|
|
|
/*-------------------------------------------------------------------------
|
|
|
|
*
|
|
|
|
* execReplication.c
|
|
|
|
* miscellaneous executor routines for logical replication
|
|
|
|
*
|
|
|
|
* Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
|
|
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
|
|
*
|
|
|
|
* IDENTIFICATION
|
|
|
|
* src/backend/executor/execReplication.c
|
|
|
|
*
|
|
|
|
*-------------------------------------------------------------------------
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "postgres.h"
|
|
|
|
|
|
|
|
#include "access/genam.h"
|
Don't include heapam.h from others headers.
heapam.h previously was included in a number of widely used
headers (e.g. execnodes.h, indirectly in executor.h, ...). That's
problematic on its own, as heapam.h contains a lot of low-level
details that don't need to be exposed that widely, but becomes more
problematic with the upcoming introduction of pluggable table storage
- it seems inappropriate for heapam.h to be included that widely
afterwards.
heapam.h was largely only included in other headers to get the
HeapScanDesc typedef (which was defined in heapam.h, even though
HeapScanDescData is defined in relscan.h). The better solution here
seems to be to just use the underlying struct (forward declared where
necessary). Similar for BulkInsertState.
Another problem was that LockTupleMode was used in executor.h - parts
of the file tried to cope without heapam.h, but due to the fact that
it indirectly included it, several subsequent violations of that goal
were not not noticed. We could just reuse the approach of declaring
parameters as int, but it seems nicer to move LockTupleMode to
lockoptions.h - that's not a perfect location, but also doesn't seem
bad.
As a number of files relied on implicitly included heapam.h, a
significant number of files grew an explicit include. It's quite
probably that a few external projects will need to do the same.
Author: Andres Freund
Reviewed-By: Alvaro Herrera
Discussion: https://postgr.es/m/20190114000701.y4ttcb74jpskkcfb@alap3.anarazel.de
7 years ago
|
|
|
#include "access/heapam.h"
|
|
|
|
#include "access/relscan.h"
|
tableam: Add and use scan APIs.
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:
1) Heap scans need to be generalized into table scans. Do this by
introducing TableScanDesc, which will be the "base class" for
individual AMs. This contains the AM independent fields from
HeapScanDesc.
The previous heap_{beginscan,rescan,endscan} et al. have been
replaced with a table_ version.
There's no direct replacement for heap_getnext(), as that returned
a HeapTuple, which is undesirable for a other AMs. Instead there's
table_scan_getnextslot(). But note that heap_getnext() lives on,
it's still used widely to access catalog tables.
This is achieved by new scan_begin, scan_end, scan_rescan,
scan_getnextslot callbacks.
2) The portion of parallel scans that's shared between backends need
to be able to do so without the user doing per-AM work. To achieve
that new parallelscan_{estimate, initialize, reinitialize}
callbacks are introduced, which operate on a new
ParallelTableScanDesc, which again can be subclassed by AMs.
As it is likely that several AMs are going to be block oriented,
block oriented callbacks that can be shared between such AMs are
provided and used by heap. table_block_parallelscan_{estimate,
intiialize, reinitialize} as callbacks, and
table_block_parallelscan_{nextpage, init} for use in AMs. These
operate on a ParallelBlockTableScanDesc.
3) Index scans need to be able to access tables to return a tuple, and
there needs to be state across individual accesses to the heap to
store state like buffers. That's now handled by introducing a
sort-of-scan IndexFetchTable, which again is intended to be
subclassed by individual AMs (for heap IndexFetchHeap).
The relevant callbacks for an AM are index_fetch_{end, begin,
reset} to create the necessary state, and index_fetch_tuple to
retrieve an indexed tuple. Note that index_fetch_tuple
implementations need to be smarter than just blindly fetching the
tuples for AMs that have optimizations similar to heap's HOT - the
currently alive tuple in the update chain needs to be fetched if
appropriate.
Similar to table_scan_getnextslot(), it's undesirable to continue
to return HeapTuples. Thus index_fetch_heap (might want to rename
that later) now accepts a slot as an argument. Core code doesn't
have a lot of call sites performing index scans without going
through the systable_* API (in contrast to loads of heap_getnext
calls and working directly with HeapTuples).
Index scans now store the result of a search in
IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
target is not generally a HeapTuple anymore that seems cleaner.
To be able to sensible adapt code to use the above, two further
callbacks have been introduced:
a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
slots capable of holding a tuple of the AMs
type. table_slot_callbacks() and table_slot_create() are based
upon that, but have additional logic to deal with views, foreign
tables, etc.
While this change could have been done separately, nearly all the
call sites that needed to be adapted for the rest of this commit
also would have been needed to be adapted for
table_slot_callbacks(), making separation not worthwhile.
b) tuple_satisfies_snapshot checks whether the tuple in a slot is
currently visible according to a snapshot. That's required as a few
places now don't have a buffer + HeapTuple around, but a
slot (which in heap's case internally has that information).
Additionally a few infrastructure changes were needed:
I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
internally uses a slot to keep track of tuples. While
systable_getnext() still returns HeapTuples, and will so for the
foreseeable future, the index API (see 1) above) now only deals with
slots.
The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.
Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
7 years ago
|
|
|
#include "access/tableam.h"
|
|
|
|
#include "access/transam.h"
|
|
|
|
#include "access/xact.h"
|
|
|
|
#include "commands/trigger.h"
|
|
|
|
#include "executor/executor.h"
|
|
|
|
#include "nodes/nodeFuncs.h"
|
|
|
|
#include "parser/parse_relation.h"
|
|
|
|
#include "parser/parsetree.h"
|
|
|
|
#include "storage/bufmgr.h"
|
|
|
|
#include "storage/lmgr.h"
|
|
|
|
#include "utils/builtins.h"
|
|
|
|
#include "utils/datum.h"
|
|
|
|
#include "utils/lsyscache.h"
|
|
|
|
#include "utils/memutils.h"
|
|
|
|
#include "utils/rel.h"
|
|
|
|
#include "utils/snapmgr.h"
|
|
|
|
#include "utils/syscache.h"
|
|
|
|
#include "utils/typcache.h"
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Setup a ScanKey for a search in the relation 'rel' for a tuple 'key' that
|
|
|
|
* is setup to match 'rel' (*NOT* idxrel!).
|
|
|
|
*
|
|
|
|
* Returns whether any column contains NULLs.
|
|
|
|
*
|
|
|
|
* This is not generic routine, it expects the idxrel to be replication
|
|
|
|
* identity of a rel and meet all limitations associated with that.
|
|
|
|
*/
|
|
|
|
static bool
|
|
|
|
build_replindex_scan_key(ScanKey skey, Relation rel, Relation idxrel,
|
|
|
|
TupleTableSlot *searchslot)
|
|
|
|
{
|
|
|
|
int attoff;
|
|
|
|
bool isnull;
|
|
|
|
Datum indclassDatum;
|
|
|
|
oidvector *opclass;
|
|
|
|
int2vector *indkey = &idxrel->rd_index->indkey;
|
|
|
|
bool hasnulls = false;
|
|
|
|
|
|
|
|
Assert(RelationGetReplicaIndex(rel) == RelationGetRelid(idxrel));
|
|
|
|
|
|
|
|
indclassDatum = SysCacheGetAttr(INDEXRELID, idxrel->rd_indextuple,
|
|
|
|
Anum_pg_index_indclass, &isnull);
|
|
|
|
Assert(!isnull);
|
|
|
|
opclass = (oidvector *) DatumGetPointer(indclassDatum);
|
|
|
|
|
|
|
|
/* Build scankey for every attribute in the index. */
|
|
|
|
for (attoff = 0; attoff < IndexRelationGetNumberOfKeyAttributes(idxrel); attoff++)
|
|
|
|
{
|
|
|
|
Oid operator;
|
|
|
|
Oid opfamily;
|
|
|
|
RegProcedure regop;
|
|
|
|
int pkattno = attoff + 1;
|
|
|
|
int mainattno = indkey->values[attoff];
|
|
|
|
Oid optype = get_opclass_input_type(opclass->values[attoff]);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Load the operator info. We need this to get the equality operator
|
|
|
|
* function for the scan key.
|
|
|
|
*/
|
|
|
|
opfamily = get_opclass_family(opclass->values[attoff]);
|
|
|
|
|
|
|
|
operator = get_opfamily_member(opfamily, optype,
|
|
|
|
optype,
|
|
|
|
BTEqualStrategyNumber);
|
|
|
|
if (!OidIsValid(operator))
|
|
|
|
elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
|
|
|
|
BTEqualStrategyNumber, optype, optype, opfamily);
|
|
|
|
|
|
|
|
regop = get_opcode(operator);
|
|
|
|
|
|
|
|
/* Initialize the scankey. */
|
|
|
|
ScanKeyInit(&skey[attoff],
|
|
|
|
pkattno,
|
|
|
|
BTEqualStrategyNumber,
|
|
|
|
regop,
|
|
|
|
searchslot->tts_values[mainattno - 1]);
|
|
|
|
|
|
|
|
/* Check for null value. */
|
|
|
|
if (searchslot->tts_isnull[mainattno - 1])
|
|
|
|
{
|
|
|
|
hasnulls = true;
|
|
|
|
skey[attoff].sk_flags |= SK_ISNULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return hasnulls;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Search the relation 'rel' for tuple using the index.
|
|
|
|
*
|
|
|
|
* If a matching tuple is found, lock it with lockmode, fill the slot with its
|
|
|
|
* contents, and return true. Return false otherwise.
|
|
|
|
*/
|
|
|
|
bool
|
|
|
|
RelationFindReplTupleByIndex(Relation rel, Oid idxoid,
|
|
|
|
LockTupleMode lockmode,
|
|
|
|
TupleTableSlot *searchslot,
|
|
|
|
TupleTableSlot *outslot)
|
|
|
|
{
|
|
|
|
ScanKeyData skey[INDEX_MAX_KEYS];
|
|
|
|
IndexScanDesc scan;
|
|
|
|
SnapshotData snap;
|
|
|
|
TransactionId xwait;
|
|
|
|
Relation idxrel;
|
|
|
|
bool found;
|
|
|
|
|
|
|
|
/* Open the index. */
|
|
|
|
idxrel = index_open(idxoid, RowExclusiveLock);
|
|
|
|
|
|
|
|
/* Start an index scan. */
|
|
|
|
InitDirtySnapshot(snap);
|
|
|
|
scan = index_beginscan(rel, idxrel, &snap,
|
|
|
|
IndexRelationGetNumberOfKeyAttributes(idxrel),
|
|
|
|
0);
|
|
|
|
|
|
|
|
/* Build scan key. */
|
|
|
|
build_replindex_scan_key(skey, rel, idxrel, searchslot);
|
|
|
|
|
|
|
|
retry:
|
|
|
|
found = false;
|
|
|
|
|
|
|
|
index_rescan(scan, skey, IndexRelationGetNumberOfKeyAttributes(idxrel), NULL, 0);
|
|
|
|
|
|
|
|
/* Try to find the tuple */
|
tableam: Add and use scan APIs.
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:
1) Heap scans need to be generalized into table scans. Do this by
introducing TableScanDesc, which will be the "base class" for
individual AMs. This contains the AM independent fields from
HeapScanDesc.
The previous heap_{beginscan,rescan,endscan} et al. have been
replaced with a table_ version.
There's no direct replacement for heap_getnext(), as that returned
a HeapTuple, which is undesirable for a other AMs. Instead there's
table_scan_getnextslot(). But note that heap_getnext() lives on,
it's still used widely to access catalog tables.
This is achieved by new scan_begin, scan_end, scan_rescan,
scan_getnextslot callbacks.
2) The portion of parallel scans that's shared between backends need
to be able to do so without the user doing per-AM work. To achieve
that new parallelscan_{estimate, initialize, reinitialize}
callbacks are introduced, which operate on a new
ParallelTableScanDesc, which again can be subclassed by AMs.
As it is likely that several AMs are going to be block oriented,
block oriented callbacks that can be shared between such AMs are
provided and used by heap. table_block_parallelscan_{estimate,
intiialize, reinitialize} as callbacks, and
table_block_parallelscan_{nextpage, init} for use in AMs. These
operate on a ParallelBlockTableScanDesc.
3) Index scans need to be able to access tables to return a tuple, and
there needs to be state across individual accesses to the heap to
store state like buffers. That's now handled by introducing a
sort-of-scan IndexFetchTable, which again is intended to be
subclassed by individual AMs (for heap IndexFetchHeap).
The relevant callbacks for an AM are index_fetch_{end, begin,
reset} to create the necessary state, and index_fetch_tuple to
retrieve an indexed tuple. Note that index_fetch_tuple
implementations need to be smarter than just blindly fetching the
tuples for AMs that have optimizations similar to heap's HOT - the
currently alive tuple in the update chain needs to be fetched if
appropriate.
Similar to table_scan_getnextslot(), it's undesirable to continue
to return HeapTuples. Thus index_fetch_heap (might want to rename
that later) now accepts a slot as an argument. Core code doesn't
have a lot of call sites performing index scans without going
through the systable_* API (in contrast to loads of heap_getnext
calls and working directly with HeapTuples).
Index scans now store the result of a search in
IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
target is not generally a HeapTuple anymore that seems cleaner.
To be able to sensible adapt code to use the above, two further
callbacks have been introduced:
a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
slots capable of holding a tuple of the AMs
type. table_slot_callbacks() and table_slot_create() are based
upon that, but have additional logic to deal with views, foreign
tables, etc.
While this change could have been done separately, nearly all the
call sites that needed to be adapted for the rest of this commit
also would have been needed to be adapted for
table_slot_callbacks(), making separation not worthwhile.
b) tuple_satisfies_snapshot checks whether the tuple in a slot is
currently visible according to a snapshot. That's required as a few
places now don't have a buffer + HeapTuple around, but a
slot (which in heap's case internally has that information).
Additionally a few infrastructure changes were needed:
I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
internally uses a slot to keep track of tuples. While
systable_getnext() still returns HeapTuples, and will so for the
foreseeable future, the index API (see 1) above) now only deals with
slots.
The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.
Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
7 years ago
|
|
|
if (index_getnext_slot(scan, ForwardScanDirection, outslot))
|
|
|
|
{
|
|
|
|
found = true;
|
|
|
|
ExecMaterializeSlot(outslot);
|
|
|
|
|
|
|
|
xwait = TransactionIdIsValid(snap.xmin) ?
|
|
|
|
snap.xmin : snap.xmax;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the tuple is locked, wait for locking transaction to finish and
|
|
|
|
* retry.
|
|
|
|
*/
|
|
|
|
if (TransactionIdIsValid(xwait))
|
|
|
|
{
|
|
|
|
XactLockTableWait(xwait, NULL, NULL, XLTW_None);
|
|
|
|
goto retry;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Found tuple, try to lock it in the lockmode. */
|
|
|
|
if (found)
|
|
|
|
{
|
|
|
|
Buffer buf;
|
|
|
|
HeapUpdateFailureData hufd;
|
|
|
|
HTSU_Result res;
|
|
|
|
HeapTupleData locktup;
|
Make TupleTableSlots extensible, finish split of existing slot type.
This commit completes the work prepared in 1a0586de36, splitting the
old TupleTableSlot implementation (which could store buffer, heap,
minimal and virtual slots) into four different slot types. As
described in the aforementioned commit, this is done with the goal of
making tuple table slots extensible, to allow for pluggable table
access methods.
To achieve runtime extensibility for TupleTableSlots, operations on
slots that can differ between types of slots are performed using the
TupleTableSlotOps struct provided at slot creation time. That
includes information from the size of TupleTableSlot struct to be
allocated, initialization, deforming etc. See the struct's definition
for more detailed information about callbacks TupleTableSlotOps.
I decided to rename TTSOpsBufferTuple to TTSOpsBufferHeapTuple and
ExecCopySlotTuple to ExecCopySlotHeapTuple, as that seems more
consistent with other naming introduced in recent patches.
There's plenty optimization potential in the slot implementation, but
according to benchmarking the state after this commit has similar
performance characteristics to before this set of changes, which seems
sufficient.
There's a few changes in execReplication.c that currently need to poke
through the slot abstraction, that'll be repaired once the pluggable
storage patchset provides the necessary infrastructure.
Author: Andres Freund and Ashutosh Bapat, with changes by Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
7 years ago
|
|
|
HeapTupleTableSlot *hslot = (HeapTupleTableSlot *)outslot;
|
|
|
|
|
Make TupleTableSlots extensible, finish split of existing slot type.
This commit completes the work prepared in 1a0586de36, splitting the
old TupleTableSlot implementation (which could store buffer, heap,
minimal and virtual slots) into four different slot types. As
described in the aforementioned commit, this is done with the goal of
making tuple table slots extensible, to allow for pluggable table
access methods.
To achieve runtime extensibility for TupleTableSlots, operations on
slots that can differ between types of slots are performed using the
TupleTableSlotOps struct provided at slot creation time. That
includes information from the size of TupleTableSlot struct to be
allocated, initialization, deforming etc. See the struct's definition
for more detailed information about callbacks TupleTableSlotOps.
I decided to rename TTSOpsBufferTuple to TTSOpsBufferHeapTuple and
ExecCopySlotTuple to ExecCopySlotHeapTuple, as that seems more
consistent with other naming introduced in recent patches.
There's plenty optimization potential in the slot implementation, but
according to benchmarking the state after this commit has similar
performance characteristics to before this set of changes, which seems
sufficient.
There's a few changes in execReplication.c that currently need to poke
through the slot abstraction, that'll be repaired once the pluggable
storage patchset provides the necessary infrastructure.
Author: Andres Freund and Ashutosh Bapat, with changes by Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
7 years ago
|
|
|
/* Only a heap tuple has item pointers. */
|
|
|
|
Assert(TTS_IS_HEAPTUPLE(outslot) || TTS_IS_BUFFERTUPLE(outslot));
|
|
|
|
ItemPointerCopy(&hslot->tuple->t_self, &locktup.t_self);
|
|
|
|
|
|
|
|
PushActiveSnapshot(GetLatestSnapshot());
|
|
|
|
|
|
|
|
res = heap_lock_tuple(rel, &locktup, GetCurrentCommandId(false),
|
|
|
|
lockmode,
|
|
|
|
LockWaitBlock,
|
|
|
|
false /* don't follow updates */ ,
|
|
|
|
&buf, &hufd);
|
|
|
|
/* the tuple slot already has the buffer pinned */
|
|
|
|
ReleaseBuffer(buf);
|
|
|
|
|
|
|
|
PopActiveSnapshot();
|
|
|
|
|
|
|
|
switch (res)
|
|
|
|
{
|
|
|
|
case HeapTupleMayBeUpdated:
|
|
|
|
break;
|
|
|
|
case HeapTupleUpdated:
|
|
|
|
/* XXX: Improve handling here */
|
Raise error when affecting tuple moved into different partition.
When an update moves a row between partitions (supported since
2f178441044b), our normal logic for following update chains in READ
COMMITTED mode doesn't work anymore. Cross partition updates are
modeled as an delete from the old and insert into the new
partition. No ctid chain exists across partitions, and there's no
convenient space to introduce that link.
Not throwing an error in a partitioned context when one would have
been thrown without partitioning is obviously problematic. This commit
introduces infrastructure to detect when a tuple has been moved, not
just plainly deleted. That allows to throw an error when encountering
a deletion that's actually a move, while attempting to following a
ctid chain.
The row deleted as part of a cross partition update is marked by
pointing it's t_ctid to an invalid block, instead of self as a normal
update would. That was deemed to be the least invasive and most
future proof way to represent the knowledge, given how few infomask
bits are there to be recycled (there's also some locking issues with
using infomask bits).
External code following ctid chains should be updated to check for
moved tuples. The most likely consequence of not doing so is a missed
error.
Author: Amul Sul, editorialized by me
Reviewed-By: Amit Kapila, Pavan Deolasee, Andres Freund, Robert Haas
Discussion: http://postgr.es/m/CAAJ_b95PkwojoYfz0bzXU8OokcTVGzN6vYGCNVUukeUDrnF3dw@mail.gmail.com
8 years ago
|
|
|
if (ItemPointerIndicatesMovedPartitions(&hufd.ctid))
|
|
|
|
ereport(LOG,
|
|
|
|
(errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
|
|
|
|
errmsg("tuple to be locked was already moved to another partition due to concurrent update, retrying")));
|
|
|
|
else
|
|
|
|
ereport(LOG,
|
|
|
|
(errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
|
|
|
|
errmsg("concurrent update, retrying")));
|
|
|
|
goto retry;
|
|
|
|
case HeapTupleInvisible:
|
|
|
|
elog(ERROR, "attempted to lock invisible tuple");
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
elog(ERROR, "unexpected heap_lock_tuple status: %u", res);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
index_endscan(scan);
|
|
|
|
|
|
|
|
/* Don't release lock until commit. */
|
|
|
|
index_close(idxrel, NoLock);
|
|
|
|
|
|
|
|
return found;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
tableam: Add and use scan APIs.
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:
1) Heap scans need to be generalized into table scans. Do this by
introducing TableScanDesc, which will be the "base class" for
individual AMs. This contains the AM independent fields from
HeapScanDesc.
The previous heap_{beginscan,rescan,endscan} et al. have been
replaced with a table_ version.
There's no direct replacement for heap_getnext(), as that returned
a HeapTuple, which is undesirable for a other AMs. Instead there's
table_scan_getnextslot(). But note that heap_getnext() lives on,
it's still used widely to access catalog tables.
This is achieved by new scan_begin, scan_end, scan_rescan,
scan_getnextslot callbacks.
2) The portion of parallel scans that's shared between backends need
to be able to do so without the user doing per-AM work. To achieve
that new parallelscan_{estimate, initialize, reinitialize}
callbacks are introduced, which operate on a new
ParallelTableScanDesc, which again can be subclassed by AMs.
As it is likely that several AMs are going to be block oriented,
block oriented callbacks that can be shared between such AMs are
provided and used by heap. table_block_parallelscan_{estimate,
intiialize, reinitialize} as callbacks, and
table_block_parallelscan_{nextpage, init} for use in AMs. These
operate on a ParallelBlockTableScanDesc.
3) Index scans need to be able to access tables to return a tuple, and
there needs to be state across individual accesses to the heap to
store state like buffers. That's now handled by introducing a
sort-of-scan IndexFetchTable, which again is intended to be
subclassed by individual AMs (for heap IndexFetchHeap).
The relevant callbacks for an AM are index_fetch_{end, begin,
reset} to create the necessary state, and index_fetch_tuple to
retrieve an indexed tuple. Note that index_fetch_tuple
implementations need to be smarter than just blindly fetching the
tuples for AMs that have optimizations similar to heap's HOT - the
currently alive tuple in the update chain needs to be fetched if
appropriate.
Similar to table_scan_getnextslot(), it's undesirable to continue
to return HeapTuples. Thus index_fetch_heap (might want to rename
that later) now accepts a slot as an argument. Core code doesn't
have a lot of call sites performing index scans without going
through the systable_* API (in contrast to loads of heap_getnext
calls and working directly with HeapTuples).
Index scans now store the result of a search in
IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
target is not generally a HeapTuple anymore that seems cleaner.
To be able to sensible adapt code to use the above, two further
callbacks have been introduced:
a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
slots capable of holding a tuple of the AMs
type. table_slot_callbacks() and table_slot_create() are based
upon that, but have additional logic to deal with views, foreign
tables, etc.
While this change could have been done separately, nearly all the
call sites that needed to be adapted for the rest of this commit
also would have been needed to be adapted for
table_slot_callbacks(), making separation not worthwhile.
b) tuple_satisfies_snapshot checks whether the tuple in a slot is
currently visible according to a snapshot. That's required as a few
places now don't have a buffer + HeapTuple around, but a
slot (which in heap's case internally has that information).
Additionally a few infrastructure changes were needed:
I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
internally uses a slot to keep track of tuples. While
systable_getnext() still returns HeapTuples, and will so for the
foreseeable future, the index API (see 1) above) now only deals with
slots.
The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.
Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
7 years ago
|
|
|
* Compare the tuples in the slots by checking if they have equal values.
|
|
|
|
*/
|
|
|
|
static bool
|
tableam: Add and use scan APIs.
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:
1) Heap scans need to be generalized into table scans. Do this by
introducing TableScanDesc, which will be the "base class" for
individual AMs. This contains the AM independent fields from
HeapScanDesc.
The previous heap_{beginscan,rescan,endscan} et al. have been
replaced with a table_ version.
There's no direct replacement for heap_getnext(), as that returned
a HeapTuple, which is undesirable for a other AMs. Instead there's
table_scan_getnextslot(). But note that heap_getnext() lives on,
it's still used widely to access catalog tables.
This is achieved by new scan_begin, scan_end, scan_rescan,
scan_getnextslot callbacks.
2) The portion of parallel scans that's shared between backends need
to be able to do so without the user doing per-AM work. To achieve
that new parallelscan_{estimate, initialize, reinitialize}
callbacks are introduced, which operate on a new
ParallelTableScanDesc, which again can be subclassed by AMs.
As it is likely that several AMs are going to be block oriented,
block oriented callbacks that can be shared between such AMs are
provided and used by heap. table_block_parallelscan_{estimate,
intiialize, reinitialize} as callbacks, and
table_block_parallelscan_{nextpage, init} for use in AMs. These
operate on a ParallelBlockTableScanDesc.
3) Index scans need to be able to access tables to return a tuple, and
there needs to be state across individual accesses to the heap to
store state like buffers. That's now handled by introducing a
sort-of-scan IndexFetchTable, which again is intended to be
subclassed by individual AMs (for heap IndexFetchHeap).
The relevant callbacks for an AM are index_fetch_{end, begin,
reset} to create the necessary state, and index_fetch_tuple to
retrieve an indexed tuple. Note that index_fetch_tuple
implementations need to be smarter than just blindly fetching the
tuples for AMs that have optimizations similar to heap's HOT - the
currently alive tuple in the update chain needs to be fetched if
appropriate.
Similar to table_scan_getnextslot(), it's undesirable to continue
to return HeapTuples. Thus index_fetch_heap (might want to rename
that later) now accepts a slot as an argument. Core code doesn't
have a lot of call sites performing index scans without going
through the systable_* API (in contrast to loads of heap_getnext
calls and working directly with HeapTuples).
Index scans now store the result of a search in
IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
target is not generally a HeapTuple anymore that seems cleaner.
To be able to sensible adapt code to use the above, two further
callbacks have been introduced:
a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
slots capable of holding a tuple of the AMs
type. table_slot_callbacks() and table_slot_create() are based
upon that, but have additional logic to deal with views, foreign
tables, etc.
While this change could have been done separately, nearly all the
call sites that needed to be adapted for the rest of this commit
also would have been needed to be adapted for
table_slot_callbacks(), making separation not worthwhile.
b) tuple_satisfies_snapshot checks whether the tuple in a slot is
currently visible according to a snapshot. That's required as a few
places now don't have a buffer + HeapTuple around, but a
slot (which in heap's case internally has that information).
Additionally a few infrastructure changes were needed:
I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
internally uses a slot to keep track of tuples. While
systable_getnext() still returns HeapTuples, and will so for the
foreseeable future, the index API (see 1) above) now only deals with
slots.
The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.
Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
7 years ago
|
|
|
tuples_equal(TupleTableSlot *slot1, TupleTableSlot *slot2)
|
|
|
|
{
|
tableam: Add and use scan APIs.
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:
1) Heap scans need to be generalized into table scans. Do this by
introducing TableScanDesc, which will be the "base class" for
individual AMs. This contains the AM independent fields from
HeapScanDesc.
The previous heap_{beginscan,rescan,endscan} et al. have been
replaced with a table_ version.
There's no direct replacement for heap_getnext(), as that returned
a HeapTuple, which is undesirable for a other AMs. Instead there's
table_scan_getnextslot(). But note that heap_getnext() lives on,
it's still used widely to access catalog tables.
This is achieved by new scan_begin, scan_end, scan_rescan,
scan_getnextslot callbacks.
2) The portion of parallel scans that's shared between backends need
to be able to do so without the user doing per-AM work. To achieve
that new parallelscan_{estimate, initialize, reinitialize}
callbacks are introduced, which operate on a new
ParallelTableScanDesc, which again can be subclassed by AMs.
As it is likely that several AMs are going to be block oriented,
block oriented callbacks that can be shared between such AMs are
provided and used by heap. table_block_parallelscan_{estimate,
intiialize, reinitialize} as callbacks, and
table_block_parallelscan_{nextpage, init} for use in AMs. These
operate on a ParallelBlockTableScanDesc.
3) Index scans need to be able to access tables to return a tuple, and
there needs to be state across individual accesses to the heap to
store state like buffers. That's now handled by introducing a
sort-of-scan IndexFetchTable, which again is intended to be
subclassed by individual AMs (for heap IndexFetchHeap).
The relevant callbacks for an AM are index_fetch_{end, begin,
reset} to create the necessary state, and index_fetch_tuple to
retrieve an indexed tuple. Note that index_fetch_tuple
implementations need to be smarter than just blindly fetching the
tuples for AMs that have optimizations similar to heap's HOT - the
currently alive tuple in the update chain needs to be fetched if
appropriate.
Similar to table_scan_getnextslot(), it's undesirable to continue
to return HeapTuples. Thus index_fetch_heap (might want to rename
that later) now accepts a slot as an argument. Core code doesn't
have a lot of call sites performing index scans without going
through the systable_* API (in contrast to loads of heap_getnext
calls and working directly with HeapTuples).
Index scans now store the result of a search in
IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
target is not generally a HeapTuple anymore that seems cleaner.
To be able to sensible adapt code to use the above, two further
callbacks have been introduced:
a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
slots capable of holding a tuple of the AMs
type. table_slot_callbacks() and table_slot_create() are based
upon that, but have additional logic to deal with views, foreign
tables, etc.
While this change could have been done separately, nearly all the
call sites that needed to be adapted for the rest of this commit
also would have been needed to be adapted for
table_slot_callbacks(), making separation not worthwhile.
b) tuple_satisfies_snapshot checks whether the tuple in a slot is
currently visible according to a snapshot. That's required as a few
places now don't have a buffer + HeapTuple around, but a
slot (which in heap's case internally has that information).
Additionally a few infrastructure changes were needed:
I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
internally uses a slot to keep track of tuples. While
systable_getnext() still returns HeapTuples, and will so for the
foreseeable future, the index API (see 1) above) now only deals with
slots.
The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.
Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
7 years ago
|
|
|
int attrnum;
|
|
|
|
|
tableam: Add and use scan APIs.
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:
1) Heap scans need to be generalized into table scans. Do this by
introducing TableScanDesc, which will be the "base class" for
individual AMs. This contains the AM independent fields from
HeapScanDesc.
The previous heap_{beginscan,rescan,endscan} et al. have been
replaced with a table_ version.
There's no direct replacement for heap_getnext(), as that returned
a HeapTuple, which is undesirable for a other AMs. Instead there's
table_scan_getnextslot(). But note that heap_getnext() lives on,
it's still used widely to access catalog tables.
This is achieved by new scan_begin, scan_end, scan_rescan,
scan_getnextslot callbacks.
2) The portion of parallel scans that's shared between backends need
to be able to do so without the user doing per-AM work. To achieve
that new parallelscan_{estimate, initialize, reinitialize}
callbacks are introduced, which operate on a new
ParallelTableScanDesc, which again can be subclassed by AMs.
As it is likely that several AMs are going to be block oriented,
block oriented callbacks that can be shared between such AMs are
provided and used by heap. table_block_parallelscan_{estimate,
intiialize, reinitialize} as callbacks, and
table_block_parallelscan_{nextpage, init} for use in AMs. These
operate on a ParallelBlockTableScanDesc.
3) Index scans need to be able to access tables to return a tuple, and
there needs to be state across individual accesses to the heap to
store state like buffers. That's now handled by introducing a
sort-of-scan IndexFetchTable, which again is intended to be
subclassed by individual AMs (for heap IndexFetchHeap).
The relevant callbacks for an AM are index_fetch_{end, begin,
reset} to create the necessary state, and index_fetch_tuple to
retrieve an indexed tuple. Note that index_fetch_tuple
implementations need to be smarter than just blindly fetching the
tuples for AMs that have optimizations similar to heap's HOT - the
currently alive tuple in the update chain needs to be fetched if
appropriate.
Similar to table_scan_getnextslot(), it's undesirable to continue
to return HeapTuples. Thus index_fetch_heap (might want to rename
that later) now accepts a slot as an argument. Core code doesn't
have a lot of call sites performing index scans without going
through the systable_* API (in contrast to loads of heap_getnext
calls and working directly with HeapTuples).
Index scans now store the result of a search in
IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
target is not generally a HeapTuple anymore that seems cleaner.
To be able to sensible adapt code to use the above, two further
callbacks have been introduced:
a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
slots capable of holding a tuple of the AMs
type. table_slot_callbacks() and table_slot_create() are based
upon that, but have additional logic to deal with views, foreign
tables, etc.
While this change could have been done separately, nearly all the
call sites that needed to be adapted for the rest of this commit
also would have been needed to be adapted for
table_slot_callbacks(), making separation not worthwhile.
b) tuple_satisfies_snapshot checks whether the tuple in a slot is
currently visible according to a snapshot. That's required as a few
places now don't have a buffer + HeapTuple around, but a
slot (which in heap's case internally has that information).
Additionally a few infrastructure changes were needed:
I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
internally uses a slot to keep track of tuples. While
systable_getnext() still returns HeapTuples, and will so for the
foreseeable future, the index API (see 1) above) now only deals with
slots.
The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.
Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
7 years ago
|
|
|
Assert(slot1->tts_tupleDescriptor->natts ==
|
|
|
|
slot2->tts_tupleDescriptor->natts);
|
|
|
|
|
|
|
|
slot_getallattrs(slot1);
|
|
|
|
slot_getallattrs(slot2);
|
|
|
|
|
|
|
|
/* Check equality of the attributes. */
|
tableam: Add and use scan APIs.
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:
1) Heap scans need to be generalized into table scans. Do this by
introducing TableScanDesc, which will be the "base class" for
individual AMs. This contains the AM independent fields from
HeapScanDesc.
The previous heap_{beginscan,rescan,endscan} et al. have been
replaced with a table_ version.
There's no direct replacement for heap_getnext(), as that returned
a HeapTuple, which is undesirable for a other AMs. Instead there's
table_scan_getnextslot(). But note that heap_getnext() lives on,
it's still used widely to access catalog tables.
This is achieved by new scan_begin, scan_end, scan_rescan,
scan_getnextslot callbacks.
2) The portion of parallel scans that's shared between backends need
to be able to do so without the user doing per-AM work. To achieve
that new parallelscan_{estimate, initialize, reinitialize}
callbacks are introduced, which operate on a new
ParallelTableScanDesc, which again can be subclassed by AMs.
As it is likely that several AMs are going to be block oriented,
block oriented callbacks that can be shared between such AMs are
provided and used by heap. table_block_parallelscan_{estimate,
intiialize, reinitialize} as callbacks, and
table_block_parallelscan_{nextpage, init} for use in AMs. These
operate on a ParallelBlockTableScanDesc.
3) Index scans need to be able to access tables to return a tuple, and
there needs to be state across individual accesses to the heap to
store state like buffers. That's now handled by introducing a
sort-of-scan IndexFetchTable, which again is intended to be
subclassed by individual AMs (for heap IndexFetchHeap).
The relevant callbacks for an AM are index_fetch_{end, begin,
reset} to create the necessary state, and index_fetch_tuple to
retrieve an indexed tuple. Note that index_fetch_tuple
implementations need to be smarter than just blindly fetching the
tuples for AMs that have optimizations similar to heap's HOT - the
currently alive tuple in the update chain needs to be fetched if
appropriate.
Similar to table_scan_getnextslot(), it's undesirable to continue
to return HeapTuples. Thus index_fetch_heap (might want to rename
that later) now accepts a slot as an argument. Core code doesn't
have a lot of call sites performing index scans without going
through the systable_* API (in contrast to loads of heap_getnext
calls and working directly with HeapTuples).
Index scans now store the result of a search in
IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
target is not generally a HeapTuple anymore that seems cleaner.
To be able to sensible adapt code to use the above, two further
callbacks have been introduced:
a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
slots capable of holding a tuple of the AMs
type. table_slot_callbacks() and table_slot_create() are based
upon that, but have additional logic to deal with views, foreign
tables, etc.
While this change could have been done separately, nearly all the
call sites that needed to be adapted for the rest of this commit
also would have been needed to be adapted for
table_slot_callbacks(), making separation not worthwhile.
b) tuple_satisfies_snapshot checks whether the tuple in a slot is
currently visible according to a snapshot. That's required as a few
places now don't have a buffer + HeapTuple around, but a
slot (which in heap's case internally has that information).
Additionally a few infrastructure changes were needed:
I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
internally uses a slot to keep track of tuples. While
systable_getnext() still returns HeapTuples, and will so for the
foreseeable future, the index API (see 1) above) now only deals with
slots.
The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.
Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
7 years ago
|
|
|
for (attrnum = 0; attrnum < slot1->tts_tupleDescriptor->natts; attrnum++)
|
|
|
|
{
|
|
|
|
Form_pg_attribute att;
|
|
|
|
TypeCacheEntry *typentry;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If one value is NULL and other is not, then they are certainly not
|
|
|
|
* equal
|
|
|
|
*/
|
tableam: Add and use scan APIs.
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:
1) Heap scans need to be generalized into table scans. Do this by
introducing TableScanDesc, which will be the "base class" for
individual AMs. This contains the AM independent fields from
HeapScanDesc.
The previous heap_{beginscan,rescan,endscan} et al. have been
replaced with a table_ version.
There's no direct replacement for heap_getnext(), as that returned
a HeapTuple, which is undesirable for a other AMs. Instead there's
table_scan_getnextslot(). But note that heap_getnext() lives on,
it's still used widely to access catalog tables.
This is achieved by new scan_begin, scan_end, scan_rescan,
scan_getnextslot callbacks.
2) The portion of parallel scans that's shared between backends need
to be able to do so without the user doing per-AM work. To achieve
that new parallelscan_{estimate, initialize, reinitialize}
callbacks are introduced, which operate on a new
ParallelTableScanDesc, which again can be subclassed by AMs.
As it is likely that several AMs are going to be block oriented,
block oriented callbacks that can be shared between such AMs are
provided and used by heap. table_block_parallelscan_{estimate,
intiialize, reinitialize} as callbacks, and
table_block_parallelscan_{nextpage, init} for use in AMs. These
operate on a ParallelBlockTableScanDesc.
3) Index scans need to be able to access tables to return a tuple, and
there needs to be state across individual accesses to the heap to
store state like buffers. That's now handled by introducing a
sort-of-scan IndexFetchTable, which again is intended to be
subclassed by individual AMs (for heap IndexFetchHeap).
The relevant callbacks for an AM are index_fetch_{end, begin,
reset} to create the necessary state, and index_fetch_tuple to
retrieve an indexed tuple. Note that index_fetch_tuple
implementations need to be smarter than just blindly fetching the
tuples for AMs that have optimizations similar to heap's HOT - the
currently alive tuple in the update chain needs to be fetched if
appropriate.
Similar to table_scan_getnextslot(), it's undesirable to continue
to return HeapTuples. Thus index_fetch_heap (might want to rename
that later) now accepts a slot as an argument. Core code doesn't
have a lot of call sites performing index scans without going
through the systable_* API (in contrast to loads of heap_getnext
calls and working directly with HeapTuples).
Index scans now store the result of a search in
IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
target is not generally a HeapTuple anymore that seems cleaner.
To be able to sensible adapt code to use the above, two further
callbacks have been introduced:
a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
slots capable of holding a tuple of the AMs
type. table_slot_callbacks() and table_slot_create() are based
upon that, but have additional logic to deal with views, foreign
tables, etc.
While this change could have been done separately, nearly all the
call sites that needed to be adapted for the rest of this commit
also would have been needed to be adapted for
table_slot_callbacks(), making separation not worthwhile.
b) tuple_satisfies_snapshot checks whether the tuple in a slot is
currently visible according to a snapshot. That's required as a few
places now don't have a buffer + HeapTuple around, but a
slot (which in heap's case internally has that information).
Additionally a few infrastructure changes were needed:
I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
internally uses a slot to keep track of tuples. While
systable_getnext() still returns HeapTuples, and will so for the
foreseeable future, the index API (see 1) above) now only deals with
slots.
The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.
Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
7 years ago
|
|
|
if (slot1->tts_isnull[attrnum] != slot2->tts_isnull[attrnum])
|
|
|
|
return false;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If both are NULL, they can be considered equal.
|
|
|
|
*/
|
tableam: Add and use scan APIs.
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:
1) Heap scans need to be generalized into table scans. Do this by
introducing TableScanDesc, which will be the "base class" for
individual AMs. This contains the AM independent fields from
HeapScanDesc.
The previous heap_{beginscan,rescan,endscan} et al. have been
replaced with a table_ version.
There's no direct replacement for heap_getnext(), as that returned
a HeapTuple, which is undesirable for a other AMs. Instead there's
table_scan_getnextslot(). But note that heap_getnext() lives on,
it's still used widely to access catalog tables.
This is achieved by new scan_begin, scan_end, scan_rescan,
scan_getnextslot callbacks.
2) The portion of parallel scans that's shared between backends need
to be able to do so without the user doing per-AM work. To achieve
that new parallelscan_{estimate, initialize, reinitialize}
callbacks are introduced, which operate on a new
ParallelTableScanDesc, which again can be subclassed by AMs.
As it is likely that several AMs are going to be block oriented,
block oriented callbacks that can be shared between such AMs are
provided and used by heap. table_block_parallelscan_{estimate,
intiialize, reinitialize} as callbacks, and
table_block_parallelscan_{nextpage, init} for use in AMs. These
operate on a ParallelBlockTableScanDesc.
3) Index scans need to be able to access tables to return a tuple, and
there needs to be state across individual accesses to the heap to
store state like buffers. That's now handled by introducing a
sort-of-scan IndexFetchTable, which again is intended to be
subclassed by individual AMs (for heap IndexFetchHeap).
The relevant callbacks for an AM are index_fetch_{end, begin,
reset} to create the necessary state, and index_fetch_tuple to
retrieve an indexed tuple. Note that index_fetch_tuple
implementations need to be smarter than just blindly fetching the
tuples for AMs that have optimizations similar to heap's HOT - the
currently alive tuple in the update chain needs to be fetched if
appropriate.
Similar to table_scan_getnextslot(), it's undesirable to continue
to return HeapTuples. Thus index_fetch_heap (might want to rename
that later) now accepts a slot as an argument. Core code doesn't
have a lot of call sites performing index scans without going
through the systable_* API (in contrast to loads of heap_getnext
calls and working directly with HeapTuples).
Index scans now store the result of a search in
IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
target is not generally a HeapTuple anymore that seems cleaner.
To be able to sensible adapt code to use the above, two further
callbacks have been introduced:
a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
slots capable of holding a tuple of the AMs
type. table_slot_callbacks() and table_slot_create() are based
upon that, but have additional logic to deal with views, foreign
tables, etc.
While this change could have been done separately, nearly all the
call sites that needed to be adapted for the rest of this commit
also would have been needed to be adapted for
table_slot_callbacks(), making separation not worthwhile.
b) tuple_satisfies_snapshot checks whether the tuple in a slot is
currently visible according to a snapshot. That's required as a few
places now don't have a buffer + HeapTuple around, but a
slot (which in heap's case internally has that information).
Additionally a few infrastructure changes were needed:
I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
internally uses a slot to keep track of tuples. While
systable_getnext() still returns HeapTuples, and will so for the
foreseeable future, the index API (see 1) above) now only deals with
slots.
The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.
Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
7 years ago
|
|
|
if (slot1->tts_isnull[attrnum] || slot2->tts_isnull[attrnum])
|
|
|
|
continue;
|
|
|
|
|
tableam: Add and use scan APIs.
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:
1) Heap scans need to be generalized into table scans. Do this by
introducing TableScanDesc, which will be the "base class" for
individual AMs. This contains the AM independent fields from
HeapScanDesc.
The previous heap_{beginscan,rescan,endscan} et al. have been
replaced with a table_ version.
There's no direct replacement for heap_getnext(), as that returned
a HeapTuple, which is undesirable for a other AMs. Instead there's
table_scan_getnextslot(). But note that heap_getnext() lives on,
it's still used widely to access catalog tables.
This is achieved by new scan_begin, scan_end, scan_rescan,
scan_getnextslot callbacks.
2) The portion of parallel scans that's shared between backends need
to be able to do so without the user doing per-AM work. To achieve
that new parallelscan_{estimate, initialize, reinitialize}
callbacks are introduced, which operate on a new
ParallelTableScanDesc, which again can be subclassed by AMs.
As it is likely that several AMs are going to be block oriented,
block oriented callbacks that can be shared between such AMs are
provided and used by heap. table_block_parallelscan_{estimate,
intiialize, reinitialize} as callbacks, and
table_block_parallelscan_{nextpage, init} for use in AMs. These
operate on a ParallelBlockTableScanDesc.
3) Index scans need to be able to access tables to return a tuple, and
there needs to be state across individual accesses to the heap to
store state like buffers. That's now handled by introducing a
sort-of-scan IndexFetchTable, which again is intended to be
subclassed by individual AMs (for heap IndexFetchHeap).
The relevant callbacks for an AM are index_fetch_{end, begin,
reset} to create the necessary state, and index_fetch_tuple to
retrieve an indexed tuple. Note that index_fetch_tuple
implementations need to be smarter than just blindly fetching the
tuples for AMs that have optimizations similar to heap's HOT - the
currently alive tuple in the update chain needs to be fetched if
appropriate.
Similar to table_scan_getnextslot(), it's undesirable to continue
to return HeapTuples. Thus index_fetch_heap (might want to rename
that later) now accepts a slot as an argument. Core code doesn't
have a lot of call sites performing index scans without going
through the systable_* API (in contrast to loads of heap_getnext
calls and working directly with HeapTuples).
Index scans now store the result of a search in
IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
target is not generally a HeapTuple anymore that seems cleaner.
To be able to sensible adapt code to use the above, two further
callbacks have been introduced:
a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
slots capable of holding a tuple of the AMs
type. table_slot_callbacks() and table_slot_create() are based
upon that, but have additional logic to deal with views, foreign
tables, etc.
While this change could have been done separately, nearly all the
call sites that needed to be adapted for the rest of this commit
also would have been needed to be adapted for
table_slot_callbacks(), making separation not worthwhile.
b) tuple_satisfies_snapshot checks whether the tuple in a slot is
currently visible according to a snapshot. That's required as a few
places now don't have a buffer + HeapTuple around, but a
slot (which in heap's case internally has that information).
Additionally a few infrastructure changes were needed:
I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
internally uses a slot to keep track of tuples. While
systable_getnext() still returns HeapTuples, and will so for the
foreseeable future, the index API (see 1) above) now only deals with
slots.
The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.
Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
7 years ago
|
|
|
att = TupleDescAttr(slot1->tts_tupleDescriptor, attrnum);
|
|
|
|
|
|
|
|
typentry = lookup_type_cache(att->atttypid, TYPECACHE_EQ_OPR_FINFO);
|
|
|
|
if (!OidIsValid(typentry->eq_opr_finfo.fn_oid))
|
|
|
|
ereport(ERROR,
|
|
|
|
(errcode(ERRCODE_UNDEFINED_FUNCTION),
|
|
|
|
errmsg("could not identify an equality operator for type %s",
|
|
|
|
format_type_be(att->atttypid))));
|
|
|
|
|
|
|
|
if (!DatumGetBool(FunctionCall2(&typentry->eq_opr_finfo,
|
tableam: Add and use scan APIs.
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:
1) Heap scans need to be generalized into table scans. Do this by
introducing TableScanDesc, which will be the "base class" for
individual AMs. This contains the AM independent fields from
HeapScanDesc.
The previous heap_{beginscan,rescan,endscan} et al. have been
replaced with a table_ version.
There's no direct replacement for heap_getnext(), as that returned
a HeapTuple, which is undesirable for a other AMs. Instead there's
table_scan_getnextslot(). But note that heap_getnext() lives on,
it's still used widely to access catalog tables.
This is achieved by new scan_begin, scan_end, scan_rescan,
scan_getnextslot callbacks.
2) The portion of parallel scans that's shared between backends need
to be able to do so without the user doing per-AM work. To achieve
that new parallelscan_{estimate, initialize, reinitialize}
callbacks are introduced, which operate on a new
ParallelTableScanDesc, which again can be subclassed by AMs.
As it is likely that several AMs are going to be block oriented,
block oriented callbacks that can be shared between such AMs are
provided and used by heap. table_block_parallelscan_{estimate,
intiialize, reinitialize} as callbacks, and
table_block_parallelscan_{nextpage, init} for use in AMs. These
operate on a ParallelBlockTableScanDesc.
3) Index scans need to be able to access tables to return a tuple, and
there needs to be state across individual accesses to the heap to
store state like buffers. That's now handled by introducing a
sort-of-scan IndexFetchTable, which again is intended to be
subclassed by individual AMs (for heap IndexFetchHeap).
The relevant callbacks for an AM are index_fetch_{end, begin,
reset} to create the necessary state, and index_fetch_tuple to
retrieve an indexed tuple. Note that index_fetch_tuple
implementations need to be smarter than just blindly fetching the
tuples for AMs that have optimizations similar to heap's HOT - the
currently alive tuple in the update chain needs to be fetched if
appropriate.
Similar to table_scan_getnextslot(), it's undesirable to continue
to return HeapTuples. Thus index_fetch_heap (might want to rename
that later) now accepts a slot as an argument. Core code doesn't
have a lot of call sites performing index scans without going
through the systable_* API (in contrast to loads of heap_getnext
calls and working directly with HeapTuples).
Index scans now store the result of a search in
IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
target is not generally a HeapTuple anymore that seems cleaner.
To be able to sensible adapt code to use the above, two further
callbacks have been introduced:
a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
slots capable of holding a tuple of the AMs
type. table_slot_callbacks() and table_slot_create() are based
upon that, but have additional logic to deal with views, foreign
tables, etc.
While this change could have been done separately, nearly all the
call sites that needed to be adapted for the rest of this commit
also would have been needed to be adapted for
table_slot_callbacks(), making separation not worthwhile.
b) tuple_satisfies_snapshot checks whether the tuple in a slot is
currently visible according to a snapshot. That's required as a few
places now don't have a buffer + HeapTuple around, but a
slot (which in heap's case internally has that information).
Additionally a few infrastructure changes were needed:
I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
internally uses a slot to keep track of tuples. While
systable_getnext() still returns HeapTuples, and will so for the
foreseeable future, the index API (see 1) above) now only deals with
slots.
The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.
Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
7 years ago
|
|
|
slot1->tts_values[attrnum],
|
|
|
|
slot2->tts_values[attrnum])))
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Search the relation 'rel' for tuple using the sequential scan.
|
|
|
|
*
|
|
|
|
* If a matching tuple is found, lock it with lockmode, fill the slot with its
|
|
|
|
* contents, and return true. Return false otherwise.
|
|
|
|
*
|
|
|
|
* Note that this stops on the first matching tuple.
|
|
|
|
*
|
|
|
|
* This can obviously be quite slow on tables that have more than few rows.
|
|
|
|
*/
|
|
|
|
bool
|
|
|
|
RelationFindReplTupleSeq(Relation rel, LockTupleMode lockmode,
|
|
|
|
TupleTableSlot *searchslot, TupleTableSlot *outslot)
|
|
|
|
{
|
tableam: Add and use scan APIs.
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:
1) Heap scans need to be generalized into table scans. Do this by
introducing TableScanDesc, which will be the "base class" for
individual AMs. This contains the AM independent fields from
HeapScanDesc.
The previous heap_{beginscan,rescan,endscan} et al. have been
replaced with a table_ version.
There's no direct replacement for heap_getnext(), as that returned
a HeapTuple, which is undesirable for a other AMs. Instead there's
table_scan_getnextslot(). But note that heap_getnext() lives on,
it's still used widely to access catalog tables.
This is achieved by new scan_begin, scan_end, scan_rescan,
scan_getnextslot callbacks.
2) The portion of parallel scans that's shared between backends need
to be able to do so without the user doing per-AM work. To achieve
that new parallelscan_{estimate, initialize, reinitialize}
callbacks are introduced, which operate on a new
ParallelTableScanDesc, which again can be subclassed by AMs.
As it is likely that several AMs are going to be block oriented,
block oriented callbacks that can be shared between such AMs are
provided and used by heap. table_block_parallelscan_{estimate,
intiialize, reinitialize} as callbacks, and
table_block_parallelscan_{nextpage, init} for use in AMs. These
operate on a ParallelBlockTableScanDesc.
3) Index scans need to be able to access tables to return a tuple, and
there needs to be state across individual accesses to the heap to
store state like buffers. That's now handled by introducing a
sort-of-scan IndexFetchTable, which again is intended to be
subclassed by individual AMs (for heap IndexFetchHeap).
The relevant callbacks for an AM are index_fetch_{end, begin,
reset} to create the necessary state, and index_fetch_tuple to
retrieve an indexed tuple. Note that index_fetch_tuple
implementations need to be smarter than just blindly fetching the
tuples for AMs that have optimizations similar to heap's HOT - the
currently alive tuple in the update chain needs to be fetched if
appropriate.
Similar to table_scan_getnextslot(), it's undesirable to continue
to return HeapTuples. Thus index_fetch_heap (might want to rename
that later) now accepts a slot as an argument. Core code doesn't
have a lot of call sites performing index scans without going
through the systable_* API (in contrast to loads of heap_getnext
calls and working directly with HeapTuples).
Index scans now store the result of a search in
IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
target is not generally a HeapTuple anymore that seems cleaner.
To be able to sensible adapt code to use the above, two further
callbacks have been introduced:
a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
slots capable of holding a tuple of the AMs
type. table_slot_callbacks() and table_slot_create() are based
upon that, but have additional logic to deal with views, foreign
tables, etc.
While this change could have been done separately, nearly all the
call sites that needed to be adapted for the rest of this commit
also would have been needed to be adapted for
table_slot_callbacks(), making separation not worthwhile.
b) tuple_satisfies_snapshot checks whether the tuple in a slot is
currently visible according to a snapshot. That's required as a few
places now don't have a buffer + HeapTuple around, but a
slot (which in heap's case internally has that information).
Additionally a few infrastructure changes were needed:
I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
internally uses a slot to keep track of tuples. While
systable_getnext() still returns HeapTuples, and will so for the
foreseeable future, the index API (see 1) above) now only deals with
slots.
The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.
Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
7 years ago
|
|
|
TupleTableSlot *scanslot;
|
|
|
|
TableScanDesc scan;
|
|
|
|
SnapshotData snap;
|
|
|
|
TransactionId xwait;
|
|
|
|
bool found;
|
tableam: Add and use scan APIs.
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:
1) Heap scans need to be generalized into table scans. Do this by
introducing TableScanDesc, which will be the "base class" for
individual AMs. This contains the AM independent fields from
HeapScanDesc.
The previous heap_{beginscan,rescan,endscan} et al. have been
replaced with a table_ version.
There's no direct replacement for heap_getnext(), as that returned
a HeapTuple, which is undesirable for a other AMs. Instead there's
table_scan_getnextslot(). But note that heap_getnext() lives on,
it's still used widely to access catalog tables.
This is achieved by new scan_begin, scan_end, scan_rescan,
scan_getnextslot callbacks.
2) The portion of parallel scans that's shared between backends need
to be able to do so without the user doing per-AM work. To achieve
that new parallelscan_{estimate, initialize, reinitialize}
callbacks are introduced, which operate on a new
ParallelTableScanDesc, which again can be subclassed by AMs.
As it is likely that several AMs are going to be block oriented,
block oriented callbacks that can be shared between such AMs are
provided and used by heap. table_block_parallelscan_{estimate,
intiialize, reinitialize} as callbacks, and
table_block_parallelscan_{nextpage, init} for use in AMs. These
operate on a ParallelBlockTableScanDesc.
3) Index scans need to be able to access tables to return a tuple, and
there needs to be state across individual accesses to the heap to
store state like buffers. That's now handled by introducing a
sort-of-scan IndexFetchTable, which again is intended to be
subclassed by individual AMs (for heap IndexFetchHeap).
The relevant callbacks for an AM are index_fetch_{end, begin,
reset} to create the necessary state, and index_fetch_tuple to
retrieve an indexed tuple. Note that index_fetch_tuple
implementations need to be smarter than just blindly fetching the
tuples for AMs that have optimizations similar to heap's HOT - the
currently alive tuple in the update chain needs to be fetched if
appropriate.
Similar to table_scan_getnextslot(), it's undesirable to continue
to return HeapTuples. Thus index_fetch_heap (might want to rename
that later) now accepts a slot as an argument. Core code doesn't
have a lot of call sites performing index scans without going
through the systable_* API (in contrast to loads of heap_getnext
calls and working directly with HeapTuples).
Index scans now store the result of a search in
IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
target is not generally a HeapTuple anymore that seems cleaner.
To be able to sensible adapt code to use the above, two further
callbacks have been introduced:
a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
slots capable of holding a tuple of the AMs
type. table_slot_callbacks() and table_slot_create() are based
upon that, but have additional logic to deal with views, foreign
tables, etc.
While this change could have been done separately, nearly all the
call sites that needed to be adapted for the rest of this commit
also would have been needed to be adapted for
table_slot_callbacks(), making separation not worthwhile.
b) tuple_satisfies_snapshot checks whether the tuple in a slot is
currently visible according to a snapshot. That's required as a few
places now don't have a buffer + HeapTuple around, but a
slot (which in heap's case internally has that information).
Additionally a few infrastructure changes were needed:
I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
internally uses a slot to keep track of tuples. While
systable_getnext() still returns HeapTuples, and will so for the
foreseeable future, the index API (see 1) above) now only deals with
slots.
The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.
Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
7 years ago
|
|
|
TupleDesc desc PG_USED_FOR_ASSERTS_ONLY = RelationGetDescr(rel);
|
|
|
|
|
|
|
|
Assert(equalTupleDescs(desc, outslot->tts_tupleDescriptor));
|
|
|
|
|
|
|
|
/* Start a heap scan. */
|
|
|
|
InitDirtySnapshot(snap);
|
tableam: Add and use scan APIs.
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:
1) Heap scans need to be generalized into table scans. Do this by
introducing TableScanDesc, which will be the "base class" for
individual AMs. This contains the AM independent fields from
HeapScanDesc.
The previous heap_{beginscan,rescan,endscan} et al. have been
replaced with a table_ version.
There's no direct replacement for heap_getnext(), as that returned
a HeapTuple, which is undesirable for a other AMs. Instead there's
table_scan_getnextslot(). But note that heap_getnext() lives on,
it's still used widely to access catalog tables.
This is achieved by new scan_begin, scan_end, scan_rescan,
scan_getnextslot callbacks.
2) The portion of parallel scans that's shared between backends need
to be able to do so without the user doing per-AM work. To achieve
that new parallelscan_{estimate, initialize, reinitialize}
callbacks are introduced, which operate on a new
ParallelTableScanDesc, which again can be subclassed by AMs.
As it is likely that several AMs are going to be block oriented,
block oriented callbacks that can be shared between such AMs are
provided and used by heap. table_block_parallelscan_{estimate,
intiialize, reinitialize} as callbacks, and
table_block_parallelscan_{nextpage, init} for use in AMs. These
operate on a ParallelBlockTableScanDesc.
3) Index scans need to be able to access tables to return a tuple, and
there needs to be state across individual accesses to the heap to
store state like buffers. That's now handled by introducing a
sort-of-scan IndexFetchTable, which again is intended to be
subclassed by individual AMs (for heap IndexFetchHeap).
The relevant callbacks for an AM are index_fetch_{end, begin,
reset} to create the necessary state, and index_fetch_tuple to
retrieve an indexed tuple. Note that index_fetch_tuple
implementations need to be smarter than just blindly fetching the
tuples for AMs that have optimizations similar to heap's HOT - the
currently alive tuple in the update chain needs to be fetched if
appropriate.
Similar to table_scan_getnextslot(), it's undesirable to continue
to return HeapTuples. Thus index_fetch_heap (might want to rename
that later) now accepts a slot as an argument. Core code doesn't
have a lot of call sites performing index scans without going
through the systable_* API (in contrast to loads of heap_getnext
calls and working directly with HeapTuples).
Index scans now store the result of a search in
IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
target is not generally a HeapTuple anymore that seems cleaner.
To be able to sensible adapt code to use the above, two further
callbacks have been introduced:
a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
slots capable of holding a tuple of the AMs
type. table_slot_callbacks() and table_slot_create() are based
upon that, but have additional logic to deal with views, foreign
tables, etc.
While this change could have been done separately, nearly all the
call sites that needed to be adapted for the rest of this commit
also would have been needed to be adapted for
table_slot_callbacks(), making separation not worthwhile.
b) tuple_satisfies_snapshot checks whether the tuple in a slot is
currently visible according to a snapshot. That's required as a few
places now don't have a buffer + HeapTuple around, but a
slot (which in heap's case internally has that information).
Additionally a few infrastructure changes were needed:
I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
internally uses a slot to keep track of tuples. While
systable_getnext() still returns HeapTuples, and will so for the
foreseeable future, the index API (see 1) above) now only deals with
slots.
The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.
Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
7 years ago
|
|
|
scan = table_beginscan(rel, &snap, 0, NULL);
|
|
|
|
scanslot = table_slot_create(rel, NULL);
|
|
|
|
|
|
|
|
retry:
|
|
|
|
found = false;
|
|
|
|
|
tableam: Add and use scan APIs.
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:
1) Heap scans need to be generalized into table scans. Do this by
introducing TableScanDesc, which will be the "base class" for
individual AMs. This contains the AM independent fields from
HeapScanDesc.
The previous heap_{beginscan,rescan,endscan} et al. have been
replaced with a table_ version.
There's no direct replacement for heap_getnext(), as that returned
a HeapTuple, which is undesirable for a other AMs. Instead there's
table_scan_getnextslot(). But note that heap_getnext() lives on,
it's still used widely to access catalog tables.
This is achieved by new scan_begin, scan_end, scan_rescan,
scan_getnextslot callbacks.
2) The portion of parallel scans that's shared between backends need
to be able to do so without the user doing per-AM work. To achieve
that new parallelscan_{estimate, initialize, reinitialize}
callbacks are introduced, which operate on a new
ParallelTableScanDesc, which again can be subclassed by AMs.
As it is likely that several AMs are going to be block oriented,
block oriented callbacks that can be shared between such AMs are
provided and used by heap. table_block_parallelscan_{estimate,
intiialize, reinitialize} as callbacks, and
table_block_parallelscan_{nextpage, init} for use in AMs. These
operate on a ParallelBlockTableScanDesc.
3) Index scans need to be able to access tables to return a tuple, and
there needs to be state across individual accesses to the heap to
store state like buffers. That's now handled by introducing a
sort-of-scan IndexFetchTable, which again is intended to be
subclassed by individual AMs (for heap IndexFetchHeap).
The relevant callbacks for an AM are index_fetch_{end, begin,
reset} to create the necessary state, and index_fetch_tuple to
retrieve an indexed tuple. Note that index_fetch_tuple
implementations need to be smarter than just blindly fetching the
tuples for AMs that have optimizations similar to heap's HOT - the
currently alive tuple in the update chain needs to be fetched if
appropriate.
Similar to table_scan_getnextslot(), it's undesirable to continue
to return HeapTuples. Thus index_fetch_heap (might want to rename
that later) now accepts a slot as an argument. Core code doesn't
have a lot of call sites performing index scans without going
through the systable_* API (in contrast to loads of heap_getnext
calls and working directly with HeapTuples).
Index scans now store the result of a search in
IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
target is not generally a HeapTuple anymore that seems cleaner.
To be able to sensible adapt code to use the above, two further
callbacks have been introduced:
a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
slots capable of holding a tuple of the AMs
type. table_slot_callbacks() and table_slot_create() are based
upon that, but have additional logic to deal with views, foreign
tables, etc.
While this change could have been done separately, nearly all the
call sites that needed to be adapted for the rest of this commit
also would have been needed to be adapted for
table_slot_callbacks(), making separation not worthwhile.
b) tuple_satisfies_snapshot checks whether the tuple in a slot is
currently visible according to a snapshot. That's required as a few
places now don't have a buffer + HeapTuple around, but a
slot (which in heap's case internally has that information).
Additionally a few infrastructure changes were needed:
I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
internally uses a slot to keep track of tuples. While
systable_getnext() still returns HeapTuples, and will so for the
foreseeable future, the index API (see 1) above) now only deals with
slots.
The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.
Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
7 years ago
|
|
|
table_rescan(scan, NULL);
|
|
|
|
|
|
|
|
/* Try to find the tuple */
|
tableam: Add and use scan APIs.
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:
1) Heap scans need to be generalized into table scans. Do this by
introducing TableScanDesc, which will be the "base class" for
individual AMs. This contains the AM independent fields from
HeapScanDesc.
The previous heap_{beginscan,rescan,endscan} et al. have been
replaced with a table_ version.
There's no direct replacement for heap_getnext(), as that returned
a HeapTuple, which is undesirable for a other AMs. Instead there's
table_scan_getnextslot(). But note that heap_getnext() lives on,
it's still used widely to access catalog tables.
This is achieved by new scan_begin, scan_end, scan_rescan,
scan_getnextslot callbacks.
2) The portion of parallel scans that's shared between backends need
to be able to do so without the user doing per-AM work. To achieve
that new parallelscan_{estimate, initialize, reinitialize}
callbacks are introduced, which operate on a new
ParallelTableScanDesc, which again can be subclassed by AMs.
As it is likely that several AMs are going to be block oriented,
block oriented callbacks that can be shared between such AMs are
provided and used by heap. table_block_parallelscan_{estimate,
intiialize, reinitialize} as callbacks, and
table_block_parallelscan_{nextpage, init} for use in AMs. These
operate on a ParallelBlockTableScanDesc.
3) Index scans need to be able to access tables to return a tuple, and
there needs to be state across individual accesses to the heap to
store state like buffers. That's now handled by introducing a
sort-of-scan IndexFetchTable, which again is intended to be
subclassed by individual AMs (for heap IndexFetchHeap).
The relevant callbacks for an AM are index_fetch_{end, begin,
reset} to create the necessary state, and index_fetch_tuple to
retrieve an indexed tuple. Note that index_fetch_tuple
implementations need to be smarter than just blindly fetching the
tuples for AMs that have optimizations similar to heap's HOT - the
currently alive tuple in the update chain needs to be fetched if
appropriate.
Similar to table_scan_getnextslot(), it's undesirable to continue
to return HeapTuples. Thus index_fetch_heap (might want to rename
that later) now accepts a slot as an argument. Core code doesn't
have a lot of call sites performing index scans without going
through the systable_* API (in contrast to loads of heap_getnext
calls and working directly with HeapTuples).
Index scans now store the result of a search in
IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
target is not generally a HeapTuple anymore that seems cleaner.
To be able to sensible adapt code to use the above, two further
callbacks have been introduced:
a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
slots capable of holding a tuple of the AMs
type. table_slot_callbacks() and table_slot_create() are based
upon that, but have additional logic to deal with views, foreign
tables, etc.
While this change could have been done separately, nearly all the
call sites that needed to be adapted for the rest of this commit
also would have been needed to be adapted for
table_slot_callbacks(), making separation not worthwhile.
b) tuple_satisfies_snapshot checks whether the tuple in a slot is
currently visible according to a snapshot. That's required as a few
places now don't have a buffer + HeapTuple around, but a
slot (which in heap's case internally has that information).
Additionally a few infrastructure changes were needed:
I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
internally uses a slot to keep track of tuples. While
systable_getnext() still returns HeapTuples, and will so for the
foreseeable future, the index API (see 1) above) now only deals with
slots.
The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.
Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
7 years ago
|
|
|
while (table_scan_getnextslot(scan, ForwardScanDirection, scanslot))
|
|
|
|
{
|
tableam: Add and use scan APIs.
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:
1) Heap scans need to be generalized into table scans. Do this by
introducing TableScanDesc, which will be the "base class" for
individual AMs. This contains the AM independent fields from
HeapScanDesc.
The previous heap_{beginscan,rescan,endscan} et al. have been
replaced with a table_ version.
There's no direct replacement for heap_getnext(), as that returned
a HeapTuple, which is undesirable for a other AMs. Instead there's
table_scan_getnextslot(). But note that heap_getnext() lives on,
it's still used widely to access catalog tables.
This is achieved by new scan_begin, scan_end, scan_rescan,
scan_getnextslot callbacks.
2) The portion of parallel scans that's shared between backends need
to be able to do so without the user doing per-AM work. To achieve
that new parallelscan_{estimate, initialize, reinitialize}
callbacks are introduced, which operate on a new
ParallelTableScanDesc, which again can be subclassed by AMs.
As it is likely that several AMs are going to be block oriented,
block oriented callbacks that can be shared between such AMs are
provided and used by heap. table_block_parallelscan_{estimate,
intiialize, reinitialize} as callbacks, and
table_block_parallelscan_{nextpage, init} for use in AMs. These
operate on a ParallelBlockTableScanDesc.
3) Index scans need to be able to access tables to return a tuple, and
there needs to be state across individual accesses to the heap to
store state like buffers. That's now handled by introducing a
sort-of-scan IndexFetchTable, which again is intended to be
subclassed by individual AMs (for heap IndexFetchHeap).
The relevant callbacks for an AM are index_fetch_{end, begin,
reset} to create the necessary state, and index_fetch_tuple to
retrieve an indexed tuple. Note that index_fetch_tuple
implementations need to be smarter than just blindly fetching the
tuples for AMs that have optimizations similar to heap's HOT - the
currently alive tuple in the update chain needs to be fetched if
appropriate.
Similar to table_scan_getnextslot(), it's undesirable to continue
to return HeapTuples. Thus index_fetch_heap (might want to rename
that later) now accepts a slot as an argument. Core code doesn't
have a lot of call sites performing index scans without going
through the systable_* API (in contrast to loads of heap_getnext
calls and working directly with HeapTuples).
Index scans now store the result of a search in
IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
target is not generally a HeapTuple anymore that seems cleaner.
To be able to sensible adapt code to use the above, two further
callbacks have been introduced:
a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
slots capable of holding a tuple of the AMs
type. table_slot_callbacks() and table_slot_create() are based
upon that, but have additional logic to deal with views, foreign
tables, etc.
While this change could have been done separately, nearly all the
call sites that needed to be adapted for the rest of this commit
also would have been needed to be adapted for
table_slot_callbacks(), making separation not worthwhile.
b) tuple_satisfies_snapshot checks whether the tuple in a slot is
currently visible according to a snapshot. That's required as a few
places now don't have a buffer + HeapTuple around, but a
slot (which in heap's case internally has that information).
Additionally a few infrastructure changes were needed:
I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
internally uses a slot to keep track of tuples. While
systable_getnext() still returns HeapTuples, and will so for the
foreseeable future, the index API (see 1) above) now only deals with
slots.
The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.
Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
7 years ago
|
|
|
if (!tuples_equal(scanslot, searchslot))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
found = true;
|
tableam: Add and use scan APIs.
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:
1) Heap scans need to be generalized into table scans. Do this by
introducing TableScanDesc, which will be the "base class" for
individual AMs. This contains the AM independent fields from
HeapScanDesc.
The previous heap_{beginscan,rescan,endscan} et al. have been
replaced with a table_ version.
There's no direct replacement for heap_getnext(), as that returned
a HeapTuple, which is undesirable for a other AMs. Instead there's
table_scan_getnextslot(). But note that heap_getnext() lives on,
it's still used widely to access catalog tables.
This is achieved by new scan_begin, scan_end, scan_rescan,
scan_getnextslot callbacks.
2) The portion of parallel scans that's shared between backends need
to be able to do so without the user doing per-AM work. To achieve
that new parallelscan_{estimate, initialize, reinitialize}
callbacks are introduced, which operate on a new
ParallelTableScanDesc, which again can be subclassed by AMs.
As it is likely that several AMs are going to be block oriented,
block oriented callbacks that can be shared between such AMs are
provided and used by heap. table_block_parallelscan_{estimate,
intiialize, reinitialize} as callbacks, and
table_block_parallelscan_{nextpage, init} for use in AMs. These
operate on a ParallelBlockTableScanDesc.
3) Index scans need to be able to access tables to return a tuple, and
there needs to be state across individual accesses to the heap to
store state like buffers. That's now handled by introducing a
sort-of-scan IndexFetchTable, which again is intended to be
subclassed by individual AMs (for heap IndexFetchHeap).
The relevant callbacks for an AM are index_fetch_{end, begin,
reset} to create the necessary state, and index_fetch_tuple to
retrieve an indexed tuple. Note that index_fetch_tuple
implementations need to be smarter than just blindly fetching the
tuples for AMs that have optimizations similar to heap's HOT - the
currently alive tuple in the update chain needs to be fetched if
appropriate.
Similar to table_scan_getnextslot(), it's undesirable to continue
to return HeapTuples. Thus index_fetch_heap (might want to rename
that later) now accepts a slot as an argument. Core code doesn't
have a lot of call sites performing index scans without going
through the systable_* API (in contrast to loads of heap_getnext
calls and working directly with HeapTuples).
Index scans now store the result of a search in
IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
target is not generally a HeapTuple anymore that seems cleaner.
To be able to sensible adapt code to use the above, two further
callbacks have been introduced:
a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
slots capable of holding a tuple of the AMs
type. table_slot_callbacks() and table_slot_create() are based
upon that, but have additional logic to deal with views, foreign
tables, etc.
While this change could have been done separately, nearly all the
call sites that needed to be adapted for the rest of this commit
also would have been needed to be adapted for
table_slot_callbacks(), making separation not worthwhile.
b) tuple_satisfies_snapshot checks whether the tuple in a slot is
currently visible according to a snapshot. That's required as a few
places now don't have a buffer + HeapTuple around, but a
slot (which in heap's case internally has that information).
Additionally a few infrastructure changes were needed:
I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
internally uses a slot to keep track of tuples. While
systable_getnext() still returns HeapTuples, and will so for the
foreseeable future, the index API (see 1) above) now only deals with
slots.
The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.
Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
7 years ago
|
|
|
ExecCopySlot(outslot, scanslot);
|
|
|
|
|
|
|
|
xwait = TransactionIdIsValid(snap.xmin) ?
|
|
|
|
snap.xmin : snap.xmax;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the tuple is locked, wait for locking transaction to finish and
|
|
|
|
* retry.
|
|
|
|
*/
|
|
|
|
if (TransactionIdIsValid(xwait))
|
|
|
|
{
|
|
|
|
XactLockTableWait(xwait, NULL, NULL, XLTW_None);
|
|
|
|
goto retry;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Found tuple, try to lock it in the lockmode. */
|
|
|
|
if (found)
|
|
|
|
{
|
|
|
|
Buffer buf;
|
|
|
|
HeapUpdateFailureData hufd;
|
|
|
|
HTSU_Result res;
|
|
|
|
HeapTupleData locktup;
|
Make TupleTableSlots extensible, finish split of existing slot type.
This commit completes the work prepared in 1a0586de36, splitting the
old TupleTableSlot implementation (which could store buffer, heap,
minimal and virtual slots) into four different slot types. As
described in the aforementioned commit, this is done with the goal of
making tuple table slots extensible, to allow for pluggable table
access methods.
To achieve runtime extensibility for TupleTableSlots, operations on
slots that can differ between types of slots are performed using the
TupleTableSlotOps struct provided at slot creation time. That
includes information from the size of TupleTableSlot struct to be
allocated, initialization, deforming etc. See the struct's definition
for more detailed information about callbacks TupleTableSlotOps.
I decided to rename TTSOpsBufferTuple to TTSOpsBufferHeapTuple and
ExecCopySlotTuple to ExecCopySlotHeapTuple, as that seems more
consistent with other naming introduced in recent patches.
There's plenty optimization potential in the slot implementation, but
according to benchmarking the state after this commit has similar
performance characteristics to before this set of changes, which seems
sufficient.
There's a few changes in execReplication.c that currently need to poke
through the slot abstraction, that'll be repaired once the pluggable
storage patchset provides the necessary infrastructure.
Author: Andres Freund and Ashutosh Bapat, with changes by Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
7 years ago
|
|
|
HeapTupleTableSlot *hslot = (HeapTupleTableSlot *)outslot;
|
|
|
|
|
Make TupleTableSlots extensible, finish split of existing slot type.
This commit completes the work prepared in 1a0586de36, splitting the
old TupleTableSlot implementation (which could store buffer, heap,
minimal and virtual slots) into four different slot types. As
described in the aforementioned commit, this is done with the goal of
making tuple table slots extensible, to allow for pluggable table
access methods.
To achieve runtime extensibility for TupleTableSlots, operations on
slots that can differ between types of slots are performed using the
TupleTableSlotOps struct provided at slot creation time. That
includes information from the size of TupleTableSlot struct to be
allocated, initialization, deforming etc. See the struct's definition
for more detailed information about callbacks TupleTableSlotOps.
I decided to rename TTSOpsBufferTuple to TTSOpsBufferHeapTuple and
ExecCopySlotTuple to ExecCopySlotHeapTuple, as that seems more
consistent with other naming introduced in recent patches.
There's plenty optimization potential in the slot implementation, but
according to benchmarking the state after this commit has similar
performance characteristics to before this set of changes, which seems
sufficient.
There's a few changes in execReplication.c that currently need to poke
through the slot abstraction, that'll be repaired once the pluggable
storage patchset provides the necessary infrastructure.
Author: Andres Freund and Ashutosh Bapat, with changes by Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
7 years ago
|
|
|
/* Only a heap tuple has item pointers. */
|
|
|
|
Assert(TTS_IS_HEAPTUPLE(outslot) || TTS_IS_BUFFERTUPLE(outslot));
|
|
|
|
ItemPointerCopy(&hslot->tuple->t_self, &locktup.t_self);
|
|
|
|
|
|
|
|
PushActiveSnapshot(GetLatestSnapshot());
|
|
|
|
|
|
|
|
res = heap_lock_tuple(rel, &locktup, GetCurrentCommandId(false),
|
|
|
|
lockmode,
|
|
|
|
LockWaitBlock,
|
|
|
|
false /* don't follow updates */ ,
|
|
|
|
&buf, &hufd);
|
|
|
|
/* the tuple slot already has the buffer pinned */
|
|
|
|
ReleaseBuffer(buf);
|
|
|
|
|
|
|
|
PopActiveSnapshot();
|
|
|
|
|
|
|
|
switch (res)
|
|
|
|
{
|
|
|
|
case HeapTupleMayBeUpdated:
|
|
|
|
break;
|
|
|
|
case HeapTupleUpdated:
|
|
|
|
/* XXX: Improve handling here */
|
Raise error when affecting tuple moved into different partition.
When an update moves a row between partitions (supported since
2f178441044b), our normal logic for following update chains in READ
COMMITTED mode doesn't work anymore. Cross partition updates are
modeled as an delete from the old and insert into the new
partition. No ctid chain exists across partitions, and there's no
convenient space to introduce that link.
Not throwing an error in a partitioned context when one would have
been thrown without partitioning is obviously problematic. This commit
introduces infrastructure to detect when a tuple has been moved, not
just plainly deleted. That allows to throw an error when encountering
a deletion that's actually a move, while attempting to following a
ctid chain.
The row deleted as part of a cross partition update is marked by
pointing it's t_ctid to an invalid block, instead of self as a normal
update would. That was deemed to be the least invasive and most
future proof way to represent the knowledge, given how few infomask
bits are there to be recycled (there's also some locking issues with
using infomask bits).
External code following ctid chains should be updated to check for
moved tuples. The most likely consequence of not doing so is a missed
error.
Author: Amul Sul, editorialized by me
Reviewed-By: Amit Kapila, Pavan Deolasee, Andres Freund, Robert Haas
Discussion: http://postgr.es/m/CAAJ_b95PkwojoYfz0bzXU8OokcTVGzN6vYGCNVUukeUDrnF3dw@mail.gmail.com
8 years ago
|
|
|
if (ItemPointerIndicatesMovedPartitions(&hufd.ctid))
|
|
|
|
ereport(LOG,
|
|
|
|
(errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
|
|
|
|
errmsg("tuple to be locked was already moved to another partition due to concurrent update, retrying")));
|
|
|
|
else
|
|
|
|
ereport(LOG,
|
|
|
|
(errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
|
|
|
|
errmsg("concurrent update, retrying")));
|
|
|
|
goto retry;
|
|
|
|
case HeapTupleInvisible:
|
|
|
|
elog(ERROR, "attempted to lock invisible tuple");
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
elog(ERROR, "unexpected heap_lock_tuple status: %u", res);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
tableam: Add and use scan APIs.
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:
1) Heap scans need to be generalized into table scans. Do this by
introducing TableScanDesc, which will be the "base class" for
individual AMs. This contains the AM independent fields from
HeapScanDesc.
The previous heap_{beginscan,rescan,endscan} et al. have been
replaced with a table_ version.
There's no direct replacement for heap_getnext(), as that returned
a HeapTuple, which is undesirable for a other AMs. Instead there's
table_scan_getnextslot(). But note that heap_getnext() lives on,
it's still used widely to access catalog tables.
This is achieved by new scan_begin, scan_end, scan_rescan,
scan_getnextslot callbacks.
2) The portion of parallel scans that's shared between backends need
to be able to do so without the user doing per-AM work. To achieve
that new parallelscan_{estimate, initialize, reinitialize}
callbacks are introduced, which operate on a new
ParallelTableScanDesc, which again can be subclassed by AMs.
As it is likely that several AMs are going to be block oriented,
block oriented callbacks that can be shared between such AMs are
provided and used by heap. table_block_parallelscan_{estimate,
intiialize, reinitialize} as callbacks, and
table_block_parallelscan_{nextpage, init} for use in AMs. These
operate on a ParallelBlockTableScanDesc.
3) Index scans need to be able to access tables to return a tuple, and
there needs to be state across individual accesses to the heap to
store state like buffers. That's now handled by introducing a
sort-of-scan IndexFetchTable, which again is intended to be
subclassed by individual AMs (for heap IndexFetchHeap).
The relevant callbacks for an AM are index_fetch_{end, begin,
reset} to create the necessary state, and index_fetch_tuple to
retrieve an indexed tuple. Note that index_fetch_tuple
implementations need to be smarter than just blindly fetching the
tuples for AMs that have optimizations similar to heap's HOT - the
currently alive tuple in the update chain needs to be fetched if
appropriate.
Similar to table_scan_getnextslot(), it's undesirable to continue
to return HeapTuples. Thus index_fetch_heap (might want to rename
that later) now accepts a slot as an argument. Core code doesn't
have a lot of call sites performing index scans without going
through the systable_* API (in contrast to loads of heap_getnext
calls and working directly with HeapTuples).
Index scans now store the result of a search in
IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
target is not generally a HeapTuple anymore that seems cleaner.
To be able to sensible adapt code to use the above, two further
callbacks have been introduced:
a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
slots capable of holding a tuple of the AMs
type. table_slot_callbacks() and table_slot_create() are based
upon that, but have additional logic to deal with views, foreign
tables, etc.
While this change could have been done separately, nearly all the
call sites that needed to be adapted for the rest of this commit
also would have been needed to be adapted for
table_slot_callbacks(), making separation not worthwhile.
b) tuple_satisfies_snapshot checks whether the tuple in a slot is
currently visible according to a snapshot. That's required as a few
places now don't have a buffer + HeapTuple around, but a
slot (which in heap's case internally has that information).
Additionally a few infrastructure changes were needed:
I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
internally uses a slot to keep track of tuples. While
systable_getnext() still returns HeapTuples, and will so for the
foreseeable future, the index API (see 1) above) now only deals with
slots.
The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.
Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
7 years ago
|
|
|
table_endscan(scan);
|
|
|
|
ExecDropSingleTupleTableSlot(scanslot);
|
|
|
|
|
|
|
|
return found;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Insert tuple represented in the slot to the relation, update the indexes,
|
|
|
|
* and execute any constraints and per-row triggers.
|
|
|
|
*
|
|
|
|
* Caller is responsible for opening the indexes.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
ExecSimpleRelationInsert(EState *estate, TupleTableSlot *slot)
|
|
|
|
{
|
|
|
|
bool skip_tuple = false;
|
|
|
|
HeapTuple tuple;
|
|
|
|
ResultRelInfo *resultRelInfo = estate->es_result_relation_info;
|
|
|
|
Relation rel = resultRelInfo->ri_RelationDesc;
|
|
|
|
|
|
|
|
/* For now we support only tables. */
|
|
|
|
Assert(rel->rd_rel->relkind == RELKIND_RELATION);
|
|
|
|
|
|
|
|
CheckCmdReplicaIdentity(rel, CMD_INSERT);
|
|
|
|
|
|
|
|
/* BEFORE ROW INSERT Triggers */
|
|
|
|
if (resultRelInfo->ri_TrigDesc &&
|
|
|
|
resultRelInfo->ri_TrigDesc->trig_insert_before_row)
|
|
|
|
{
|
|
|
|
if (!ExecBRInsertTriggers(estate, resultRelInfo, slot))
|
|
|
|
skip_tuple = true; /* "do nothing" */
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!skip_tuple)
|
|
|
|
{
|
|
|
|
List *recheckIndexes = NIL;
|
|
|
|
|
|
|
|
/* Check the constraints of the tuple */
|
|
|
|
if (rel->rd_att->constr)
|
|
|
|
ExecConstraints(resultRelInfo, slot, estate);
|
|
|
|
if (resultRelInfo->ri_PartitionCheck)
|
|
|
|
ExecPartitionCheck(resultRelInfo, slot, estate, true);
|
|
|
|
|
|
|
|
/* Materialize slot into a tuple that we can scribble upon. */
|
Rejigger materializing and fetching a HeapTuple from a slot.
Previously materializing a slot always returned a HeapTuple. As
current work aims to reduce the reliance on HeapTuples (so other
storage systems can work efficiently), that needs to change. Thus
split the tasks of materializing a slot (i.e. making it independent
from the underlying storage / other memory contexts) from fetching a
HeapTuple from the slot. For brevity, allow to fetch a HeapTuple from
a slot and materializing the slot at the same time, controlled by a
parameter.
For now some callers of ExecFetchSlotHeapTuple, with materialize =
true, expect that changes to the heap tuple will be reflected in the
underlying slot. Those places will be adapted in due course, so while
not pretty, that's OK for now.
Also rename ExecFetchSlotTuple to ExecFetchSlotHeapTupleDatum and
ExecFetchSlotTupleDatum to ExecFetchSlotHeapTupleDatum, as it's likely
that future storage methods will need similar methods. There already
is ExecFetchSlotMinimalTuple, so the new names make the naming scheme
more coherent.
Author: Ashutosh Bapat and Andres Freund, with changes by Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
7 years ago
|
|
|
tuple = ExecFetchSlotHeapTuple(slot, true, NULL);
|
|
|
|
|
|
|
|
/* OK, store the tuple and create index entries for it */
|
|
|
|
simple_heap_insert(rel, tuple);
|
Store table oid and tuple's tid in tuple slots directly.
After the introduction of tuple table slots all table AMs need to
support returning the table oid of the tuple stored in a slot created
by said AM. It does not make sense to re-implement that in every AM,
therefore move handling of table OIDs into the TupleTableSlot
structure itself. It's possible that we, at a later date, might want
to get rid of HeapTupleData.t_tableOid entirely, but doing so before
the abstractions for table AMs are integrated turns out to be too
hard, so delay that for now.
Similarly, every AM needs to support the concept of a tuple
identifier (tid / item pointer) for its tuples. It's quite possible
that we'll generalize the exact form of a tid at a future point (to
allow for things like index organized tables), but for now many parts
of the code know about tids, so there's not much point in abstracting
tids away. Therefore also move into slot (rather than providing API to
set/get the tid associated with the tuple in a slot).
Once table AM includes insert/updating/deleting tuples, the
responsibility to set the correct tid after such an action will move
into that. After that change, code doing such modifications, should
not have to deal with HeapTuples directly anymore.
Author: Andres Freund, Haribabu Kommi and Ashutosh Bapat
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
7 years ago
|
|
|
ItemPointerCopy(&tuple->t_self, &slot->tts_tid);
|
|
|
|
|
|
|
|
if (resultRelInfo->ri_NumIndices > 0)
|
|
|
|
recheckIndexes = ExecInsertIndexTuples(slot, &(tuple->t_self),
|
|
|
|
estate, false, NULL,
|
|
|
|
NIL);
|
|
|
|
|
|
|
|
/* AFTER ROW INSERT Triggers */
|
|
|
|
ExecARInsertTriggers(estate, resultRelInfo, slot,
|
|
|
|
recheckIndexes, NULL);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* XXX we should in theory pass a TransitionCaptureState object to the
|
|
|
|
* above to capture transition tuples, but after statement triggers
|
|
|
|
* don't actually get fired by replication yet anyway
|
|
|
|
*/
|
|
|
|
|
|
|
|
list_free(recheckIndexes);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Find the searchslot tuple and update it with data in the slot,
|
|
|
|
* update the indexes, and execute any constraints and per-row triggers.
|
|
|
|
*
|
|
|
|
* Caller is responsible for opening the indexes.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
ExecSimpleRelationUpdate(EState *estate, EPQState *epqstate,
|
|
|
|
TupleTableSlot *searchslot, TupleTableSlot *slot)
|
|
|
|
{
|
|
|
|
bool skip_tuple = false;
|
|
|
|
HeapTuple tuple;
|
|
|
|
ResultRelInfo *resultRelInfo = estate->es_result_relation_info;
|
|
|
|
Relation rel = resultRelInfo->ri_RelationDesc;
|
Make TupleTableSlots extensible, finish split of existing slot type.
This commit completes the work prepared in 1a0586de36, splitting the
old TupleTableSlot implementation (which could store buffer, heap,
minimal and virtual slots) into four different slot types. As
described in the aforementioned commit, this is done with the goal of
making tuple table slots extensible, to allow for pluggable table
access methods.
To achieve runtime extensibility for TupleTableSlots, operations on
slots that can differ between types of slots are performed using the
TupleTableSlotOps struct provided at slot creation time. That
includes information from the size of TupleTableSlot struct to be
allocated, initialization, deforming etc. See the struct's definition
for more detailed information about callbacks TupleTableSlotOps.
I decided to rename TTSOpsBufferTuple to TTSOpsBufferHeapTuple and
ExecCopySlotTuple to ExecCopySlotHeapTuple, as that seems more
consistent with other naming introduced in recent patches.
There's plenty optimization potential in the slot implementation, but
according to benchmarking the state after this commit has similar
performance characteristics to before this set of changes, which seems
sufficient.
There's a few changes in execReplication.c that currently need to poke
through the slot abstraction, that'll be repaired once the pluggable
storage patchset provides the necessary infrastructure.
Author: Andres Freund and Ashutosh Bapat, with changes by Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
7 years ago
|
|
|
HeapTupleTableSlot *hsearchslot = (HeapTupleTableSlot *)searchslot;
|
|
|
|
|
tableam: Add and use scan APIs.
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:
1) Heap scans need to be generalized into table scans. Do this by
introducing TableScanDesc, which will be the "base class" for
individual AMs. This contains the AM independent fields from
HeapScanDesc.
The previous heap_{beginscan,rescan,endscan} et al. have been
replaced with a table_ version.
There's no direct replacement for heap_getnext(), as that returned
a HeapTuple, which is undesirable for a other AMs. Instead there's
table_scan_getnextslot(). But note that heap_getnext() lives on,
it's still used widely to access catalog tables.
This is achieved by new scan_begin, scan_end, scan_rescan,
scan_getnextslot callbacks.
2) The portion of parallel scans that's shared between backends need
to be able to do so without the user doing per-AM work. To achieve
that new parallelscan_{estimate, initialize, reinitialize}
callbacks are introduced, which operate on a new
ParallelTableScanDesc, which again can be subclassed by AMs.
As it is likely that several AMs are going to be block oriented,
block oriented callbacks that can be shared between such AMs are
provided and used by heap. table_block_parallelscan_{estimate,
intiialize, reinitialize} as callbacks, and
table_block_parallelscan_{nextpage, init} for use in AMs. These
operate on a ParallelBlockTableScanDesc.
3) Index scans need to be able to access tables to return a tuple, and
there needs to be state across individual accesses to the heap to
store state like buffers. That's now handled by introducing a
sort-of-scan IndexFetchTable, which again is intended to be
subclassed by individual AMs (for heap IndexFetchHeap).
The relevant callbacks for an AM are index_fetch_{end, begin,
reset} to create the necessary state, and index_fetch_tuple to
retrieve an indexed tuple. Note that index_fetch_tuple
implementations need to be smarter than just blindly fetching the
tuples for AMs that have optimizations similar to heap's HOT - the
currently alive tuple in the update chain needs to be fetched if
appropriate.
Similar to table_scan_getnextslot(), it's undesirable to continue
to return HeapTuples. Thus index_fetch_heap (might want to rename
that later) now accepts a slot as an argument. Core code doesn't
have a lot of call sites performing index scans without going
through the systable_* API (in contrast to loads of heap_getnext
calls and working directly with HeapTuples).
Index scans now store the result of a search in
IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
target is not generally a HeapTuple anymore that seems cleaner.
To be able to sensible adapt code to use the above, two further
callbacks have been introduced:
a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
slots capable of holding a tuple of the AMs
type. table_slot_callbacks() and table_slot_create() are based
upon that, but have additional logic to deal with views, foreign
tables, etc.
While this change could have been done separately, nearly all the
call sites that needed to be adapted for the rest of this commit
also would have been needed to be adapted for
table_slot_callbacks(), making separation not worthwhile.
b) tuple_satisfies_snapshot checks whether the tuple in a slot is
currently visible according to a snapshot. That's required as a few
places now don't have a buffer + HeapTuple around, but a
slot (which in heap's case internally has that information).
Additionally a few infrastructure changes were needed:
I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
internally uses a slot to keep track of tuples. While
systable_getnext() still returns HeapTuples, and will so for the
foreseeable future, the index API (see 1) above) now only deals with
slots.
The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.
Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
7 years ago
|
|
|
/* We expect the searchslot to contain a heap tuple. */
|
Make TupleTableSlots extensible, finish split of existing slot type.
This commit completes the work prepared in 1a0586de36, splitting the
old TupleTableSlot implementation (which could store buffer, heap,
minimal and virtual slots) into four different slot types. As
described in the aforementioned commit, this is done with the goal of
making tuple table slots extensible, to allow for pluggable table
access methods.
To achieve runtime extensibility for TupleTableSlots, operations on
slots that can differ between types of slots are performed using the
TupleTableSlotOps struct provided at slot creation time. That
includes information from the size of TupleTableSlot struct to be
allocated, initialization, deforming etc. See the struct's definition
for more detailed information about callbacks TupleTableSlotOps.
I decided to rename TTSOpsBufferTuple to TTSOpsBufferHeapTuple and
ExecCopySlotTuple to ExecCopySlotHeapTuple, as that seems more
consistent with other naming introduced in recent patches.
There's plenty optimization potential in the slot implementation, but
according to benchmarking the state after this commit has similar
performance characteristics to before this set of changes, which seems
sufficient.
There's a few changes in execReplication.c that currently need to poke
through the slot abstraction, that'll be repaired once the pluggable
storage patchset provides the necessary infrastructure.
Author: Andres Freund and Ashutosh Bapat, with changes by Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
7 years ago
|
|
|
Assert(TTS_IS_HEAPTUPLE(searchslot) || TTS_IS_BUFFERTUPLE(searchslot));
|
|
|
|
|
|
|
|
/* For now we support only tables. */
|
|
|
|
Assert(rel->rd_rel->relkind == RELKIND_RELATION);
|
|
|
|
|
|
|
|
CheckCmdReplicaIdentity(rel, CMD_UPDATE);
|
|
|
|
|
|
|
|
/* BEFORE ROW UPDATE Triggers */
|
|
|
|
if (resultRelInfo->ri_TrigDesc &&
|
|
|
|
resultRelInfo->ri_TrigDesc->trig_update_before_row)
|
|
|
|
{
|
|
|
|
if (!ExecBRUpdateTriggers(estate, epqstate, resultRelInfo,
|
|
|
|
&hsearchslot->tuple->t_self,
|
|
|
|
NULL, slot))
|
|
|
|
skip_tuple = true; /* "do nothing" */
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!skip_tuple)
|
|
|
|
{
|
|
|
|
List *recheckIndexes = NIL;
|
|
|
|
|
|
|
|
/* Check the constraints of the tuple */
|
|
|
|
if (rel->rd_att->constr)
|
|
|
|
ExecConstraints(resultRelInfo, slot, estate);
|
|
|
|
if (resultRelInfo->ri_PartitionCheck)
|
|
|
|
ExecPartitionCheck(resultRelInfo, slot, estate, true);
|
|
|
|
|
|
|
|
/* Materialize slot into a tuple that we can scribble upon. */
|
Rejigger materializing and fetching a HeapTuple from a slot.
Previously materializing a slot always returned a HeapTuple. As
current work aims to reduce the reliance on HeapTuples (so other
storage systems can work efficiently), that needs to change. Thus
split the tasks of materializing a slot (i.e. making it independent
from the underlying storage / other memory contexts) from fetching a
HeapTuple from the slot. For brevity, allow to fetch a HeapTuple from
a slot and materializing the slot at the same time, controlled by a
parameter.
For now some callers of ExecFetchSlotHeapTuple, with materialize =
true, expect that changes to the heap tuple will be reflected in the
underlying slot. Those places will be adapted in due course, so while
not pretty, that's OK for now.
Also rename ExecFetchSlotTuple to ExecFetchSlotHeapTupleDatum and
ExecFetchSlotTupleDatum to ExecFetchSlotHeapTupleDatum, as it's likely
that future storage methods will need similar methods. There already
is ExecFetchSlotMinimalTuple, so the new names make the naming scheme
more coherent.
Author: Ashutosh Bapat and Andres Freund, with changes by Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
7 years ago
|
|
|
tuple = ExecFetchSlotHeapTuple(slot, true, NULL);
|
|
|
|
|
|
|
|
/* OK, update the tuple and index entries for it */
|
tableam: Add and use scan APIs.
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:
1) Heap scans need to be generalized into table scans. Do this by
introducing TableScanDesc, which will be the "base class" for
individual AMs. This contains the AM independent fields from
HeapScanDesc.
The previous heap_{beginscan,rescan,endscan} et al. have been
replaced with a table_ version.
There's no direct replacement for heap_getnext(), as that returned
a HeapTuple, which is undesirable for a other AMs. Instead there's
table_scan_getnextslot(). But note that heap_getnext() lives on,
it's still used widely to access catalog tables.
This is achieved by new scan_begin, scan_end, scan_rescan,
scan_getnextslot callbacks.
2) The portion of parallel scans that's shared between backends need
to be able to do so without the user doing per-AM work. To achieve
that new parallelscan_{estimate, initialize, reinitialize}
callbacks are introduced, which operate on a new
ParallelTableScanDesc, which again can be subclassed by AMs.
As it is likely that several AMs are going to be block oriented,
block oriented callbacks that can be shared between such AMs are
provided and used by heap. table_block_parallelscan_{estimate,
intiialize, reinitialize} as callbacks, and
table_block_parallelscan_{nextpage, init} for use in AMs. These
operate on a ParallelBlockTableScanDesc.
3) Index scans need to be able to access tables to return a tuple, and
there needs to be state across individual accesses to the heap to
store state like buffers. That's now handled by introducing a
sort-of-scan IndexFetchTable, which again is intended to be
subclassed by individual AMs (for heap IndexFetchHeap).
The relevant callbacks for an AM are index_fetch_{end, begin,
reset} to create the necessary state, and index_fetch_tuple to
retrieve an indexed tuple. Note that index_fetch_tuple
implementations need to be smarter than just blindly fetching the
tuples for AMs that have optimizations similar to heap's HOT - the
currently alive tuple in the update chain needs to be fetched if
appropriate.
Similar to table_scan_getnextslot(), it's undesirable to continue
to return HeapTuples. Thus index_fetch_heap (might want to rename
that later) now accepts a slot as an argument. Core code doesn't
have a lot of call sites performing index scans without going
through the systable_* API (in contrast to loads of heap_getnext
calls and working directly with HeapTuples).
Index scans now store the result of a search in
IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
target is not generally a HeapTuple anymore that seems cleaner.
To be able to sensible adapt code to use the above, two further
callbacks have been introduced:
a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
slots capable of holding a tuple of the AMs
type. table_slot_callbacks() and table_slot_create() are based
upon that, but have additional logic to deal with views, foreign
tables, etc.
While this change could have been done separately, nearly all the
call sites that needed to be adapted for the rest of this commit
also would have been needed to be adapted for
table_slot_callbacks(), making separation not worthwhile.
b) tuple_satisfies_snapshot checks whether the tuple in a slot is
currently visible according to a snapshot. That's required as a few
places now don't have a buffer + HeapTuple around, but a
slot (which in heap's case internally has that information).
Additionally a few infrastructure changes were needed:
I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
internally uses a slot to keep track of tuples. While
systable_getnext() still returns HeapTuples, and will so for the
foreseeable future, the index API (see 1) above) now only deals with
slots.
The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.
Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
7 years ago
|
|
|
simple_heap_update(rel, &hsearchslot->tuple->t_self, tuple);
|
|
|
|
ItemPointerCopy(&tuple->t_self, &slot->tts_tid);
|
|
|
|
|
|
|
|
if (resultRelInfo->ri_NumIndices > 0 &&
|
tableam: Add and use scan APIs.
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:
1) Heap scans need to be generalized into table scans. Do this by
introducing TableScanDesc, which will be the "base class" for
individual AMs. This contains the AM independent fields from
HeapScanDesc.
The previous heap_{beginscan,rescan,endscan} et al. have been
replaced with a table_ version.
There's no direct replacement for heap_getnext(), as that returned
a HeapTuple, which is undesirable for a other AMs. Instead there's
table_scan_getnextslot(). But note that heap_getnext() lives on,
it's still used widely to access catalog tables.
This is achieved by new scan_begin, scan_end, scan_rescan,
scan_getnextslot callbacks.
2) The portion of parallel scans that's shared between backends need
to be able to do so without the user doing per-AM work. To achieve
that new parallelscan_{estimate, initialize, reinitialize}
callbacks are introduced, which operate on a new
ParallelTableScanDesc, which again can be subclassed by AMs.
As it is likely that several AMs are going to be block oriented,
block oriented callbacks that can be shared between such AMs are
provided and used by heap. table_block_parallelscan_{estimate,
intiialize, reinitialize} as callbacks, and
table_block_parallelscan_{nextpage, init} for use in AMs. These
operate on a ParallelBlockTableScanDesc.
3) Index scans need to be able to access tables to return a tuple, and
there needs to be state across individual accesses to the heap to
store state like buffers. That's now handled by introducing a
sort-of-scan IndexFetchTable, which again is intended to be
subclassed by individual AMs (for heap IndexFetchHeap).
The relevant callbacks for an AM are index_fetch_{end, begin,
reset} to create the necessary state, and index_fetch_tuple to
retrieve an indexed tuple. Note that index_fetch_tuple
implementations need to be smarter than just blindly fetching the
tuples for AMs that have optimizations similar to heap's HOT - the
currently alive tuple in the update chain needs to be fetched if
appropriate.
Similar to table_scan_getnextslot(), it's undesirable to continue
to return HeapTuples. Thus index_fetch_heap (might want to rename
that later) now accepts a slot as an argument. Core code doesn't
have a lot of call sites performing index scans without going
through the systable_* API (in contrast to loads of heap_getnext
calls and working directly with HeapTuples).
Index scans now store the result of a search in
IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
target is not generally a HeapTuple anymore that seems cleaner.
To be able to sensible adapt code to use the above, two further
callbacks have been introduced:
a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
slots capable of holding a tuple of the AMs
type. table_slot_callbacks() and table_slot_create() are based
upon that, but have additional logic to deal with views, foreign
tables, etc.
While this change could have been done separately, nearly all the
call sites that needed to be adapted for the rest of this commit
also would have been needed to be adapted for
table_slot_callbacks(), making separation not worthwhile.
b) tuple_satisfies_snapshot checks whether the tuple in a slot is
currently visible according to a snapshot. That's required as a few
places now don't have a buffer + HeapTuple around, but a
slot (which in heap's case internally has that information).
Additionally a few infrastructure changes were needed:
I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
internally uses a slot to keep track of tuples. While
systable_getnext() still returns HeapTuples, and will so for the
foreseeable future, the index API (see 1) above) now only deals with
slots.
The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.
Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
7 years ago
|
|
|
!HeapTupleIsHeapOnly(tuple))
|
|
|
|
recheckIndexes = ExecInsertIndexTuples(slot, &(tuple->t_self),
|
|
|
|
estate, false, NULL,
|
|
|
|
NIL);
|
|
|
|
|
|
|
|
/* AFTER ROW UPDATE Triggers */
|
|
|
|
ExecARUpdateTriggers(estate, resultRelInfo,
|
|
|
|
&(tuple->t_self),
|
|
|
|
NULL, slot,
|
Make TupleTableSlots extensible, finish split of existing slot type.
This commit completes the work prepared in 1a0586de36, splitting the
old TupleTableSlot implementation (which could store buffer, heap,
minimal and virtual slots) into four different slot types. As
described in the aforementioned commit, this is done with the goal of
making tuple table slots extensible, to allow for pluggable table
access methods.
To achieve runtime extensibility for TupleTableSlots, operations on
slots that can differ between types of slots are performed using the
TupleTableSlotOps struct provided at slot creation time. That
includes information from the size of TupleTableSlot struct to be
allocated, initialization, deforming etc. See the struct's definition
for more detailed information about callbacks TupleTableSlotOps.
I decided to rename TTSOpsBufferTuple to TTSOpsBufferHeapTuple and
ExecCopySlotTuple to ExecCopySlotHeapTuple, as that seems more
consistent with other naming introduced in recent patches.
There's plenty optimization potential in the slot implementation, but
according to benchmarking the state after this commit has similar
performance characteristics to before this set of changes, which seems
sufficient.
There's a few changes in execReplication.c that currently need to poke
through the slot abstraction, that'll be repaired once the pluggable
storage patchset provides the necessary infrastructure.
Author: Andres Freund and Ashutosh Bapat, with changes by Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
7 years ago
|
|
|
recheckIndexes, NULL);
|
|
|
|
|
|
|
|
list_free(recheckIndexes);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Find the searchslot tuple and delete it, and execute any constraints
|
|
|
|
* and per-row triggers.
|
|
|
|
*
|
|
|
|
* Caller is responsible for opening the indexes.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
ExecSimpleRelationDelete(EState *estate, EPQState *epqstate,
|
|
|
|
TupleTableSlot *searchslot)
|
|
|
|
{
|
|
|
|
bool skip_tuple = false;
|
|
|
|
ResultRelInfo *resultRelInfo = estate->es_result_relation_info;
|
|
|
|
Relation rel = resultRelInfo->ri_RelationDesc;
|
Make TupleTableSlots extensible, finish split of existing slot type.
This commit completes the work prepared in 1a0586de36, splitting the
old TupleTableSlot implementation (which could store buffer, heap,
minimal and virtual slots) into four different slot types. As
described in the aforementioned commit, this is done with the goal of
making tuple table slots extensible, to allow for pluggable table
access methods.
To achieve runtime extensibility for TupleTableSlots, operations on
slots that can differ between types of slots are performed using the
TupleTableSlotOps struct provided at slot creation time. That
includes information from the size of TupleTableSlot struct to be
allocated, initialization, deforming etc. See the struct's definition
for more detailed information about callbacks TupleTableSlotOps.
I decided to rename TTSOpsBufferTuple to TTSOpsBufferHeapTuple and
ExecCopySlotTuple to ExecCopySlotHeapTuple, as that seems more
consistent with other naming introduced in recent patches.
There's plenty optimization potential in the slot implementation, but
according to benchmarking the state after this commit has similar
performance characteristics to before this set of changes, which seems
sufficient.
There's a few changes in execReplication.c that currently need to poke
through the slot abstraction, that'll be repaired once the pluggable
storage patchset provides the necessary infrastructure.
Author: Andres Freund and Ashutosh Bapat, with changes by Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
7 years ago
|
|
|
HeapTupleTableSlot *hsearchslot = (HeapTupleTableSlot *)searchslot;
|
|
|
|
|
Make TupleTableSlots extensible, finish split of existing slot type.
This commit completes the work prepared in 1a0586de36, splitting the
old TupleTableSlot implementation (which could store buffer, heap,
minimal and virtual slots) into four different slot types. As
described in the aforementioned commit, this is done with the goal of
making tuple table slots extensible, to allow for pluggable table
access methods.
To achieve runtime extensibility for TupleTableSlots, operations on
slots that can differ between types of slots are performed using the
TupleTableSlotOps struct provided at slot creation time. That
includes information from the size of TupleTableSlot struct to be
allocated, initialization, deforming etc. See the struct's definition
for more detailed information about callbacks TupleTableSlotOps.
I decided to rename TTSOpsBufferTuple to TTSOpsBufferHeapTuple and
ExecCopySlotTuple to ExecCopySlotHeapTuple, as that seems more
consistent with other naming introduced in recent patches.
There's plenty optimization potential in the slot implementation, but
according to benchmarking the state after this commit has similar
performance characteristics to before this set of changes, which seems
sufficient.
There's a few changes in execReplication.c that currently need to poke
through the slot abstraction, that'll be repaired once the pluggable
storage patchset provides the necessary infrastructure.
Author: Andres Freund and Ashutosh Bapat, with changes by Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
7 years ago
|
|
|
/* For now we support only tables and heap tuples. */
|
|
|
|
Assert(rel->rd_rel->relkind == RELKIND_RELATION);
|
Make TupleTableSlots extensible, finish split of existing slot type.
This commit completes the work prepared in 1a0586de36, splitting the
old TupleTableSlot implementation (which could store buffer, heap,
minimal and virtual slots) into four different slot types. As
described in the aforementioned commit, this is done with the goal of
making tuple table slots extensible, to allow for pluggable table
access methods.
To achieve runtime extensibility for TupleTableSlots, operations on
slots that can differ between types of slots are performed using the
TupleTableSlotOps struct provided at slot creation time. That
includes information from the size of TupleTableSlot struct to be
allocated, initialization, deforming etc. See the struct's definition
for more detailed information about callbacks TupleTableSlotOps.
I decided to rename TTSOpsBufferTuple to TTSOpsBufferHeapTuple and
ExecCopySlotTuple to ExecCopySlotHeapTuple, as that seems more
consistent with other naming introduced in recent patches.
There's plenty optimization potential in the slot implementation, but
according to benchmarking the state after this commit has similar
performance characteristics to before this set of changes, which seems
sufficient.
There's a few changes in execReplication.c that currently need to poke
through the slot abstraction, that'll be repaired once the pluggable
storage patchset provides the necessary infrastructure.
Author: Andres Freund and Ashutosh Bapat, with changes by Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
7 years ago
|
|
|
Assert(TTS_IS_HEAPTUPLE(searchslot) || TTS_IS_BUFFERTUPLE(searchslot));
|
|
|
|
|
|
|
|
CheckCmdReplicaIdentity(rel, CMD_DELETE);
|
|
|
|
|
|
|
|
/* BEFORE ROW DELETE Triggers */
|
|
|
|
if (resultRelInfo->ri_TrigDesc &&
|
|
|
|
resultRelInfo->ri_TrigDesc->trig_delete_before_row)
|
|
|
|
{
|
|
|
|
skip_tuple = !ExecBRDeleteTriggers(estate, epqstate, resultRelInfo,
|
|
|
|
&hsearchslot->tuple->t_self,
|
|
|
|
NULL, NULL);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!skip_tuple)
|
|
|
|
{
|
|
|
|
List *recheckIndexes = NIL;
|
|
|
|
|
|
|
|
/* OK, delete the tuple */
|
Make TupleTableSlots extensible, finish split of existing slot type.
This commit completes the work prepared in 1a0586de36, splitting the
old TupleTableSlot implementation (which could store buffer, heap,
minimal and virtual slots) into four different slot types. As
described in the aforementioned commit, this is done with the goal of
making tuple table slots extensible, to allow for pluggable table
access methods.
To achieve runtime extensibility for TupleTableSlots, operations on
slots that can differ between types of slots are performed using the
TupleTableSlotOps struct provided at slot creation time. That
includes information from the size of TupleTableSlot struct to be
allocated, initialization, deforming etc. See the struct's definition
for more detailed information about callbacks TupleTableSlotOps.
I decided to rename TTSOpsBufferTuple to TTSOpsBufferHeapTuple and
ExecCopySlotTuple to ExecCopySlotHeapTuple, as that seems more
consistent with other naming introduced in recent patches.
There's plenty optimization potential in the slot implementation, but
according to benchmarking the state after this commit has similar
performance characteristics to before this set of changes, which seems
sufficient.
There's a few changes in execReplication.c that currently need to poke
through the slot abstraction, that'll be repaired once the pluggable
storage patchset provides the necessary infrastructure.
Author: Andres Freund and Ashutosh Bapat, with changes by Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
7 years ago
|
|
|
simple_heap_delete(rel, &hsearchslot->tuple->t_self);
|
|
|
|
|
|
|
|
/* AFTER ROW DELETE Triggers */
|
|
|
|
ExecARDeleteTriggers(estate, resultRelInfo,
|
Make TupleTableSlots extensible, finish split of existing slot type.
This commit completes the work prepared in 1a0586de36, splitting the
old TupleTableSlot implementation (which could store buffer, heap,
minimal and virtual slots) into four different slot types. As
described in the aforementioned commit, this is done with the goal of
making tuple table slots extensible, to allow for pluggable table
access methods.
To achieve runtime extensibility for TupleTableSlots, operations on
slots that can differ between types of slots are performed using the
TupleTableSlotOps struct provided at slot creation time. That
includes information from the size of TupleTableSlot struct to be
allocated, initialization, deforming etc. See the struct's definition
for more detailed information about callbacks TupleTableSlotOps.
I decided to rename TTSOpsBufferTuple to TTSOpsBufferHeapTuple and
ExecCopySlotTuple to ExecCopySlotHeapTuple, as that seems more
consistent with other naming introduced in recent patches.
There's plenty optimization potential in the slot implementation, but
according to benchmarking the state after this commit has similar
performance characteristics to before this set of changes, which seems
sufficient.
There's a few changes in execReplication.c that currently need to poke
through the slot abstraction, that'll be repaired once the pluggable
storage patchset provides the necessary infrastructure.
Author: Andres Freund and Ashutosh Bapat, with changes by Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
7 years ago
|
|
|
&hsearchslot->tuple->t_self, NULL, NULL);
|
|
|
|
|
|
|
|
list_free(recheckIndexes);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check if command can be executed with current replica identity.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
CheckCmdReplicaIdentity(Relation rel, CmdType cmd)
|
|
|
|
{
|
|
|
|
PublicationActions *pubactions;
|
|
|
|
|
|
|
|
/* We only need to do checks for UPDATE and DELETE. */
|
|
|
|
if (cmd != CMD_UPDATE && cmd != CMD_DELETE)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* If relation has replica identity we are always good. */
|
|
|
|
if (rel->rd_rel->relreplident == REPLICA_IDENTITY_FULL ||
|
|
|
|
OidIsValid(RelationGetReplicaIndex(rel)))
|
|
|
|
return;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is either UPDATE OR DELETE and there is no replica identity.
|
|
|
|
*
|
|
|
|
* Check if the table publishes UPDATES or DELETES.
|
|
|
|
*/
|
|
|
|
pubactions = GetRelationPublicationActions(rel);
|
|
|
|
if (cmd == CMD_UPDATE && pubactions->pubupdate)
|
|
|
|
ereport(ERROR,
|
|
|
|
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
|
|
|
|
errmsg("cannot update table \"%s\" because it does not have a replica identity and publishes updates",
|
|
|
|
RelationGetRelationName(rel)),
|
|
|
|
errhint("To enable updating the table, set REPLICA IDENTITY using ALTER TABLE.")));
|
|
|
|
else if (cmd == CMD_DELETE && pubactions->pubdelete)
|
|
|
|
ereport(ERROR,
|
|
|
|
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
|
|
|
|
errmsg("cannot delete from table \"%s\" because it does not have a replica identity and publishes deletes",
|
|
|
|
RelationGetRelationName(rel)),
|
|
|
|
errhint("To enable deleting from the table, set REPLICA IDENTITY using ALTER TABLE.")));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check if we support writing into specific relkind.
|
|
|
|
*
|
|
|
|
* The nspname and relname are only needed for error reporting.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
CheckSubscriptionRelkind(char relkind, const char *nspname,
|
|
|
|
const char *relname)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* We currently only support writing to regular tables. However, give
|
|
|
|
* a more specific error for partitioned and foreign tables.
|
|
|
|
*/
|
|
|
|
if (relkind == RELKIND_PARTITIONED_TABLE)
|
|
|
|
ereport(ERROR,
|
|
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
|
|
errmsg("cannot use relation \"%s.%s\" as logical replication target",
|
|
|
|
nspname, relname),
|
|
|
|
errdetail("\"%s.%s\" is a partitioned table.",
|
|
|
|
nspname, relname)));
|
|
|
|
else if (relkind == RELKIND_FOREIGN_TABLE)
|
|
|
|
ereport(ERROR,
|
|
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
|
|
errmsg("cannot use relation \"%s.%s\" as logical replication target",
|
|
|
|
nspname, relname),
|
|
|
|
errdetail("\"%s.%s\" is a foreign table.",
|
|
|
|
nspname, relname)));
|
|
|
|
|
|
|
|
if (relkind != RELKIND_RELATION)
|
|
|
|
ereport(ERROR,
|
|
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
|
|
errmsg("cannot use relation \"%s.%s\" as logical replication target",
|
|
|
|
nspname, relname),
|
|
|
|
errdetail("\"%s.%s\" is not a table.",
|
Phase 3 of pgindent updates.
Don't move parenthesized lines to the left, even if that means they
flow past the right margin.
By default, BSD indent lines up statement continuation lines that are
within parentheses so that they start just to the right of the preceding
left parenthesis. However, traditionally, if that resulted in the
continuation line extending to the right of the desired right margin,
then indent would push it left just far enough to not overrun the margin,
if it could do so without making the continuation line start to the left of
the current statement indent. That makes for a weird mix of indentations
unless one has been completely rigid about never violating the 80-column
limit.
This behavior has been pretty universally panned by Postgres developers.
Hence, disable it with indent's new -lpl switch, so that parenthesized
lines are always lined up with the preceding left paren.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
8 years ago
|
|
|
nspname, relname)));
|
|
|
|
}
|