You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
postgres/src/backend/access/nbtree/nbtpage.c

608 lines
17 KiB

/*-------------------------------------------------------------------------
*
* nbtpage.c
* BTree-specific page management code for the Postgres btree access
* method.
*
* Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/access/nbtree/nbtpage.c,v 1.60 2003/02/22 00:45:04 tgl Exp $
*
* NOTES
* Postgres btree pages look like ordinary relation pages. The opaque
* data at high addresses includes pointers to left and right siblings
* and flag data describing page state. The first page in a btree, page
* zero, is special -- it stores meta-information describing the tree.
* Pages one and higher store the actual tree data.
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
27 years ago
#include "access/nbtree.h"
#include "miscadmin.h"
#include "storage/lmgr.h"
/*
* _bt_metapinit() -- Initialize the metadata page of a new btree.
*
* Note: there's no real need for any locking here. Since the transaction
* creating the index hasn't committed yet, no one else can even see the index
* much less be trying to use it.
*/
void
_bt_metapinit(Relation rel)
{
Buffer buf;
Page pg;
BTMetaPageData *metad;
BTPageOpaque op;
if (RelationGetNumberOfBlocks(rel) != 0)
elog(ERROR, "Cannot initialize non-empty btree %s",
RelationGetRelationName(rel));
buf = ReadBuffer(rel, P_NEW);
Assert(BufferGetBlockNumber(buf) == BTREE_METAPAGE);
pg = BufferGetPage(buf);
/* NO ELOG(ERROR) from here till newmeta op is logged */
START_CRIT_SECTION();
_bt_pageinit(pg, BufferGetPageSize(buf));
metad = BTPageGetMeta(pg);
metad->btm_magic = BTREE_MAGIC;
metad->btm_version = BTREE_VERSION;
metad->btm_root = P_NONE;
metad->btm_level = 0;
metad->btm_fastroot = P_NONE;
metad->btm_fastlevel = 0;
op = (BTPageOpaque) PageGetSpecialPointer(pg);
op->btpo_flags = BTP_META;
/* XLOG stuff */
if (!rel->rd_istemp)
{
xl_btree_newmeta xlrec;
XLogRecPtr recptr;
XLogRecData rdata[1];
xlrec.node = rel->rd_node;
xlrec.meta.root = metad->btm_root;
xlrec.meta.level = metad->btm_level;
xlrec.meta.fastroot = metad->btm_fastroot;
xlrec.meta.fastlevel = metad->btm_fastlevel;
rdata[0].buffer = InvalidBuffer;
rdata[0].data = (char *) &xlrec;
rdata[0].len = SizeOfBtreeNewmeta;
rdata[0].next = NULL;
recptr = XLogInsert(RM_BTREE_ID, XLOG_BTREE_NEWMETA, rdata);
PageSetLSN(pg, recptr);
PageSetSUI(pg, ThisStartUpID);
}
END_CRIT_SECTION();
WriteBuffer(buf);
}
/*
* _bt_getroot() -- Get the root page of the btree.
*
* Since the root page can move around the btree file, we have to read
* its location from the metadata page, and then read the root page
* itself. If no root page exists yet, we have to create one. The
* standard class of race conditions exists here; I think I covered
* them all in the Hopi Indian rain dance of lock requests below.
*
* The access type parameter (BT_READ or BT_WRITE) controls whether
* a new root page will be created or not. If access = BT_READ,
* and no root page exists, we just return InvalidBuffer. For
* BT_WRITE, we try to create the root page if it doesn't exist.
* NOTE that the returned root page will have only a read lock set
* on it even if access = BT_WRITE!
*
* The returned page is not necessarily the true root --- it could be
* a "fast root" (a page that is alone in its level due to deletions).
* Also, if the root page is split while we are "in flight" to it,
* what we will return is the old root, which is now just the leftmost
* page on a probably-not-very-wide level. For most purposes this is
* as good as or better than the true root, so we do not bother to
* insist on finding the true root. We do, however, guarantee to
* return a live (not deleted or half-dead) page.
*
* On successful return, the root page is pinned and read-locked.
* The metadata page is not locked or pinned on exit.
*/
Buffer
_bt_getroot(Relation rel, int access)
{
Buffer metabuf;
Page metapg;
BTPageOpaque metaopaque;
Buffer rootbuf;
Page rootpage;
BTPageOpaque rootopaque;
BlockNumber rootblkno;
uint32 rootlevel;
BTMetaPageData *metad;
metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_READ);
metapg = BufferGetPage(metabuf);
metaopaque = (BTPageOpaque) PageGetSpecialPointer(metapg);
metad = BTPageGetMeta(metapg);
/* sanity-check the metapage */
if (!(metaopaque->btpo_flags & BTP_META) ||
metad->btm_magic != BTREE_MAGIC)
elog(ERROR, "Index %s is not a btree",
RelationGetRelationName(rel));
if (metad->btm_version != BTREE_VERSION)
elog(ERROR, "Version mismatch on %s: version %d file, version %d code",
RelationGetRelationName(rel),
metad->btm_version, BTREE_VERSION);
/* if no root page initialized yet, do it */
if (metad->btm_root == P_NONE)
{
/* If access = BT_READ, caller doesn't want us to create root yet */
if (access == BT_READ)
{
_bt_relbuf(rel, metabuf);
return InvalidBuffer;
}
/* trade in our read lock for a write lock */
LockBuffer(metabuf, BUFFER_LOCK_UNLOCK);
LockBuffer(metabuf, BT_WRITE);
/*
* Race condition: if someone else initialized the metadata
* between the time we released the read lock and acquired the
* write lock, we must avoid doing it again.
*/
if (metad->btm_root != P_NONE)
{
/*
* Metadata initialized by someone else. In order to
* guarantee no deadlocks, we have to release the metadata
* page and start all over again. (Is that really true?
* But it's hardly worth trying to optimize this case.)
*/
_bt_relbuf(rel, metabuf);
return _bt_getroot(rel, access);
}
/*
* Get, initialize, write, and leave a lock of the appropriate
* type on the new root page. Since this is the first page in
* the tree, it's a leaf as well as the root.
*/
rootbuf = _bt_getbuf(rel, P_NEW, BT_WRITE);
rootblkno = BufferGetBlockNumber(rootbuf);
rootpage = BufferGetPage(rootbuf);
_bt_pageinit(rootpage, BufferGetPageSize(rootbuf));
rootopaque = (BTPageOpaque) PageGetSpecialPointer(rootpage);
rootopaque->btpo_prev = rootopaque->btpo_next = P_NONE;
rootopaque->btpo_flags = (BTP_LEAF | BTP_ROOT);
rootopaque->btpo.level = 0;
/* NO ELOG(ERROR) till meta is updated */
START_CRIT_SECTION();
metad->btm_root = rootblkno;
metad->btm_level = 0;
metad->btm_fastroot = rootblkno;
metad->btm_fastlevel = 0;
/* XLOG stuff */
if (!rel->rd_istemp)
{
xl_btree_newroot xlrec;
XLogRecPtr recptr;
XLogRecData rdata;
25 years ago
xlrec.node = rel->rd_node;
xlrec.rootblk = rootblkno;
xlrec.level = 0;
rdata.buffer = InvalidBuffer;
rdata.data = (char *) &xlrec;
rdata.len = SizeOfBtreeNewroot;
rdata.next = NULL;
recptr = XLogInsert(RM_BTREE_ID, XLOG_BTREE_NEWROOT, &rdata);
PageSetLSN(rootpage, recptr);
PageSetSUI(rootpage, ThisStartUpID);
PageSetLSN(metapg, recptr);
PageSetSUI(metapg, ThisStartUpID);
}
END_CRIT_SECTION();
_bt_wrtnorelbuf(rel, rootbuf);
/*
* swap root write lock for read lock. There is no danger of
* anyone else accessing the new root page while it's unlocked,
* since no one else knows where it is yet.
*/
LockBuffer(rootbuf, BUFFER_LOCK_UNLOCK);
LockBuffer(rootbuf, BT_READ);
/* okay, metadata is correct, write and release it */
_bt_wrtbuf(rel, metabuf);
}
else
{
rootblkno = metad->btm_fastroot;
Assert(rootblkno != P_NONE);
rootlevel = metad->btm_fastlevel;
_bt_relbuf(rel, metabuf); /* done with the meta page */
for (;;)
{
rootbuf = _bt_getbuf(rel, rootblkno, BT_READ);
rootpage = BufferGetPage(rootbuf);
rootopaque = (BTPageOpaque) PageGetSpecialPointer(rootpage);
if (!P_IGNORE(rootopaque))
break;
/* it's dead, Jim. step right one page */
if (P_RIGHTMOST(rootopaque))
elog(ERROR, "No live root page found in %s",
RelationGetRelationName(rel));
rootblkno = rootopaque->btpo_next;
_bt_relbuf(rel, rootbuf);
}
/* Note: can't check btpo.level on deleted pages */
if (rootopaque->btpo.level != rootlevel)
elog(ERROR, "Root page %u of %s has level %u, expected %u",
rootblkno, RelationGetRelationName(rel),
rootopaque->btpo.level, rootlevel);
}
/*
* By here, we have a pin and read lock on the root page, and no
* lock set on the metadata page. Return the root page's buffer.
*/
return rootbuf;
}
/*
* _bt_gettrueroot() -- Get the true root page of the btree.
*
* This is the same as the BT_READ case of _bt_getroot(), except
* we follow the true-root link not the fast-root link.
*
* By the time we acquire lock on the root page, it might have been split and
* not be the true root anymore. This is okay for the present uses of this
* routine; we only really need to be able to move up at least one tree level
* from whatever non-root page we were at. If we ever do need to lock the
* one true root page, we could loop here, re-reading the metapage on each
* failure. (Note that it wouldn't do to hold the lock on the metapage while
* moving to the root --- that'd deadlock against any concurrent root split.)
*/
Buffer
_bt_gettrueroot(Relation rel)
{
Buffer metabuf;
Page metapg;
BTPageOpaque metaopaque;
Buffer rootbuf;
Page rootpage;
BTPageOpaque rootopaque;
BlockNumber rootblkno;
uint32 rootlevel;
BTMetaPageData *metad;
metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_READ);
metapg = BufferGetPage(metabuf);
metaopaque = (BTPageOpaque) PageGetSpecialPointer(metapg);
metad = BTPageGetMeta(metapg);
if (!(metaopaque->btpo_flags & BTP_META) ||
metad->btm_magic != BTREE_MAGIC)
elog(ERROR, "Index %s is not a btree",
RelationGetRelationName(rel));
if (metad->btm_version != BTREE_VERSION)
elog(ERROR, "Version mismatch on %s: version %d file, version %d code",
RelationGetRelationName(rel),
metad->btm_version, BTREE_VERSION);
/* if no root page initialized yet, fail */
if (metad->btm_root == P_NONE)
{
_bt_relbuf(rel, metabuf);
return InvalidBuffer;
}
rootblkno = metad->btm_root;
rootlevel = metad->btm_level;
_bt_relbuf(rel, metabuf); /* done with the meta page */
for (;;)
{
rootbuf = _bt_getbuf(rel, rootblkno, BT_READ);
rootpage = BufferGetPage(rootbuf);
rootopaque = (BTPageOpaque) PageGetSpecialPointer(rootpage);
if (!P_IGNORE(rootopaque))
break;
/* it's dead, Jim. step right one page */
if (P_RIGHTMOST(rootopaque))
elog(ERROR, "No live root page found in %s",
RelationGetRelationName(rel));
rootblkno = rootopaque->btpo_next;
_bt_relbuf(rel, rootbuf);
}
/* Note: can't check btpo.level on deleted pages */
if (rootopaque->btpo.level != rootlevel)
elog(ERROR, "Root page %u of %s has level %u, expected %u",
rootblkno, RelationGetRelationName(rel),
rootopaque->btpo.level, rootlevel);
return rootbuf;
}
/*
* _bt_getbuf() -- Get a buffer by block number for read or write.
*
* blkno == P_NEW means to get an unallocated index page.
*
* When this routine returns, the appropriate lock is set on the
* requested buffer and its reference count has been incremented
* (ie, the buffer is "locked and pinned").
*/
Buffer
_bt_getbuf(Relation rel, BlockNumber blkno, int access)
{
Buffer buf;
if (blkno != P_NEW)
{
/* Read an existing block of the relation */
buf = ReadBuffer(rel, blkno);
LockBuffer(buf, access);
}
else
{
bool needLock;
Page page;
/* XXX soon: ask FSM about free space */
/*
* Extend the relation by one page.
*
* We have to use a lock to ensure no one else is extending the rel at
* the same time, else we will both try to initialize the same new
* page. We can skip locking for new or temp relations, however,
* since no one else could be accessing them.
*/
needLock = !(rel->rd_isnew || rel->rd_istemp);
if (needLock)
LockPage(rel, 0, ExclusiveLock);
buf = ReadBuffer(rel, P_NEW);
/*
* Release the file-extension lock; it's now OK for someone else to
* extend the relation some more.
*/
if (needLock)
UnlockPage(rel, 0, ExclusiveLock);
/* Acquire appropriate buffer lock on new page */
LockBuffer(buf, access);
/* Initialize the new page before returning it */
page = BufferGetPage(buf);
_bt_pageinit(page, BufferGetPageSize(buf));
}
/* ref count and lock type are correct */
return buf;
}
/*
* _bt_relbuf() -- release a locked buffer.
*
* Lock and pin (refcount) are both dropped. Note that either read or
* write lock can be dropped this way, but if we modified the buffer,
* this is NOT the right way to release a write lock.
*/
void
_bt_relbuf(Relation rel, Buffer buf)
{
LockBuffer(buf, BUFFER_LOCK_UNLOCK);
ReleaseBuffer(buf);
}
/*
* _bt_wrtbuf() -- write a btree page to disk.
*
* This routine releases the lock held on the buffer and our refcount
* for it. It is an error to call _bt_wrtbuf() without a write lock
* and a pin on the buffer.
*
* NOTE: actually, the buffer manager just marks the shared buffer page
* dirty here; the real I/O happens later. This is okay since we are not
* relying on write ordering anyway. The WAL mechanism is responsible for
* guaranteeing correctness after a crash.
*/
void
_bt_wrtbuf(Relation rel, Buffer buf)
{
LockBuffer(buf, BUFFER_LOCK_UNLOCK);
WriteBuffer(buf);
}
/*
* _bt_wrtnorelbuf() -- write a btree page to disk, but do not release
* our reference or lock.
*
* It is an error to call _bt_wrtnorelbuf() without a write lock
* and a pin on the buffer.
*
* See above NOTE.
*/
void
_bt_wrtnorelbuf(Relation rel, Buffer buf)
{
WriteNoReleaseBuffer(buf);
}
/*
* _bt_pageinit() -- Initialize a new page.
*
* On return, the page header is initialized; data space is empty;
* special space is zeroed out.
*/
void
_bt_pageinit(Page page, Size size)
{
PageInit(page, size, sizeof(BTPageOpaqueData));
}
/*
* _bt_metaproot() -- Change the root page of the btree.
*
* Lehman and Yao require that the root page move around in order to
* guarantee deadlock-free short-term, fine-granularity locking. When
* we split the root page, we record the new parent in the metadata page
* for the relation. This routine does the work.
*
* No direct preconditions, but if you don't have the write lock on
* at least the old root page when you call this, you're making a big
* mistake. On exit, metapage data is correct and we no longer have
* a pin or lock on the metapage.
*
* Actually this is not used for splitting on-the-fly anymore. It's only used
* in nbtsort.c at the completion of btree building, where we know we have
* sole access to the index anyway.
*/
void
_bt_metaproot(Relation rel, BlockNumber rootbknum, uint32 level)
{
Buffer metabuf;
Page metap;
BTPageOpaque metaopaque;
BTMetaPageData *metad;
metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_WRITE);
metap = BufferGetPage(metabuf);
metaopaque = (BTPageOpaque) PageGetSpecialPointer(metap);
Assert(metaopaque->btpo_flags & BTP_META);
/* NO ELOG(ERROR) from here till newmeta op is logged */
START_CRIT_SECTION();
metad = BTPageGetMeta(metap);
metad->btm_root = rootbknum;
metad->btm_level = level;
metad->btm_fastroot = rootbknum;
metad->btm_fastlevel = level;
/* XLOG stuff */
if (!rel->rd_istemp)
{
xl_btree_newmeta xlrec;
XLogRecPtr recptr;
XLogRecData rdata[1];
xlrec.node = rel->rd_node;
xlrec.meta.root = metad->btm_root;
xlrec.meta.level = metad->btm_level;
xlrec.meta.fastroot = metad->btm_fastroot;
xlrec.meta.fastlevel = metad->btm_fastlevel;
rdata[0].buffer = InvalidBuffer;
rdata[0].data = (char *) &xlrec;
rdata[0].len = SizeOfBtreeNewmeta;
rdata[0].next = NULL;
recptr = XLogInsert(RM_BTREE_ID, XLOG_BTREE_NEWMETA, rdata);
PageSetLSN(metap, recptr);
PageSetSUI(metap, ThisStartUpID);
}
END_CRIT_SECTION();
_bt_wrtbuf(rel, metabuf);
}
/*
* Delete an item from a btree page.
*
* This must only be used for deleting leaf items. Deleting an item on a
* non-leaf page has to be done as part of an atomic action that includes
* deleting the page it points to.
*
* This routine assumes that the caller has pinned and locked the buffer,
* and will write the buffer afterwards.
*/
void
_bt_itemdel(Relation rel, Buffer buf, ItemPointer tid)
{
Page page = BufferGetPage(buf);
OffsetNumber offno;
offno = ItemPointerGetOffsetNumber(tid);
START_CRIT_SECTION();
PageIndexTupleDelete(page, offno);
/* XLOG stuff */
if (!rel->rd_istemp)
{
xl_btree_delete xlrec;
XLogRecPtr recptr;
XLogRecData rdata[2];
25 years ago
xlrec.target.node = rel->rd_node;
xlrec.target.tid = *tid;
rdata[0].buffer = InvalidBuffer;
rdata[0].data = (char *) &xlrec;
rdata[0].len = SizeOfBtreeDelete;
rdata[0].next = &(rdata[1]);
rdata[1].buffer = buf;
rdata[1].data = NULL;
rdata[1].len = 0;
rdata[1].next = NULL;
recptr = XLogInsert(RM_BTREE_ID, XLOG_BTREE_DELETE, rdata);
PageSetLSN(page, recptr);
PageSetSUI(page, ThisStartUpID);
}
END_CRIT_SECTION();
}