since that would have
* been folded right into the Const.
*
* If either Const is null, we also fail right away; this assumes that the
* test operator will always be strict.
*/
if (!is_opclause(predicate))
return false;
leftop = get_leftop(predicate);
rightop = get_rightop(predicate);
if (rightop == NULL)
return false; /* not a binary opclause */
if (IsA(rightop, Const))
{
pred_var = leftop;
pred_const = (Const *) rightop;
pred_var_on_left = true;
}
else if (IsA(leftop, Const))
{
pred_var = rightop;
pred_const = (Const *) leftop;
pred_var_on_left = false;
}
else
return false; /* no Const to be found */
if (pred_const->constisnull)
return false;
if (!is_opclause(clause))
return false;
leftop = get_leftop((Expr *) clause);
rightop = get_rightop((Expr *) clause);
if (rightop == NULL)
return false; /* not a binary opclause */
if (IsA(rightop, Const))
{
clause_var = leftop;
clause_const = (Const *) rightop;
clause_var_on_left = true;
}
else if (IsA(leftop, Const))
{
clause_var = rightop;
clause_const = (Const *) leftop;
clause_var_on_left = false;
}
else
return false; /* no Const to be found */
if (clause_const->constisnull)
return false;
/*
* Check for matching subexpressions on the non-Const sides. We used to
* only allow a simple Var, but it's about as easy to allow any
* expression. Remember we already know that the pred expression does not
* contain any non-immutable functions, so identical expressions should
* yield identical results.
*/
if (!equal(pred_var, clause_var))
return false;
/*
* Okay, get the operators in the two clauses we're comparing. Commute
* them if needed so that we can assume the variables are on the left.
*/
pred_op = ((OpExpr *) predicate)->opno;
if (!pred_var_on_left)
{
pred_op = get_commutator(pred_op);
if (!OidIsValid(pred_op))
return false;
}
clause_op = ((OpExpr *) clause)->opno;
if (!clause_var_on_left)
{
clause_op = get_commutator(clause_op);
if (!OidIsValid(clause_op))
return false;
}
/*
* Try to find a btree opclass containing the needed operators.
*
* We must find a btree opclass that contains both operators, else the
* implication can't be determined. Also, the pred_op has to be of
* default subtype (implying left and right input datatypes are the same);
* otherwise it's unsafe to put the pred_const on the left side of the
* test. Also, the opclass must contain a suitable test operator matching
* the clause_const's type (which we take to mean that it has the same
* subtype as the original clause_operator).
*
* If there are multiple matching opclasses, assume we can use any one to
* determine the logical relationship of the two operators and the correct
* corresponding test operator. This should work for any logically
* consistent opclasses.
*/
catlist = SearchSysCacheList(AMOPOPID, 1,
ObjectIdGetDatum(pred_op),
0, 0, 0);
/*
* If we couldn't find any opclass containing the pred_op, perhaps it is a
* <> operator. See if it has a negator that is in an opclass.
*/
pred_op_negated = false;
if (catlist->n_members == 0)
{
pred_op_negator = get_negator(pred_op);
if (OidIsValid(pred_op_negator))
{
pred_op_negated = true;
ReleaseSysCacheList(catlist);
catlist = SearchSysCacheList(AMOPOPID, 1,
ObjectIdGetDatum(pred_op_negator),
0, 0, 0);
}
}
/* Also may need the clause_op's negator */
clause_op_negator = get_negator(clause_op);
/* Now search the opclasses */
for (i = 0; i < catlist->n_members; i++)
{
HeapTuple pred_tuple = &catlist->members[i]->tuple;
Form_pg_amop pred_form = (Form_pg_amop) GETSTRUCT(pred_tuple);
HeapTuple clause_tuple;
opclass_id = pred_form->amopclaid;
/* must be btree */
if (!opclass_is_btree(opclass_id))
continue;
/* predicate operator must be default within this opclass */
if (pred_form->amopsubtype != InvalidOid)
continue;
/* Get the predicate operator's btree strategy number */
pred_strategy = (StrategyNumber) pred_form->amopstrategy;
Assert(pred_strategy >= 1 && pred_strategy <= 5);
if (pred_op_negated)
{
/* Only consider negators that are = */
if (pred_strategy != BTEqualStrategyNumber)
continue;
pred_strategy = BTNE;
}
/*
* From the same opclass, find a strategy number for the clause_op, if
* possible
*/
clause_tuple = SearchSysCache(AMOPOPID,
ObjectIdGetDatum(clause_op),
ObjectIdGetDatum(opclass_id),
0, 0);
if (HeapTupleIsValid(clause_tuple))
{
Form_pg_amop clause_form = (Form_pg_amop) GETSTRUCT(clause_tuple);
/* Get the restriction clause operator's strategy/subtype */
clause_strategy = (StrategyNumber) clause_form->amopstrategy;
Assert(clause_strategy >= 1 && clause_strategy <= 5);
clause_subtype = clause_form->amopsubtype;
ReleaseSysCache(clause_tuple);
}
else if (OidIsValid(clause_op_negator))
{
clause_tuple = SearchSysCache(AMOPOPID,
ObjectIdGetDatum(clause_op_negator),
ObjectIdGetDatum(opclass_id),
0, 0);
if (HeapTupleIsValid(clause_tuple))
{
Form_pg_amop clause_form = (Form_pg_amop) GETSTRUCT(clause_tuple);
/* Get the restriction clause operator's strategy/subtype */
clause_strategy = (StrategyNumber) clause_form->amopstrategy;
Assert(clause_strategy >= 1 && clause_strategy <= 5);
clause_subtype = clause_form->amopsubtype;
ReleaseSysCache(clause_tuple);
/* Only consider negators that are = */
if (clause_strategy != BTEqualStrategyNumber)
continue;
clause_strategy = BTNE;
}
else
continue;
}
else
continue;
/*
* Look up the "test" strategy number in the implication table
*/
if (refute_it)
test_strategy = BT_refute_table[clause_strategy - 1][pred_strategy - 1];
else
test_strategy = BT_implic_table[clause_strategy - 1][pred_strategy - 1];
if (test_strategy == 0)
{
/* Can't determine implication using this interpretation */
continue;
}
/*
* See if opclass has an operator for the test strategy and the clause
* datatype.
*/
if (test_strategy == BTNE)
{
test_op = get_opclass_member(opclass_id, clause_subtype,
BTEqualStrategyNumber);
if (OidIsValid(test_op))
test_op = get_negator(test_op);
}
else
{
test_op = get_opclass_member(opclass_id, clause_subtype,
test_strategy);
}
if (OidIsValid(test_op))
{
/*
* Last check: test_op must be immutable.
*
* Note that we require only the test_op to be immutable, not the
* original clause_op. (pred_op is assumed to have been checked
* immutable by the caller.) Essentially we are assuming that the
* opclass is consistent even if it contains operators that are
* merely stable.
*/
if (op_volatile(test_op) == PROVOLATILE_IMMUTABLE)
{
found = true;
break;
}
}
}
ReleaseSysCacheList(catlist);
if (!found)
{
/* couldn't find a btree opclass to interpret the operators */
return false;
}
/*
* Evaluate the test. For this we need an EState.
*/
estate = CreateExecutorState();
/* We can use the estate's working context to avoid memory leaks. */
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
/* Build expression tree */
test_expr = make_opclause(test_op,
BOOLOID,
false,
(Expr *) pred_const,
(Expr *) clause_const);
/* Prepare it for execution */
test_exprstate = ExecPrepareExpr(test_expr, estate);
/* And execute it. */
test_result = ExecEvalExprSwitchContext(test_exprstate,
GetPerTupleExprContext(estate),
&isNull, NULL);
/* Get back to outer memory context */
MemoryContextSwitchTo(oldcontext);
/* Release all the junk we just created */
FreeExecutorState(estate);
if (isNull)
{
/* Treat a null result as non-proof ... but it's a tad fishy ... */
elog(DEBUG2, "null predicate test result");
return false;
}
return DatumGetBool(test_result);
}