You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
postgres/src/backend/utils/adt/datum.c

249 lines
7.3 KiB

/*-------------------------------------------------------------------------
*
* datum.c
* POSTGRES Datum (abstract data type) manipulation routines.
*
* Portions Copyright (c) 1996-2015, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/utils/adt/datum.c
*
*-------------------------------------------------------------------------
*/
Support "expanded" objects, particularly arrays, for better performance. This patch introduces the ability for complex datatypes to have an in-memory representation that is different from their on-disk format. On-disk formats are typically optimized for minimal size, and in any case they can't contain pointers, so they are often not well-suited for computation. Now a datatype can invent an "expanded" in-memory format that is better suited for its operations, and then pass that around among the C functions that operate on the datatype. There are also provisions (rudimentary as yet) to allow an expanded object to be modified in-place under suitable conditions, so that operations like assignment to an element of an array need not involve copying the entire array. The initial application for this feature is arrays, but it is not hard to foresee using it for other container types like JSON, XML and hstore. I have hopes that it will be useful to PostGIS as well. In this initial implementation, a few heuristics have been hard-wired into plpgsql to improve performance for arrays that are stored in plpgsql variables. We would like to generalize those hacks so that other datatypes can obtain similar improvements, but figuring out some appropriate APIs is left as a task for future work. (The heuristics themselves are probably not optimal yet, either, as they sometimes force expansion of arrays that would be better left alone.) Preliminary performance testing shows impressive speed gains for plpgsql functions that do element-by-element access or update of large arrays. There are other cases that get a little slower, as a result of added array format conversions; but we can hope to improve anything that's annoyingly bad. In any case most applications should see a net win. Tom Lane, reviewed by Andres Freund
10 years ago
/*
Support "expanded" objects, particularly arrays, for better performance. This patch introduces the ability for complex datatypes to have an in-memory representation that is different from their on-disk format. On-disk formats are typically optimized for minimal size, and in any case they can't contain pointers, so they are often not well-suited for computation. Now a datatype can invent an "expanded" in-memory format that is better suited for its operations, and then pass that around among the C functions that operate on the datatype. There are also provisions (rudimentary as yet) to allow an expanded object to be modified in-place under suitable conditions, so that operations like assignment to an element of an array need not involve copying the entire array. The initial application for this feature is arrays, but it is not hard to foresee using it for other container types like JSON, XML and hstore. I have hopes that it will be useful to PostGIS as well. In this initial implementation, a few heuristics have been hard-wired into plpgsql to improve performance for arrays that are stored in plpgsql variables. We would like to generalize those hacks so that other datatypes can obtain similar improvements, but figuring out some appropriate APIs is left as a task for future work. (The heuristics themselves are probably not optimal yet, either, as they sometimes force expansion of arrays that would be better left alone.) Preliminary performance testing shows impressive speed gains for plpgsql functions that do element-by-element access or update of large arrays. There are other cases that get a little slower, as a result of added array format conversions; but we can hope to improve anything that's annoyingly bad. In any case most applications should see a net win. Tom Lane, reviewed by Andres Freund
10 years ago
* In the implementation of these routines we assume the following:
*
* A) if a type is "byVal" then all the information is stored in the
* Datum itself (i.e. no pointers involved!). In this case the
* length of the type is always greater than zero and not more than
* "sizeof(Datum)"
*
* B) if a type is not "byVal" and it has a fixed length (typlen > 0),
* then the "Datum" always contains a pointer to a stream of bytes.
* The number of significant bytes are always equal to the typlen.
*
* C) if a type is not "byVal" and has typlen == -1,
* then the "Datum" always points to a "struct varlena".
* This varlena structure has information about the actual length of this
* particular instance of the type and about its value.
*
* D) if a type is not "byVal" and has typlen == -2,
* then the "Datum" always points to a null-terminated C string.
*
* Note that we do not treat "toasted" datums specially; therefore what
* will be copied or compared is the compressed data or toast reference.
Support "expanded" objects, particularly arrays, for better performance. This patch introduces the ability for complex datatypes to have an in-memory representation that is different from their on-disk format. On-disk formats are typically optimized for minimal size, and in any case they can't contain pointers, so they are often not well-suited for computation. Now a datatype can invent an "expanded" in-memory format that is better suited for its operations, and then pass that around among the C functions that operate on the datatype. There are also provisions (rudimentary as yet) to allow an expanded object to be modified in-place under suitable conditions, so that operations like assignment to an element of an array need not involve copying the entire array. The initial application for this feature is arrays, but it is not hard to foresee using it for other container types like JSON, XML and hstore. I have hopes that it will be useful to PostGIS as well. In this initial implementation, a few heuristics have been hard-wired into plpgsql to improve performance for arrays that are stored in plpgsql variables. We would like to generalize those hacks so that other datatypes can obtain similar improvements, but figuring out some appropriate APIs is left as a task for future work. (The heuristics themselves are probably not optimal yet, either, as they sometimes force expansion of arrays that would be better left alone.) Preliminary performance testing shows impressive speed gains for plpgsql functions that do element-by-element access or update of large arrays. There are other cases that get a little slower, as a result of added array format conversions; but we can hope to improve anything that's annoyingly bad. In any case most applications should see a net win. Tom Lane, reviewed by Andres Freund
10 years ago
* An exception is made for datumCopy() of an expanded object, however,
* because most callers expect to get a simple contiguous (and pfree'able)
* result from datumCopy(). See also datumTransfer().
*/
#include "postgres.h"
#include "utils/datum.h"
Support "expanded" objects, particularly arrays, for better performance. This patch introduces the ability for complex datatypes to have an in-memory representation that is different from their on-disk format. On-disk formats are typically optimized for minimal size, and in any case they can't contain pointers, so they are often not well-suited for computation. Now a datatype can invent an "expanded" in-memory format that is better suited for its operations, and then pass that around among the C functions that operate on the datatype. There are also provisions (rudimentary as yet) to allow an expanded object to be modified in-place under suitable conditions, so that operations like assignment to an element of an array need not involve copying the entire array. The initial application for this feature is arrays, but it is not hard to foresee using it for other container types like JSON, XML and hstore. I have hopes that it will be useful to PostGIS as well. In this initial implementation, a few heuristics have been hard-wired into plpgsql to improve performance for arrays that are stored in plpgsql variables. We would like to generalize those hacks so that other datatypes can obtain similar improvements, but figuring out some appropriate APIs is left as a task for future work. (The heuristics themselves are probably not optimal yet, either, as they sometimes force expansion of arrays that would be better left alone.) Preliminary performance testing shows impressive speed gains for plpgsql functions that do element-by-element access or update of large arrays. There are other cases that get a little slower, as a result of added array format conversions; but we can hope to improve anything that's annoyingly bad. In any case most applications should see a net win. Tom Lane, reviewed by Andres Freund
10 years ago
#include "utils/expandeddatum.h"
/*-------------------------------------------------------------------------
* datumGetSize
*
* Find the "real" size of a datum, given the datum value,
* whether it is a "by value", and the declared type length.
Support "expanded" objects, particularly arrays, for better performance. This patch introduces the ability for complex datatypes to have an in-memory representation that is different from their on-disk format. On-disk formats are typically optimized for minimal size, and in any case they can't contain pointers, so they are often not well-suited for computation. Now a datatype can invent an "expanded" in-memory format that is better suited for its operations, and then pass that around among the C functions that operate on the datatype. There are also provisions (rudimentary as yet) to allow an expanded object to be modified in-place under suitable conditions, so that operations like assignment to an element of an array need not involve copying the entire array. The initial application for this feature is arrays, but it is not hard to foresee using it for other container types like JSON, XML and hstore. I have hopes that it will be useful to PostGIS as well. In this initial implementation, a few heuristics have been hard-wired into plpgsql to improve performance for arrays that are stored in plpgsql variables. We would like to generalize those hacks so that other datatypes can obtain similar improvements, but figuring out some appropriate APIs is left as a task for future work. (The heuristics themselves are probably not optimal yet, either, as they sometimes force expansion of arrays that would be better left alone.) Preliminary performance testing shows impressive speed gains for plpgsql functions that do element-by-element access or update of large arrays. There are other cases that get a little slower, as a result of added array format conversions; but we can hope to improve anything that's annoyingly bad. In any case most applications should see a net win. Tom Lane, reviewed by Andres Freund
10 years ago
* (For TOAST pointer datums, this is the size of the pointer datum.)
*
* This is essentially an out-of-line version of the att_addlength_datum()
* macro in access/tupmacs.h. We do a tad more error checking though.
*-------------------------------------------------------------------------
*/
Size
datumGetSize(Datum value, bool typByVal, int typLen)
{
Size size;
if (typByVal)
{
/* Pass-by-value types are always fixed-length */
Assert(typLen > 0 && typLen <= sizeof(Datum));
size = (Size) typLen;
}
else
{
if (typLen > 0)
{
/* Fixed-length pass-by-ref type */
size = (Size) typLen;
}
else if (typLen == -1)
{
/* It is a varlena datatype */
struct varlena *s = (struct varlena *) DatumGetPointer(value);
if (!PointerIsValid(s))
ereport(ERROR,
(errcode(ERRCODE_DATA_EXCEPTION),
errmsg("invalid Datum pointer")));
size = (Size) VARSIZE_ANY(s);
}
else if (typLen == -2)
{
/* It is a cstring datatype */
23 years ago
char *s = (char *) DatumGetPointer(value);
if (!PointerIsValid(s))
ereport(ERROR,
(errcode(ERRCODE_DATA_EXCEPTION),
errmsg("invalid Datum pointer")));
size = (Size) (strlen(s) + 1);
}
else
{
elog(ERROR, "invalid typLen: %d", typLen);
size = 0; /* keep compiler quiet */
}
}
return size;
}
/*-------------------------------------------------------------------------
* datumCopy
*
Support "expanded" objects, particularly arrays, for better performance. This patch introduces the ability for complex datatypes to have an in-memory representation that is different from their on-disk format. On-disk formats are typically optimized for minimal size, and in any case they can't contain pointers, so they are often not well-suited for computation. Now a datatype can invent an "expanded" in-memory format that is better suited for its operations, and then pass that around among the C functions that operate on the datatype. There are also provisions (rudimentary as yet) to allow an expanded object to be modified in-place under suitable conditions, so that operations like assignment to an element of an array need not involve copying the entire array. The initial application for this feature is arrays, but it is not hard to foresee using it for other container types like JSON, XML and hstore. I have hopes that it will be useful to PostGIS as well. In this initial implementation, a few heuristics have been hard-wired into plpgsql to improve performance for arrays that are stored in plpgsql variables. We would like to generalize those hacks so that other datatypes can obtain similar improvements, but figuring out some appropriate APIs is left as a task for future work. (The heuristics themselves are probably not optimal yet, either, as they sometimes force expansion of arrays that would be better left alone.) Preliminary performance testing shows impressive speed gains for plpgsql functions that do element-by-element access or update of large arrays. There are other cases that get a little slower, as a result of added array format conversions; but we can hope to improve anything that's annoyingly bad. In any case most applications should see a net win. Tom Lane, reviewed by Andres Freund
10 years ago
* Make a copy of a non-NULL datum.
*
* If the datatype is pass-by-reference, memory is obtained with palloc().
Support "expanded" objects, particularly arrays, for better performance. This patch introduces the ability for complex datatypes to have an in-memory representation that is different from their on-disk format. On-disk formats are typically optimized for minimal size, and in any case they can't contain pointers, so they are often not well-suited for computation. Now a datatype can invent an "expanded" in-memory format that is better suited for its operations, and then pass that around among the C functions that operate on the datatype. There are also provisions (rudimentary as yet) to allow an expanded object to be modified in-place under suitable conditions, so that operations like assignment to an element of an array need not involve copying the entire array. The initial application for this feature is arrays, but it is not hard to foresee using it for other container types like JSON, XML and hstore. I have hopes that it will be useful to PostGIS as well. In this initial implementation, a few heuristics have been hard-wired into plpgsql to improve performance for arrays that are stored in plpgsql variables. We would like to generalize those hacks so that other datatypes can obtain similar improvements, but figuring out some appropriate APIs is left as a task for future work. (The heuristics themselves are probably not optimal yet, either, as they sometimes force expansion of arrays that would be better left alone.) Preliminary performance testing shows impressive speed gains for plpgsql functions that do element-by-element access or update of large arrays. There are other cases that get a little slower, as a result of added array format conversions; but we can hope to improve anything that's annoyingly bad. In any case most applications should see a net win. Tom Lane, reviewed by Andres Freund
10 years ago
*
* If the value is a reference to an expanded object, we flatten into memory
* obtained with palloc(). We need to copy because one of the main uses of
* this function is to copy a datum out of a transient memory context that's
* about to be destroyed, and the expanded object is probably in a child
* context that will also go away. Moreover, many callers assume that the
* result is a single pfree-able chunk.
*-------------------------------------------------------------------------
*/
Datum
datumCopy(Datum value, bool typByVal, int typLen)
{
Datum res;
if (typByVal)
res = value;
Support "expanded" objects, particularly arrays, for better performance. This patch introduces the ability for complex datatypes to have an in-memory representation that is different from their on-disk format. On-disk formats are typically optimized for minimal size, and in any case they can't contain pointers, so they are often not well-suited for computation. Now a datatype can invent an "expanded" in-memory format that is better suited for its operations, and then pass that around among the C functions that operate on the datatype. There are also provisions (rudimentary as yet) to allow an expanded object to be modified in-place under suitable conditions, so that operations like assignment to an element of an array need not involve copying the entire array. The initial application for this feature is arrays, but it is not hard to foresee using it for other container types like JSON, XML and hstore. I have hopes that it will be useful to PostGIS as well. In this initial implementation, a few heuristics have been hard-wired into plpgsql to improve performance for arrays that are stored in plpgsql variables. We would like to generalize those hacks so that other datatypes can obtain similar improvements, but figuring out some appropriate APIs is left as a task for future work. (The heuristics themselves are probably not optimal yet, either, as they sometimes force expansion of arrays that would be better left alone.) Preliminary performance testing shows impressive speed gains for plpgsql functions that do element-by-element access or update of large arrays. There are other cases that get a little slower, as a result of added array format conversions; but we can hope to improve anything that's annoyingly bad. In any case most applications should see a net win. Tom Lane, reviewed by Andres Freund
10 years ago
else if (typLen == -1)
{
/* It is a varlena datatype */
struct varlena *vl = (struct varlena *) DatumGetPointer(value);
if (VARATT_IS_EXTERNAL_EXPANDED(vl))
{
/* Flatten into the caller's memory context */
ExpandedObjectHeader *eoh = DatumGetEOHP(value);
Size resultsize;
char *resultptr;
resultsize = EOH_get_flat_size(eoh);
resultptr = (char *) palloc(resultsize);
EOH_flatten_into(eoh, (void *) resultptr, resultsize);
res = PointerGetDatum(resultptr);
}
else
{
/* Otherwise, just copy the varlena datum verbatim */
Size realSize;
char *resultptr;
realSize = (Size) VARSIZE_ANY(vl);
resultptr = (char *) palloc(realSize);
memcpy(resultptr, vl, realSize);
res = PointerGetDatum(resultptr);
}
}
else
{
Support "expanded" objects, particularly arrays, for better performance. This patch introduces the ability for complex datatypes to have an in-memory representation that is different from their on-disk format. On-disk formats are typically optimized for minimal size, and in any case they can't contain pointers, so they are often not well-suited for computation. Now a datatype can invent an "expanded" in-memory format that is better suited for its operations, and then pass that around among the C functions that operate on the datatype. There are also provisions (rudimentary as yet) to allow an expanded object to be modified in-place under suitable conditions, so that operations like assignment to an element of an array need not involve copying the entire array. The initial application for this feature is arrays, but it is not hard to foresee using it for other container types like JSON, XML and hstore. I have hopes that it will be useful to PostGIS as well. In this initial implementation, a few heuristics have been hard-wired into plpgsql to improve performance for arrays that are stored in plpgsql variables. We would like to generalize those hacks so that other datatypes can obtain similar improvements, but figuring out some appropriate APIs is left as a task for future work. (The heuristics themselves are probably not optimal yet, either, as they sometimes force expansion of arrays that would be better left alone.) Preliminary performance testing shows impressive speed gains for plpgsql functions that do element-by-element access or update of large arrays. There are other cases that get a little slower, as a result of added array format conversions; but we can hope to improve anything that's annoyingly bad. In any case most applications should see a net win. Tom Lane, reviewed by Andres Freund
10 years ago
/* Pass by reference, but not varlena, so not toasted */
Size realSize;
Support "expanded" objects, particularly arrays, for better performance. This patch introduces the ability for complex datatypes to have an in-memory representation that is different from their on-disk format. On-disk formats are typically optimized for minimal size, and in any case they can't contain pointers, so they are often not well-suited for computation. Now a datatype can invent an "expanded" in-memory format that is better suited for its operations, and then pass that around among the C functions that operate on the datatype. There are also provisions (rudimentary as yet) to allow an expanded object to be modified in-place under suitable conditions, so that operations like assignment to an element of an array need not involve copying the entire array. The initial application for this feature is arrays, but it is not hard to foresee using it for other container types like JSON, XML and hstore. I have hopes that it will be useful to PostGIS as well. In this initial implementation, a few heuristics have been hard-wired into plpgsql to improve performance for arrays that are stored in plpgsql variables. We would like to generalize those hacks so that other datatypes can obtain similar improvements, but figuring out some appropriate APIs is left as a task for future work. (The heuristics themselves are probably not optimal yet, either, as they sometimes force expansion of arrays that would be better left alone.) Preliminary performance testing shows impressive speed gains for plpgsql functions that do element-by-element access or update of large arrays. There are other cases that get a little slower, as a result of added array format conversions; but we can hope to improve anything that's annoyingly bad. In any case most applications should see a net win. Tom Lane, reviewed by Andres Freund
10 years ago
char *resultptr;
realSize = datumGetSize(value, typByVal, typLen);
Support "expanded" objects, particularly arrays, for better performance. This patch introduces the ability for complex datatypes to have an in-memory representation that is different from their on-disk format. On-disk formats are typically optimized for minimal size, and in any case they can't contain pointers, so they are often not well-suited for computation. Now a datatype can invent an "expanded" in-memory format that is better suited for its operations, and then pass that around among the C functions that operate on the datatype. There are also provisions (rudimentary as yet) to allow an expanded object to be modified in-place under suitable conditions, so that operations like assignment to an element of an array need not involve copying the entire array. The initial application for this feature is arrays, but it is not hard to foresee using it for other container types like JSON, XML and hstore. I have hopes that it will be useful to PostGIS as well. In this initial implementation, a few heuristics have been hard-wired into plpgsql to improve performance for arrays that are stored in plpgsql variables. We would like to generalize those hacks so that other datatypes can obtain similar improvements, but figuring out some appropriate APIs is left as a task for future work. (The heuristics themselves are probably not optimal yet, either, as they sometimes force expansion of arrays that would be better left alone.) Preliminary performance testing shows impressive speed gains for plpgsql functions that do element-by-element access or update of large arrays. There are other cases that get a little slower, as a result of added array format conversions; but we can hope to improve anything that's annoyingly bad. In any case most applications should see a net win. Tom Lane, reviewed by Andres Freund
10 years ago
resultptr = (char *) palloc(realSize);
memcpy(resultptr, DatumGetPointer(value), realSize);
res = PointerGetDatum(resultptr);
}
return res;
}
/*-------------------------------------------------------------------------
Support "expanded" objects, particularly arrays, for better performance. This patch introduces the ability for complex datatypes to have an in-memory representation that is different from their on-disk format. On-disk formats are typically optimized for minimal size, and in any case they can't contain pointers, so they are often not well-suited for computation. Now a datatype can invent an "expanded" in-memory format that is better suited for its operations, and then pass that around among the C functions that operate on the datatype. There are also provisions (rudimentary as yet) to allow an expanded object to be modified in-place under suitable conditions, so that operations like assignment to an element of an array need not involve copying the entire array. The initial application for this feature is arrays, but it is not hard to foresee using it for other container types like JSON, XML and hstore. I have hopes that it will be useful to PostGIS as well. In this initial implementation, a few heuristics have been hard-wired into plpgsql to improve performance for arrays that are stored in plpgsql variables. We would like to generalize those hacks so that other datatypes can obtain similar improvements, but figuring out some appropriate APIs is left as a task for future work. (The heuristics themselves are probably not optimal yet, either, as they sometimes force expansion of arrays that would be better left alone.) Preliminary performance testing shows impressive speed gains for plpgsql functions that do element-by-element access or update of large arrays. There are other cases that get a little slower, as a result of added array format conversions; but we can hope to improve anything that's annoyingly bad. In any case most applications should see a net win. Tom Lane, reviewed by Andres Freund
10 years ago
* datumTransfer
*
Support "expanded" objects, particularly arrays, for better performance. This patch introduces the ability for complex datatypes to have an in-memory representation that is different from their on-disk format. On-disk formats are typically optimized for minimal size, and in any case they can't contain pointers, so they are often not well-suited for computation. Now a datatype can invent an "expanded" in-memory format that is better suited for its operations, and then pass that around among the C functions that operate on the datatype. There are also provisions (rudimentary as yet) to allow an expanded object to be modified in-place under suitable conditions, so that operations like assignment to an element of an array need not involve copying the entire array. The initial application for this feature is arrays, but it is not hard to foresee using it for other container types like JSON, XML and hstore. I have hopes that it will be useful to PostGIS as well. In this initial implementation, a few heuristics have been hard-wired into plpgsql to improve performance for arrays that are stored in plpgsql variables. We would like to generalize those hacks so that other datatypes can obtain similar improvements, but figuring out some appropriate APIs is left as a task for future work. (The heuristics themselves are probably not optimal yet, either, as they sometimes force expansion of arrays that would be better left alone.) Preliminary performance testing shows impressive speed gains for plpgsql functions that do element-by-element access or update of large arrays. There are other cases that get a little slower, as a result of added array format conversions; but we can hope to improve anything that's annoyingly bad. In any case most applications should see a net win. Tom Lane, reviewed by Andres Freund
10 years ago
* Transfer a non-NULL datum into the current memory context.
*
Support "expanded" objects, particularly arrays, for better performance. This patch introduces the ability for complex datatypes to have an in-memory representation that is different from their on-disk format. On-disk formats are typically optimized for minimal size, and in any case they can't contain pointers, so they are often not well-suited for computation. Now a datatype can invent an "expanded" in-memory format that is better suited for its operations, and then pass that around among the C functions that operate on the datatype. There are also provisions (rudimentary as yet) to allow an expanded object to be modified in-place under suitable conditions, so that operations like assignment to an element of an array need not involve copying the entire array. The initial application for this feature is arrays, but it is not hard to foresee using it for other container types like JSON, XML and hstore. I have hopes that it will be useful to PostGIS as well. In this initial implementation, a few heuristics have been hard-wired into plpgsql to improve performance for arrays that are stored in plpgsql variables. We would like to generalize those hacks so that other datatypes can obtain similar improvements, but figuring out some appropriate APIs is left as a task for future work. (The heuristics themselves are probably not optimal yet, either, as they sometimes force expansion of arrays that would be better left alone.) Preliminary performance testing shows impressive speed gains for plpgsql functions that do element-by-element access or update of large arrays. There are other cases that get a little slower, as a result of added array format conversions; but we can hope to improve anything that's annoyingly bad. In any case most applications should see a net win. Tom Lane, reviewed by Andres Freund
10 years ago
* This is equivalent to datumCopy() except when the datum is a read-write
* pointer to an expanded object. In that case we merely reparent the object
* into the current context, and return its standard R/W pointer (in case the
* given one is a transient pointer of shorter lifespan).
*-------------------------------------------------------------------------
*/
Support "expanded" objects, particularly arrays, for better performance. This patch introduces the ability for complex datatypes to have an in-memory representation that is different from their on-disk format. On-disk formats are typically optimized for minimal size, and in any case they can't contain pointers, so they are often not well-suited for computation. Now a datatype can invent an "expanded" in-memory format that is better suited for its operations, and then pass that around among the C functions that operate on the datatype. There are also provisions (rudimentary as yet) to allow an expanded object to be modified in-place under suitable conditions, so that operations like assignment to an element of an array need not involve copying the entire array. The initial application for this feature is arrays, but it is not hard to foresee using it for other container types like JSON, XML and hstore. I have hopes that it will be useful to PostGIS as well. In this initial implementation, a few heuristics have been hard-wired into plpgsql to improve performance for arrays that are stored in plpgsql variables. We would like to generalize those hacks so that other datatypes can obtain similar improvements, but figuring out some appropriate APIs is left as a task for future work. (The heuristics themselves are probably not optimal yet, either, as they sometimes force expansion of arrays that would be better left alone.) Preliminary performance testing shows impressive speed gains for plpgsql functions that do element-by-element access or update of large arrays. There are other cases that get a little slower, as a result of added array format conversions; but we can hope to improve anything that's annoyingly bad. In any case most applications should see a net win. Tom Lane, reviewed by Andres Freund
10 years ago
Datum
datumTransfer(Datum value, bool typByVal, int typLen)
{
Support "expanded" objects, particularly arrays, for better performance. This patch introduces the ability for complex datatypes to have an in-memory representation that is different from their on-disk format. On-disk formats are typically optimized for minimal size, and in any case they can't contain pointers, so they are often not well-suited for computation. Now a datatype can invent an "expanded" in-memory format that is better suited for its operations, and then pass that around among the C functions that operate on the datatype. There are also provisions (rudimentary as yet) to allow an expanded object to be modified in-place under suitable conditions, so that operations like assignment to an element of an array need not involve copying the entire array. The initial application for this feature is arrays, but it is not hard to foresee using it for other container types like JSON, XML and hstore. I have hopes that it will be useful to PostGIS as well. In this initial implementation, a few heuristics have been hard-wired into plpgsql to improve performance for arrays that are stored in plpgsql variables. We would like to generalize those hacks so that other datatypes can obtain similar improvements, but figuring out some appropriate APIs is left as a task for future work. (The heuristics themselves are probably not optimal yet, either, as they sometimes force expansion of arrays that would be better left alone.) Preliminary performance testing shows impressive speed gains for plpgsql functions that do element-by-element access or update of large arrays. There are other cases that get a little slower, as a result of added array format conversions; but we can hope to improve anything that's annoyingly bad. In any case most applications should see a net win. Tom Lane, reviewed by Andres Freund
10 years ago
if (!typByVal && typLen == -1 &&
VARATT_IS_EXTERNAL_EXPANDED_RW(DatumGetPointer(value)))
value = TransferExpandedObject(value, CurrentMemoryContext);
else
value = datumCopy(value, typByVal, typLen);
return value;
}
/*-------------------------------------------------------------------------
* datumIsEqual
*
* Return true if two datums are equal, false otherwise
*
* NOTE: XXX!
* We just compare the bytes of the two values, one by one.
* This routine will return false if there are 2 different
* representations of the same value (something along the lines
* of say the representation of zero in one's complement arithmetic).
* Also, it will probably not give the answer you want if either
* datum has been "toasted".
*-------------------------------------------------------------------------
*/
bool
datumIsEqual(Datum value1, Datum value2, bool typByVal, int typLen)
{
bool res;
if (typByVal)
{
/*
* just compare the two datums. NOTE: just comparing "len" bytes will
* not do the work, because we do not know how these bytes are aligned
* inside the "Datum". We assume instead that any given datatype is
* consistent about how it fills extraneous bits in the Datum.
*/
res = (value1 == value2);
}
else
{
Size size1,
size2;
char *s1,
*s2;
/*
* Compare the bytes pointed by the pointers stored in the datums.
*/
size1 = datumGetSize(value1, typByVal, typLen);
size2 = datumGetSize(value2, typByVal, typLen);
if (size1 != size2)
return false;
s1 = (char *) DatumGetPointer(value1);
s2 = (char *) DatumGetPointer(value2);
res = (memcmp(s1, s2, size1) == 0);
}
return res;
}