mirror of https://github.com/postgres/postgres
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
370 lines
10 KiB
370 lines
10 KiB
![]()
23 years ago
|
/*-------------------------------------------------------------------------
|
||
|
*
|
||
|
* execGrouping.c
|
||
|
* executor utility routines for grouping, hashing, and aggregation
|
||
|
*
|
||
|
* Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group
|
||
|
* Portions Copyright (c) 1994, Regents of the University of California
|
||
|
*
|
||
|
*
|
||
|
* IDENTIFICATION
|
||
|
* $Header: /cvsroot/pgsql/src/backend/executor/execGrouping.c,v 1.1 2003/01/10 23:54:24 tgl Exp $
|
||
|
*
|
||
|
*-------------------------------------------------------------------------
|
||
|
*/
|
||
|
#include "postgres.h"
|
||
|
|
||
|
#include "access/hash.h"
|
||
|
#include "access/heapam.h"
|
||
|
#include "executor/executor.h"
|
||
|
#include "parser/parse_oper.h"
|
||
|
#include "utils/memutils.h"
|
||
|
|
||
|
|
||
|
/*****************************************************************************
|
||
|
* Utility routines for grouping tuples together
|
||
|
*
|
||
|
* These routines actually implement SQL's notion of "distinct/not distinct".
|
||
|
* Two tuples match if they are not distinct in all the compared columns,
|
||
|
* i.e., the column values are either both null, or both non-null and equal.
|
||
|
*****************************************************************************/
|
||
|
|
||
|
/*
|
||
|
* execTuplesMatch
|
||
|
* Return true if two tuples match in all the indicated fields.
|
||
|
* This is used to detect group boundaries in nodeGroup and nodeAgg,
|
||
|
* and to decide whether two tuples are distinct or not in nodeUnique.
|
||
|
*
|
||
|
* tuple1, tuple2: the tuples to compare
|
||
|
* tupdesc: tuple descriptor applying to both tuples
|
||
|
* numCols: the number of attributes to be examined
|
||
|
* matchColIdx: array of attribute column numbers
|
||
|
* eqFunctions: array of fmgr lookup info for the equality functions to use
|
||
|
* evalContext: short-term memory context for executing the functions
|
||
|
*
|
||
|
* NB: evalContext is reset each time!
|
||
|
*/
|
||
|
bool
|
||
|
execTuplesMatch(HeapTuple tuple1,
|
||
|
HeapTuple tuple2,
|
||
|
TupleDesc tupdesc,
|
||
|
int numCols,
|
||
|
AttrNumber *matchColIdx,
|
||
|
FmgrInfo *eqfunctions,
|
||
|
MemoryContext evalContext)
|
||
|
{
|
||
|
MemoryContext oldContext;
|
||
|
bool result;
|
||
|
int i;
|
||
|
|
||
|
/* Reset and switch into the temp context. */
|
||
|
MemoryContextReset(evalContext);
|
||
|
oldContext = MemoryContextSwitchTo(evalContext);
|
||
|
|
||
|
/*
|
||
|
* We cannot report a match without checking all the fields, but we
|
||
|
* can report a non-match as soon as we find unequal fields. So,
|
||
|
* start comparing at the last field (least significant sort key).
|
||
|
* That's the most likely to be different if we are dealing with
|
||
|
* sorted input.
|
||
|
*/
|
||
|
result = true;
|
||
|
|
||
|
for (i = numCols; --i >= 0;)
|
||
|
{
|
||
|
AttrNumber att = matchColIdx[i];
|
||
|
Datum attr1,
|
||
|
attr2;
|
||
|
bool isNull1,
|
||
|
isNull2;
|
||
|
|
||
|
attr1 = heap_getattr(tuple1,
|
||
|
att,
|
||
|
tupdesc,
|
||
|
&isNull1);
|
||
|
|
||
|
attr2 = heap_getattr(tuple2,
|
||
|
att,
|
||
|
tupdesc,
|
||
|
&isNull2);
|
||
|
|
||
|
if (isNull1 != isNull2)
|
||
|
{
|
||
|
result = false; /* one null and one not; they aren't equal */
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (isNull1)
|
||
|
continue; /* both are null, treat as equal */
|
||
|
|
||
|
/* Apply the type-specific equality function */
|
||
|
|
||
|
if (!DatumGetBool(FunctionCall2(&eqfunctions[i],
|
||
|
attr1, attr2)))
|
||
|
{
|
||
|
result = false; /* they aren't equal */
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
MemoryContextSwitchTo(oldContext);
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* execTuplesMatchPrepare
|
||
|
* Look up the equality functions needed for execTuplesMatch.
|
||
|
* The result is a palloc'd array.
|
||
|
*/
|
||
|
FmgrInfo *
|
||
|
execTuplesMatchPrepare(TupleDesc tupdesc,
|
||
|
int numCols,
|
||
|
AttrNumber *matchColIdx)
|
||
|
{
|
||
|
FmgrInfo *eqfunctions = (FmgrInfo *) palloc(numCols * sizeof(FmgrInfo));
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < numCols; i++)
|
||
|
{
|
||
|
AttrNumber att = matchColIdx[i];
|
||
|
Oid typid = tupdesc->attrs[att - 1]->atttypid;
|
||
|
Oid eq_function;
|
||
|
|
||
|
eq_function = equality_oper_funcid(typid);
|
||
|
fmgr_info(eq_function, &eqfunctions[i]);
|
||
|
}
|
||
|
|
||
|
return eqfunctions;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*****************************************************************************
|
||
|
* Utility routines for hashing
|
||
|
*****************************************************************************/
|
||
|
|
||
|
/*
|
||
|
* ComputeHashFunc
|
||
|
*
|
||
|
* the hash function for hash joins (also used for hash aggregation)
|
||
|
*
|
||
|
* XXX this probably ought to be replaced with datatype-specific
|
||
|
* hash functions, such as those already implemented for hash indexes.
|
||
|
*/
|
||
|
uint32
|
||
|
ComputeHashFunc(Datum key, int typLen, bool byVal)
|
||
|
{
|
||
|
unsigned char *k;
|
||
|
|
||
|
if (byVal)
|
||
|
{
|
||
|
/*
|
||
|
* If it's a by-value data type, just hash the whole Datum value.
|
||
|
* This assumes that datatypes narrower than Datum are
|
||
|
* consistently padded (either zero-extended or sign-extended, but
|
||
|
* not random bits) to fill Datum; see the XXXGetDatum macros in
|
||
|
* postgres.h. NOTE: it would not work to do hash_any(&key, len)
|
||
|
* since this would get the wrong bytes on a big-endian machine.
|
||
|
*/
|
||
|
k = (unsigned char *) &key;
|
||
|
typLen = sizeof(Datum);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (typLen > 0)
|
||
|
{
|
||
|
/* fixed-width pass-by-reference type */
|
||
|
k = (unsigned char *) DatumGetPointer(key);
|
||
|
}
|
||
|
else if (typLen == -1)
|
||
|
{
|
||
|
/*
|
||
|
* It's a varlena type, so 'key' points to a "struct varlena".
|
||
|
* NOTE: VARSIZE returns the "real" data length plus the
|
||
|
* sizeof the "vl_len" attribute of varlena (the length
|
||
|
* information). 'key' points to the beginning of the varlena
|
||
|
* struct, so we have to use "VARDATA" to find the beginning
|
||
|
* of the "real" data. Also, we have to be careful to detoast
|
||
|
* the datum if it's toasted. (We don't worry about freeing
|
||
|
* the detoasted copy; that happens for free when the
|
||
|
* per-tuple memory context is reset in ExecHashGetBucket.)
|
||
|
*/
|
||
|
struct varlena *vkey = PG_DETOAST_DATUM(key);
|
||
|
|
||
|
typLen = VARSIZE(vkey) - VARHDRSZ;
|
||
|
k = (unsigned char *) VARDATA(vkey);
|
||
|
}
|
||
|
else if (typLen == -2)
|
||
|
{
|
||
|
/* It's a null-terminated C string */
|
||
|
typLen = strlen(DatumGetCString(key)) + 1;
|
||
|
k = (unsigned char *) DatumGetPointer(key);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
elog(ERROR, "ComputeHashFunc: Invalid typLen %d", typLen);
|
||
|
k = NULL; /* keep compiler quiet */
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return DatumGetUInt32(hash_any(k, typLen));
|
||
|
}
|
||
|
|
||
|
|
||
|
/*****************************************************************************
|
||
|
* Utility routines for all-in-memory hash tables
|
||
|
*
|
||
|
* These routines build hash tables for grouping tuples together (eg, for
|
||
|
* hash aggregation). There is one entry for each not-distinct set of tuples
|
||
|
* presented.
|
||
|
*****************************************************************************/
|
||
|
|
||
|
/*
|
||
|
* Construct an empty TupleHashTable
|
||
|
*
|
||
|
* numCols, keyColIdx: identify the tuple fields to use as lookup key
|
||
|
* eqfunctions: equality comparison functions to use
|
||
|
* nbuckets: number of buckets to make
|
||
|
* entrysize: size of each entry (at least sizeof(TupleHashEntryData))
|
||
|
* tablecxt: memory context in which to store table and table entries
|
||
|
* tempcxt: short-lived context for evaluation hash and comparison functions
|
||
|
*
|
||
|
* The eqfunctions array may be made with execTuplesMatchPrepare().
|
||
|
*
|
||
|
* Note that keyColIdx and eqfunctions must be allocated in storage that
|
||
|
* will live as long as the hashtable does.
|
||
|
*/
|
||
|
TupleHashTable
|
||
|
BuildTupleHashTable(int numCols, AttrNumber *keyColIdx,
|
||
|
FmgrInfo *eqfunctions,
|
||
|
int nbuckets, Size entrysize,
|
||
|
MemoryContext tablecxt, MemoryContext tempcxt)
|
||
|
{
|
||
|
TupleHashTable hashtable;
|
||
|
Size tabsize;
|
||
|
|
||
|
Assert(nbuckets > 0);
|
||
|
Assert(entrysize >= sizeof(TupleHashEntryData));
|
||
|
|
||
|
tabsize = sizeof(TupleHashTableData) +
|
||
|
(nbuckets - 1) * sizeof(TupleHashEntry);
|
||
|
hashtable = (TupleHashTable) MemoryContextAllocZero(tablecxt, tabsize);
|
||
|
|
||
|
hashtable->numCols = numCols;
|
||
|
hashtable->keyColIdx = keyColIdx;
|
||
|
hashtable->eqfunctions = eqfunctions;
|
||
|
hashtable->tablecxt = tablecxt;
|
||
|
hashtable->tempcxt = tempcxt;
|
||
|
hashtable->entrysize = entrysize;
|
||
|
hashtable->nbuckets = nbuckets;
|
||
|
|
||
|
return hashtable;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Find or create a hashtable entry for the tuple group containing the
|
||
|
* given tuple.
|
||
|
*
|
||
|
* On return, *isnew is true if the entry is newly created, false if it
|
||
|
* existed already. Any extra space in a new entry has been zeroed.
|
||
|
*/
|
||
|
TupleHashEntry
|
||
|
LookupTupleHashEntry(TupleHashTable hashtable, TupleTableSlot *slot,
|
||
|
bool *isnew)
|
||
|
{
|
||
|
int numCols = hashtable->numCols;
|
||
|
AttrNumber *keyColIdx = hashtable->keyColIdx;
|
||
|
HeapTuple tuple = slot->val;
|
||
|
TupleDesc tupdesc = slot->ttc_tupleDescriptor;
|
||
|
uint32 hashkey = 0;
|
||
|
int i;
|
||
|
int bucketno;
|
||
|
TupleHashEntry entry;
|
||
|
MemoryContext oldContext;
|
||
|
|
||
|
/* Need to run the hash function in short-lived context */
|
||
|
oldContext = MemoryContextSwitchTo(hashtable->tempcxt);
|
||
|
|
||
|
for (i = 0; i < numCols; i++)
|
||
|
{
|
||
|
AttrNumber att = keyColIdx[i];
|
||
|
Datum attr;
|
||
|
bool isNull;
|
||
|
|
||
|
/* rotate hashkey left 1 bit at each step */
|
||
|
hashkey = (hashkey << 1) | ((hashkey & 0x80000000) ? 1 : 0);
|
||
|
|
||
|
attr = heap_getattr(tuple, att, tupdesc, &isNull);
|
||
|
if (isNull)
|
||
|
continue; /* treat nulls as having hash key 0 */
|
||
|
hashkey ^= ComputeHashFunc(attr,
|
||
|
(int) tupdesc->attrs[att - 1]->attlen,
|
||
|
tupdesc->attrs[att - 1]->attbyval);
|
||
|
}
|
||
|
bucketno = hashkey % (uint32) hashtable->nbuckets;
|
||
|
|
||
|
for (entry = hashtable->buckets[bucketno];
|
||
|
entry != NULL;
|
||
|
entry = entry->next)
|
||
|
{
|
||
|
/* Quick check using hashkey */
|
||
|
if (entry->hashkey != hashkey)
|
||
|
continue;
|
||
|
if (execTuplesMatch(entry->firstTuple,
|
||
|
tuple,
|
||
|
tupdesc,
|
||
|
numCols, keyColIdx,
|
||
|
hashtable->eqfunctions,
|
||
|
hashtable->tempcxt))
|
||
|
{
|
||
|
MemoryContextSwitchTo(oldContext);
|
||
|
*isnew = false;
|
||
|
return entry;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Not there, so build a new one */
|
||
|
MemoryContextSwitchTo(hashtable->tablecxt);
|
||
|
|
||
|
entry = (TupleHashEntry) palloc0(hashtable->entrysize);
|
||
|
|
||
|
entry->hashkey = hashkey;
|
||
|
entry->firstTuple = heap_copytuple(tuple);
|
||
|
|
||
|
entry->next = hashtable->buckets[bucketno];
|
||
|
hashtable->buckets[bucketno] = entry;
|
||
|
|
||
|
MemoryContextSwitchTo(oldContext);
|
||
|
|
||
|
*isnew = true;
|
||
|
|
||
|
return entry;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Walk through all the entries of a hash table, in no special order.
|
||
|
* Returns NULL when no more entries remain.
|
||
|
*
|
||
|
* Iterator state must be initialized with ResetTupleHashIterator() macro.
|
||
|
*/
|
||
|
TupleHashEntry
|
||
|
ScanTupleHashTable(TupleHashTable hashtable, TupleHashIterator *state)
|
||
|
{
|
||
|
TupleHashEntry entry;
|
||
|
|
||
|
entry = state->next_entry;
|
||
|
while (entry == NULL)
|
||
|
{
|
||
|
if (state->next_bucket >= hashtable->nbuckets)
|
||
|
{
|
||
|
/* No more entries in hashtable, so done */
|
||
|
return NULL;
|
||
|
}
|
||
|
entry = hashtable->buckets[state->next_bucket++];
|
||
|
}
|
||
|
state->next_entry = entry->next;
|
||
|
|
||
|
return entry;
|
||
|
}
|