You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
postgres/src/backend/replication/logical/decode.c

1316 lines
39 KiB

/* -------------------------------------------------------------------------
*
* decode.c
* This module decodes WAL records read using xlogreader.h's APIs for the
* purpose of logical decoding by passing information to the
* reorderbuffer module (containing the actual changes) and to the
* snapbuild module to build a fitting catalog snapshot (to be able to
* properly decode the changes in the reorderbuffer).
*
* NOTE:
* This basically tries to handle all low level xlog stuff for
* reorderbuffer.c and snapbuild.c. There's some minor leakage where a
* specific record's struct is used to pass data along, but those just
* happen to contain the right amount of data in a convenient
* format. There isn't and shouldn't be much intelligence about the
* contents of records in here except turning them into a more usable
* format.
*
* Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/replication/logical/decode.c
*
* -------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/heapam.h"
#include "access/heapam_xlog.h"
#include "access/transam.h"
#include "access/xact.h"
#include "access/xlog_internal.h"
#include "access/xlogreader.h"
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
#include "access/xlogrecord.h"
#include "access/xlogutils.h"
#include "catalog/pg_control.h"
#include "replication/decode.h"
#include "replication/logical.h"
#include "replication/message.h"
Introduce replication progress tracking infrastructure. When implementing a replication solution ontop of logical decoding, two related problems exist: * How to safely keep track of replication progress * How to change replication behavior, based on the origin of a row; e.g. to avoid loops in bi-directional replication setups The solution to these problems, as implemented here, consist out of three parts: 1) 'replication origins', which identify nodes in a replication setup. 2) 'replication progress tracking', which remembers, for each replication origin, how far replay has progressed in a efficient and crash safe manner. 3) The ability to filter out changes performed on the behest of a replication origin during logical decoding; this allows complex replication topologies. E.g. by filtering all replayed changes out. Most of this could also be implemented in "userspace", e.g. by inserting additional rows contain origin information, but that ends up being much less efficient and more complicated. We don't want to require various replication solutions to reimplement logic for this independently. The infrastructure is intended to be generic enough to be reusable. This infrastructure also replaces the 'nodeid' infrastructure of commit timestamps. It is intended to provide all the former capabilities, except that there's only 2^16 different origins; but now they integrate with logical decoding. Additionally more functionality is accessible via SQL. Since the commit timestamp infrastructure has also been introduced in 9.5 (commit 73c986add) changing the API is not a problem. For now the number of origins for which the replication progress can be tracked simultaneously is determined by the max_replication_slots GUC. That GUC is not a perfect match to configure this, but there doesn't seem to be sufficient reason to introduce a separate new one. Bumps both catversion and wal page magic. Author: Andres Freund, with contributions from Petr Jelinek and Craig Ringer Reviewed-By: Heikki Linnakangas, Petr Jelinek, Robert Haas, Steve Singer Discussion: 20150216002155.GI15326@awork2.anarazel.de, 20140923182422.GA15776@alap3.anarazel.de, 20131114172632.GE7522@alap2.anarazel.de
11 years ago
#include "replication/origin.h"
#include "replication/reorderbuffer.h"
#include "replication/snapbuild.h"
#include "storage/standby.h"
typedef struct XLogRecordBuffer
{
XLogRecPtr origptr;
XLogRecPtr endptr;
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
XLogReaderState *record;
} XLogRecordBuffer;
/* RMGR Handlers */
static void DecodeXLogOp(LogicalDecodingContext *ctx, XLogRecordBuffer *buf);
static void DecodeHeapOp(LogicalDecodingContext *ctx, XLogRecordBuffer *buf);
static void DecodeHeap2Op(LogicalDecodingContext *ctx, XLogRecordBuffer *buf);
static void DecodeXactOp(LogicalDecodingContext *ctx, XLogRecordBuffer *buf);
static void DecodeStandbyOp(LogicalDecodingContext *ctx, XLogRecordBuffer *buf);
static void DecodeLogicalMsgOp(LogicalDecodingContext *ctx, XLogRecordBuffer *buf);
/* individual record(group)'s handlers */
static void DecodeInsert(LogicalDecodingContext *ctx, XLogRecordBuffer *buf);
static void DecodeUpdate(LogicalDecodingContext *ctx, XLogRecordBuffer *buf);
static void DecodeDelete(LogicalDecodingContext *ctx, XLogRecordBuffer *buf);
static void DecodeTruncate(LogicalDecodingContext *ctx, XLogRecordBuffer *buf);
static void DecodeMultiInsert(LogicalDecodingContext *ctx, XLogRecordBuffer *buf);
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
11 years ago
static void DecodeSpecConfirm(LogicalDecodingContext *ctx, XLogRecordBuffer *buf);
static void DecodeCommit(LogicalDecodingContext *ctx, XLogRecordBuffer *buf,
xl_xact_parsed_commit *parsed, TransactionId xid,
bool two_phase);
Merge the various forms of transaction commit & abort records. Since 465883b0a two versions of commit records have existed. A compact version that was used when no cache invalidations, smgr unlinks and similar were needed, and a full version that could deal with all that. Additionally the full version was embedded into twophase commit records. That resulted in a measurable reduction in the size of the logged WAL in some workloads. But more recently additions like logical decoding, which e.g. needs information about the database something was executed on, made it applicable in fewer situations. The static split generally made it hard to expand the commit record, because concerns over the size made it hard to add anything to the compact version. Additionally it's not particularly pretty to have twophase.c insert RM_XACT records. Rejigger things so that the commit and abort records only have one form each, including the twophase equivalents. The presence of the various optional (in the sense of not being in every record) pieces is indicated by a bits in the 'xinfo' flag. That flag previously was not included in compact commit records. To prevent an increase in size due to its presence, it's only included if necessary; signalled by a bit in the xl_info bits available for xact.c, similar to heapam.c's XLOG_HEAP_OPMASK/XLOG_HEAP_INIT_PAGE. Twophase commit/aborts are now the same as their normal counterparts. The original transaction's xid is included in an optional data field. This means that commit records generally are smaller, except in the case of a transaction with subtransactions, but no other special cases; the increase there is four bytes, which seems acceptable given that the more common case of not having subtransactions shrank. The savings are especially measurable for twophase commits, which previously always used the full version; but will in practice only infrequently have required that. The motivation for this work are not the space savings and and deduplication though; it's that it makes it easier to extend commit records with additional information. That's just a few lines of code now; without impacting the common case where that information is not needed. Discussion: 20150220152150.GD4149@awork2.anarazel.de, 235610.92468.qm%40web29004.mail.ird.yahoo.com Reviewed-By: Heikki Linnakangas, Simon Riggs
11 years ago
static void DecodeAbort(LogicalDecodingContext *ctx, XLogRecordBuffer *buf,
xl_xact_parsed_abort *parsed, TransactionId xid,
bool two_phase);
static void DecodePrepare(LogicalDecodingContext *ctx, XLogRecordBuffer *buf,
xl_xact_parsed_prepare *parsed);
/* common function to decode tuples */
static void DecodeXLogTuple(char *data, Size len, ReorderBufferTupleBuf *tup);
/* helper functions for decoding transactions */
static inline bool FilterPrepare(LogicalDecodingContext *ctx,
TransactionId xid, const char *gid);
static bool DecodeTXNNeedSkip(LogicalDecodingContext *ctx,
XLogRecordBuffer *buf, Oid dbId,
RepOriginId origin_id);
/*
* Take every XLogReadRecord()ed record and perform the actions required to
* decode it using the output plugin already setup in the logical decoding
* context.
*
* NB: Note that every record's xid needs to be processed by reorderbuffer
* (xids contained in the content of records are not relevant for this rule).
* That means that for records which'd otherwise not go through the
* reorderbuffer ReorderBufferProcessXid() has to be called. We don't want to
* call ReorderBufferProcessXid for each record type by default, because
* e.g. empty xacts can be handled more efficiently if there's no previous
* state for them.
*
* We also support the ability to fast forward thru records, skipping some
* record types completely - see individual record types for details.
*/
void
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
LogicalDecodingProcessRecord(LogicalDecodingContext *ctx, XLogReaderState *record)
{
XLogRecordBuffer buf;
TransactionId txid;
buf.origptr = ctx->reader->ReadRecPtr;
buf.endptr = ctx->reader->EndRecPtr;
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
buf.record = record;
txid = XLogRecGetTopXid(record);
/*
* If the top-level xid is valid, we need to assign the subxact to the
* top-level xact. We need to do this for all records, hence we do it
* before the switch.
*/
if (TransactionIdIsValid(txid))
{
ReorderBufferAssignChild(ctx->reorder,
txid,
record->decoded_record->xl_xid,
buf.origptr);
}
/* cast so we get a warning when new rmgrs are added */
switch ((RmgrId) XLogRecGetRmid(record))
{
/*
* Rmgrs we care about for logical decoding. Add new rmgrs in
* rmgrlist.h's order.
*/
case RM_XLOG_ID:
DecodeXLogOp(ctx, &buf);
break;
case RM_XACT_ID:
DecodeXactOp(ctx, &buf);
break;
case RM_STANDBY_ID:
DecodeStandbyOp(ctx, &buf);
break;
case RM_HEAP2_ID:
DecodeHeap2Op(ctx, &buf);
break;
case RM_HEAP_ID:
DecodeHeapOp(ctx, &buf);
break;
case RM_LOGICALMSG_ID:
DecodeLogicalMsgOp(ctx, &buf);
break;
/*
* Rmgrs irrelevant for logical decoding; they describe stuff not
* represented in logical decoding. Add new rmgrs in rmgrlist.h's
* order.
*/
case RM_SMGR_ID:
case RM_CLOG_ID:
case RM_DBASE_ID:
case RM_TBLSPC_ID:
case RM_MULTIXACT_ID:
case RM_RELMAP_ID:
case RM_BTREE_ID:
case RM_HASH_ID:
case RM_GIN_ID:
case RM_GIST_ID:
case RM_SEQ_ID:
case RM_SPGIST_ID:
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
11 years ago
case RM_BRIN_ID:
case RM_COMMIT_TS_ID:
Introduce replication progress tracking infrastructure. When implementing a replication solution ontop of logical decoding, two related problems exist: * How to safely keep track of replication progress * How to change replication behavior, based on the origin of a row; e.g. to avoid loops in bi-directional replication setups The solution to these problems, as implemented here, consist out of three parts: 1) 'replication origins', which identify nodes in a replication setup. 2) 'replication progress tracking', which remembers, for each replication origin, how far replay has progressed in a efficient and crash safe manner. 3) The ability to filter out changes performed on the behest of a replication origin during logical decoding; this allows complex replication topologies. E.g. by filtering all replayed changes out. Most of this could also be implemented in "userspace", e.g. by inserting additional rows contain origin information, but that ends up being much less efficient and more complicated. We don't want to require various replication solutions to reimplement logic for this independently. The infrastructure is intended to be generic enough to be reusable. This infrastructure also replaces the 'nodeid' infrastructure of commit timestamps. It is intended to provide all the former capabilities, except that there's only 2^16 different origins; but now they integrate with logical decoding. Additionally more functionality is accessible via SQL. Since the commit timestamp infrastructure has also been introduced in 9.5 (commit 73c986add) changing the API is not a problem. For now the number of origins for which the replication progress can be tracked simultaneously is determined by the max_replication_slots GUC. That GUC is not a perfect match to configure this, but there doesn't seem to be sufficient reason to introduce a separate new one. Bumps both catversion and wal page magic. Author: Andres Freund, with contributions from Petr Jelinek and Craig Ringer Reviewed-By: Heikki Linnakangas, Petr Jelinek, Robert Haas, Steve Singer Discussion: 20150216002155.GI15326@awork2.anarazel.de, 20140923182422.GA15776@alap3.anarazel.de, 20131114172632.GE7522@alap2.anarazel.de
11 years ago
case RM_REPLORIGIN_ID:
case RM_GENERIC_ID:
/* just deal with xid, and done */
ReorderBufferProcessXid(ctx->reorder, XLogRecGetXid(record),
buf.origptr);
break;
case RM_NEXT_ID:
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
elog(ERROR, "unexpected RM_NEXT_ID rmgr_id: %u", (RmgrIds) XLogRecGetRmid(buf.record));
}
}
/*
* Handle rmgr XLOG_ID records for DecodeRecordIntoReorderBuffer().
*/
static void
DecodeXLogOp(LogicalDecodingContext *ctx, XLogRecordBuffer *buf)
{
SnapBuild *builder = ctx->snapshot_builder;
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
uint8 info = XLogRecGetInfo(buf->record) & ~XLR_INFO_MASK;
ReorderBufferProcessXid(ctx->reorder, XLogRecGetXid(buf->record),
buf->origptr);
switch (info)
{
/* this is also used in END_OF_RECOVERY checkpoints */
case XLOG_CHECKPOINT_SHUTDOWN:
case XLOG_END_OF_RECOVERY:
SnapBuildSerializationPoint(builder, buf->origptr);
break;
case XLOG_CHECKPOINT_ONLINE:
/*
* a RUNNING_XACTS record will have been logged near to this, we
* can restart from there.
*/
break;
case XLOG_NOOP:
case XLOG_NEXTOID:
case XLOG_SWITCH:
case XLOG_BACKUP_END:
case XLOG_PARAMETER_CHANGE:
case XLOG_RESTORE_POINT:
case XLOG_FPW_CHANGE:
case XLOG_FPI_FOR_HINT:
case XLOG_FPI:
case XLOG_OVERWRITE_CONTRECORD:
break;
default:
elog(ERROR, "unexpected RM_XLOG_ID record type: %u", info);
}
}
/*
* Handle rmgr XACT_ID records for DecodeRecordIntoReorderBuffer().
*/
static void
DecodeXactOp(LogicalDecodingContext *ctx, XLogRecordBuffer *buf)
{
SnapBuild *builder = ctx->snapshot_builder;
ReorderBuffer *reorder = ctx->reorder;
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
XLogReaderState *r = buf->record;
Merge the various forms of transaction commit & abort records. Since 465883b0a two versions of commit records have existed. A compact version that was used when no cache invalidations, smgr unlinks and similar were needed, and a full version that could deal with all that. Additionally the full version was embedded into twophase commit records. That resulted in a measurable reduction in the size of the logged WAL in some workloads. But more recently additions like logical decoding, which e.g. needs information about the database something was executed on, made it applicable in fewer situations. The static split generally made it hard to expand the commit record, because concerns over the size made it hard to add anything to the compact version. Additionally it's not particularly pretty to have twophase.c insert RM_XACT records. Rejigger things so that the commit and abort records only have one form each, including the twophase equivalents. The presence of the various optional (in the sense of not being in every record) pieces is indicated by a bits in the 'xinfo' flag. That flag previously was not included in compact commit records. To prevent an increase in size due to its presence, it's only included if necessary; signalled by a bit in the xl_info bits available for xact.c, similar to heapam.c's XLOG_HEAP_OPMASK/XLOG_HEAP_INIT_PAGE. Twophase commit/aborts are now the same as their normal counterparts. The original transaction's xid is included in an optional data field. This means that commit records generally are smaller, except in the case of a transaction with subtransactions, but no other special cases; the increase there is four bytes, which seems acceptable given that the more common case of not having subtransactions shrank. The savings are especially measurable for twophase commits, which previously always used the full version; but will in practice only infrequently have required that. The motivation for this work are not the space savings and and deduplication though; it's that it makes it easier to extend commit records with additional information. That's just a few lines of code now; without impacting the common case where that information is not needed. Discussion: 20150220152150.GD4149@awork2.anarazel.de, 235610.92468.qm%40web29004.mail.ird.yahoo.com Reviewed-By: Heikki Linnakangas, Simon Riggs
11 years ago
uint8 info = XLogRecGetInfo(r) & XLOG_XACT_OPMASK;
/*
* If the snapshot isn't yet fully built, we cannot decode anything, so
* bail out.
*/
if (SnapBuildCurrentState(builder) < SNAPBUILD_FULL_SNAPSHOT)
return;
switch (info)
{
case XLOG_XACT_COMMIT:
case XLOG_XACT_COMMIT_PREPARED:
{
xl_xact_commit *xlrec;
Merge the various forms of transaction commit & abort records. Since 465883b0a two versions of commit records have existed. A compact version that was used when no cache invalidations, smgr unlinks and similar were needed, and a full version that could deal with all that. Additionally the full version was embedded into twophase commit records. That resulted in a measurable reduction in the size of the logged WAL in some workloads. But more recently additions like logical decoding, which e.g. needs information about the database something was executed on, made it applicable in fewer situations. The static split generally made it hard to expand the commit record, because concerns over the size made it hard to add anything to the compact version. Additionally it's not particularly pretty to have twophase.c insert RM_XACT records. Rejigger things so that the commit and abort records only have one form each, including the twophase equivalents. The presence of the various optional (in the sense of not being in every record) pieces is indicated by a bits in the 'xinfo' flag. That flag previously was not included in compact commit records. To prevent an increase in size due to its presence, it's only included if necessary; signalled by a bit in the xl_info bits available for xact.c, similar to heapam.c's XLOG_HEAP_OPMASK/XLOG_HEAP_INIT_PAGE. Twophase commit/aborts are now the same as their normal counterparts. The original transaction's xid is included in an optional data field. This means that commit records generally are smaller, except in the case of a transaction with subtransactions, but no other special cases; the increase there is four bytes, which seems acceptable given that the more common case of not having subtransactions shrank. The savings are especially measurable for twophase commits, which previously always used the full version; but will in practice only infrequently have required that. The motivation for this work are not the space savings and and deduplication though; it's that it makes it easier to extend commit records with additional information. That's just a few lines of code now; without impacting the common case where that information is not needed. Discussion: 20150220152150.GD4149@awork2.anarazel.de, 235610.92468.qm%40web29004.mail.ird.yahoo.com Reviewed-By: Heikki Linnakangas, Simon Riggs
11 years ago
xl_xact_parsed_commit parsed;
TransactionId xid;
bool two_phase = false;
Merge the various forms of transaction commit & abort records. Since 465883b0a two versions of commit records have existed. A compact version that was used when no cache invalidations, smgr unlinks and similar were needed, and a full version that could deal with all that. Additionally the full version was embedded into twophase commit records. That resulted in a measurable reduction in the size of the logged WAL in some workloads. But more recently additions like logical decoding, which e.g. needs information about the database something was executed on, made it applicable in fewer situations. The static split generally made it hard to expand the commit record, because concerns over the size made it hard to add anything to the compact version. Additionally it's not particularly pretty to have twophase.c insert RM_XACT records. Rejigger things so that the commit and abort records only have one form each, including the twophase equivalents. The presence of the various optional (in the sense of not being in every record) pieces is indicated by a bits in the 'xinfo' flag. That flag previously was not included in compact commit records. To prevent an increase in size due to its presence, it's only included if necessary; signalled by a bit in the xl_info bits available for xact.c, similar to heapam.c's XLOG_HEAP_OPMASK/XLOG_HEAP_INIT_PAGE. Twophase commit/aborts are now the same as their normal counterparts. The original transaction's xid is included in an optional data field. This means that commit records generally are smaller, except in the case of a transaction with subtransactions, but no other special cases; the increase there is four bytes, which seems acceptable given that the more common case of not having subtransactions shrank. The savings are especially measurable for twophase commits, which previously always used the full version; but will in practice only infrequently have required that. The motivation for this work are not the space savings and and deduplication though; it's that it makes it easier to extend commit records with additional information. That's just a few lines of code now; without impacting the common case where that information is not needed. Discussion: 20150220152150.GD4149@awork2.anarazel.de, 235610.92468.qm%40web29004.mail.ird.yahoo.com Reviewed-By: Heikki Linnakangas, Simon Riggs
11 years ago
xlrec = (xl_xact_commit *) XLogRecGetData(r);
ParseCommitRecord(XLogRecGetInfo(buf->record), xlrec, &parsed);
Merge the various forms of transaction commit & abort records. Since 465883b0a two versions of commit records have existed. A compact version that was used when no cache invalidations, smgr unlinks and similar were needed, and a full version that could deal with all that. Additionally the full version was embedded into twophase commit records. That resulted in a measurable reduction in the size of the logged WAL in some workloads. But more recently additions like logical decoding, which e.g. needs information about the database something was executed on, made it applicable in fewer situations. The static split generally made it hard to expand the commit record, because concerns over the size made it hard to add anything to the compact version. Additionally it's not particularly pretty to have twophase.c insert RM_XACT records. Rejigger things so that the commit and abort records only have one form each, including the twophase equivalents. The presence of the various optional (in the sense of not being in every record) pieces is indicated by a bits in the 'xinfo' flag. That flag previously was not included in compact commit records. To prevent an increase in size due to its presence, it's only included if necessary; signalled by a bit in the xl_info bits available for xact.c, similar to heapam.c's XLOG_HEAP_OPMASK/XLOG_HEAP_INIT_PAGE. Twophase commit/aborts are now the same as their normal counterparts. The original transaction's xid is included in an optional data field. This means that commit records generally are smaller, except in the case of a transaction with subtransactions, but no other special cases; the increase there is four bytes, which seems acceptable given that the more common case of not having subtransactions shrank. The savings are especially measurable for twophase commits, which previously always used the full version; but will in practice only infrequently have required that. The motivation for this work are not the space savings and and deduplication though; it's that it makes it easier to extend commit records with additional information. That's just a few lines of code now; without impacting the common case where that information is not needed. Discussion: 20150220152150.GD4149@awork2.anarazel.de, 235610.92468.qm%40web29004.mail.ird.yahoo.com Reviewed-By: Heikki Linnakangas, Simon Riggs
11 years ago
if (!TransactionIdIsValid(parsed.twophase_xid))
xid = XLogRecGetXid(r);
else
xid = parsed.twophase_xid;
/*
* We would like to process the transaction in a two-phase
* manner iff output plugin supports two-phase commits and
* doesn't filter the transaction at prepare time.
*/
if (info == XLOG_XACT_COMMIT_PREPARED)
two_phase = !(FilterPrepare(ctx, xid,
parsed.twophase_gid));
DecodeCommit(ctx, buf, &parsed, xid, two_phase);
break;
}
case XLOG_XACT_ABORT:
case XLOG_XACT_ABORT_PREPARED:
{
xl_xact_abort *xlrec;
Merge the various forms of transaction commit & abort records. Since 465883b0a two versions of commit records have existed. A compact version that was used when no cache invalidations, smgr unlinks and similar were needed, and a full version that could deal with all that. Additionally the full version was embedded into twophase commit records. That resulted in a measurable reduction in the size of the logged WAL in some workloads. But more recently additions like logical decoding, which e.g. needs information about the database something was executed on, made it applicable in fewer situations. The static split generally made it hard to expand the commit record, because concerns over the size made it hard to add anything to the compact version. Additionally it's not particularly pretty to have twophase.c insert RM_XACT records. Rejigger things so that the commit and abort records only have one form each, including the twophase equivalents. The presence of the various optional (in the sense of not being in every record) pieces is indicated by a bits in the 'xinfo' flag. That flag previously was not included in compact commit records. To prevent an increase in size due to its presence, it's only included if necessary; signalled by a bit in the xl_info bits available for xact.c, similar to heapam.c's XLOG_HEAP_OPMASK/XLOG_HEAP_INIT_PAGE. Twophase commit/aborts are now the same as their normal counterparts. The original transaction's xid is included in an optional data field. This means that commit records generally are smaller, except in the case of a transaction with subtransactions, but no other special cases; the increase there is four bytes, which seems acceptable given that the more common case of not having subtransactions shrank. The savings are especially measurable for twophase commits, which previously always used the full version; but will in practice only infrequently have required that. The motivation for this work are not the space savings and and deduplication though; it's that it makes it easier to extend commit records with additional information. That's just a few lines of code now; without impacting the common case where that information is not needed. Discussion: 20150220152150.GD4149@awork2.anarazel.de, 235610.92468.qm%40web29004.mail.ird.yahoo.com Reviewed-By: Heikki Linnakangas, Simon Riggs
11 years ago
xl_xact_parsed_abort parsed;
TransactionId xid;
bool two_phase = false;
Merge the various forms of transaction commit & abort records. Since 465883b0a two versions of commit records have existed. A compact version that was used when no cache invalidations, smgr unlinks and similar were needed, and a full version that could deal with all that. Additionally the full version was embedded into twophase commit records. That resulted in a measurable reduction in the size of the logged WAL in some workloads. But more recently additions like logical decoding, which e.g. needs information about the database something was executed on, made it applicable in fewer situations. The static split generally made it hard to expand the commit record, because concerns over the size made it hard to add anything to the compact version. Additionally it's not particularly pretty to have twophase.c insert RM_XACT records. Rejigger things so that the commit and abort records only have one form each, including the twophase equivalents. The presence of the various optional (in the sense of not being in every record) pieces is indicated by a bits in the 'xinfo' flag. That flag previously was not included in compact commit records. To prevent an increase in size due to its presence, it's only included if necessary; signalled by a bit in the xl_info bits available for xact.c, similar to heapam.c's XLOG_HEAP_OPMASK/XLOG_HEAP_INIT_PAGE. Twophase commit/aborts are now the same as their normal counterparts. The original transaction's xid is included in an optional data field. This means that commit records generally are smaller, except in the case of a transaction with subtransactions, but no other special cases; the increase there is four bytes, which seems acceptable given that the more common case of not having subtransactions shrank. The savings are especially measurable for twophase commits, which previously always used the full version; but will in practice only infrequently have required that. The motivation for this work are not the space savings and and deduplication though; it's that it makes it easier to extend commit records with additional information. That's just a few lines of code now; without impacting the common case where that information is not needed. Discussion: 20150220152150.GD4149@awork2.anarazel.de, 235610.92468.qm%40web29004.mail.ird.yahoo.com Reviewed-By: Heikki Linnakangas, Simon Riggs
11 years ago
xlrec = (xl_xact_abort *) XLogRecGetData(r);
ParseAbortRecord(XLogRecGetInfo(buf->record), xlrec, &parsed);
Merge the various forms of transaction commit & abort records. Since 465883b0a two versions of commit records have existed. A compact version that was used when no cache invalidations, smgr unlinks and similar were needed, and a full version that could deal with all that. Additionally the full version was embedded into twophase commit records. That resulted in a measurable reduction in the size of the logged WAL in some workloads. But more recently additions like logical decoding, which e.g. needs information about the database something was executed on, made it applicable in fewer situations. The static split generally made it hard to expand the commit record, because concerns over the size made it hard to add anything to the compact version. Additionally it's not particularly pretty to have twophase.c insert RM_XACT records. Rejigger things so that the commit and abort records only have one form each, including the twophase equivalents. The presence of the various optional (in the sense of not being in every record) pieces is indicated by a bits in the 'xinfo' flag. That flag previously was not included in compact commit records. To prevent an increase in size due to its presence, it's only included if necessary; signalled by a bit in the xl_info bits available for xact.c, similar to heapam.c's XLOG_HEAP_OPMASK/XLOG_HEAP_INIT_PAGE. Twophase commit/aborts are now the same as their normal counterparts. The original transaction's xid is included in an optional data field. This means that commit records generally are smaller, except in the case of a transaction with subtransactions, but no other special cases; the increase there is four bytes, which seems acceptable given that the more common case of not having subtransactions shrank. The savings are especially measurable for twophase commits, which previously always used the full version; but will in practice only infrequently have required that. The motivation for this work are not the space savings and and deduplication though; it's that it makes it easier to extend commit records with additional information. That's just a few lines of code now; without impacting the common case where that information is not needed. Discussion: 20150220152150.GD4149@awork2.anarazel.de, 235610.92468.qm%40web29004.mail.ird.yahoo.com Reviewed-By: Heikki Linnakangas, Simon Riggs
11 years ago
if (!TransactionIdIsValid(parsed.twophase_xid))
xid = XLogRecGetXid(r);
else
xid = parsed.twophase_xid;
/*
* We would like to process the transaction in a two-phase
* manner iff output plugin supports two-phase commits and
* doesn't filter the transaction at prepare time.
*/
if (info == XLOG_XACT_ABORT_PREPARED)
two_phase = !(FilterPrepare(ctx, xid,
parsed.twophase_gid));
DecodeAbort(ctx, buf, &parsed, xid, two_phase);
break;
}
case XLOG_XACT_ASSIGNMENT:
/*
* We assign subxact to the toplevel xact while processing each
* record if required. So, we don't need to do anything here. See
* LogicalDecodingProcessRecord.
*/
break;
case XLOG_XACT_INVALIDATIONS:
{
TransactionId xid;
xl_xact_invals *invals;
xid = XLogRecGetXid(r);
invals = (xl_xact_invals *) XLogRecGetData(r);
/*
* Execute the invalidations for xid-less transactions,
* otherwise, accumulate them so that they can be processed at
* the commit time.
*/
if (TransactionIdIsValid(xid))
{
if (!ctx->fast_forward)
ReorderBufferAddInvalidations(reorder, xid,
buf->origptr,
invals->nmsgs,
invals->msgs);
ReorderBufferXidSetCatalogChanges(ctx->reorder, xid,
buf->origptr);
}
else if ((!ctx->fast_forward))
ReorderBufferImmediateInvalidation(ctx->reorder,
invals->nmsgs,
invals->msgs);
}
break;
case XLOG_XACT_PREPARE:
{
xl_xact_parsed_prepare parsed;
xl_xact_prepare *xlrec;
/* ok, parse it */
xlrec = (xl_xact_prepare *) XLogRecGetData(r);
ParsePrepareRecord(XLogRecGetInfo(buf->record),
xlrec, &parsed);
/*
* We would like to process the transaction in a two-phase
* manner iff output plugin supports two-phase commits and
* doesn't filter the transaction at prepare time.
*/
if (FilterPrepare(ctx, parsed.twophase_xid,
parsed.twophase_gid))
{
ReorderBufferProcessXid(reorder, parsed.twophase_xid,
buf->origptr);
break;
}
/*
* Note that if the prepared transaction has locked [user]
* catalog tables exclusively then decoding prepare can block
* till the main transaction is committed because it needs to
* lock the catalog tables.
*
* XXX Now, this can even lead to a deadlock if the prepare
* transaction is waiting to get it logically replicated for
Add support for prepared transactions to built-in logical replication. To add support for streaming transactions at prepare time into the built-in logical replication, we need to do the following things: * Modify the output plugin (pgoutput) to implement the new two-phase API callbacks, by leveraging the extended replication protocol. * Modify the replication apply worker, to properly handle two-phase transactions by replaying them on prepare. * Add a new SUBSCRIPTION option "two_phase" to allow users to enable two-phase transactions. We enable the two_phase once the initial data sync is over. We however must explicitly disable replication of two-phase transactions during replication slot creation, even if the plugin supports it. We don't need to replicate the changes accumulated during this phase, and moreover, we don't have a replication connection open so we don't know where to send the data anyway. The streaming option is not allowed with this new two_phase option. This can be done as a separate patch. We don't allow to toggle two_phase option of a subscription because it can lead to an inconsistent replica. For the same reason, we don't allow to refresh the publication once the two_phase is enabled for a subscription unless copy_data option is false. Author: Peter Smith, Ajin Cherian and Amit Kapila based on previous work by Nikhil Sontakke and Stas Kelvich Reviewed-by: Amit Kapila, Sawada Masahiko, Vignesh C, Dilip Kumar, Takamichi Osumi, Greg Nancarrow Tested-By: Haiying Tang Discussion: https://postgr.es/m/02DA5F5E-CECE-4D9C-8B4B-418077E2C010@postgrespro.ru Discussion: https://postgr.es/m/CAA4eK1+opiV4aFTmWWUF9h_32=HfPOW9vZASHarT0UA5oBrtGw@mail.gmail.com
4 years ago
* distributed 2PC. This can be avoided by disallowing
* preparing transactions that have locked [user] catalog
* tables exclusively but as of now, we ask users not to do
* such an operation.
*/
DecodePrepare(ctx, buf, &parsed);
break;
}
default:
elog(ERROR, "unexpected RM_XACT_ID record type: %u", info);
}
}
/*
* Handle rmgr STANDBY_ID records for DecodeRecordIntoReorderBuffer().
*/
static void
DecodeStandbyOp(LogicalDecodingContext *ctx, XLogRecordBuffer *buf)
{
SnapBuild *builder = ctx->snapshot_builder;
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
XLogReaderState *r = buf->record;
uint8 info = XLogRecGetInfo(r) & ~XLR_INFO_MASK;
ReorderBufferProcessXid(ctx->reorder, XLogRecGetXid(r), buf->origptr);
switch (info)
{
case XLOG_RUNNING_XACTS:
{
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
xl_running_xacts *running = (xl_running_xacts *) XLogRecGetData(r);
SnapBuildProcessRunningXacts(builder, buf->origptr, running);
/*
* Abort all transactions that we keep track of, that are
* older than the record's oldestRunningXid. This is the most
* convenient spot for doing so since, in contrast to shutdown
* or end-of-recovery checkpoints, we have information about
* all running transactions which includes prepared ones,
* while shutdown checkpoints just know that no non-prepared
* transactions are in progress.
*/
ReorderBufferAbortOld(ctx->reorder, running->oldestRunningXid);
}
break;
case XLOG_STANDBY_LOCK:
break;
case XLOG_INVALIDATIONS:
/*
* We are processing the invalidations at the command level via
* XLOG_XACT_INVALIDATIONS. So we don't need to do anything here.
*/
break;
default:
elog(ERROR, "unexpected RM_STANDBY_ID record type: %u", info);
}
}
/*
* Handle rmgr HEAP2_ID records for DecodeRecordIntoReorderBuffer().
*/
static void
DecodeHeap2Op(LogicalDecodingContext *ctx, XLogRecordBuffer *buf)
{
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
uint8 info = XLogRecGetInfo(buf->record) & XLOG_HEAP_OPMASK;
TransactionId xid = XLogRecGetXid(buf->record);
SnapBuild *builder = ctx->snapshot_builder;
ReorderBufferProcessXid(ctx->reorder, xid, buf->origptr);
/*
* If we don't have snapshot or we are just fast-forwarding, there is no
* point in decoding changes.
*/
if (SnapBuildCurrentState(builder) < SNAPBUILD_FULL_SNAPSHOT ||
ctx->fast_forward)
return;
switch (info)
{
case XLOG_HEAP2_MULTI_INSERT:
if (!ctx->fast_forward &&
SnapBuildProcessChange(builder, xid, buf->origptr))
DecodeMultiInsert(ctx, buf);
break;
case XLOG_HEAP2_NEW_CID:
{
xl_heap_new_cid *xlrec;
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
xlrec = (xl_heap_new_cid *) XLogRecGetData(buf->record);
SnapBuildProcessNewCid(builder, xid, buf->origptr, xlrec);
break;
}
case XLOG_HEAP2_REWRITE:
/*
* Although these records only exist to serve the needs of logical
* decoding, all the work happens as part of crash or archive
* recovery, so we don't need to do anything here.
*/
break;
/*
* Everything else here is just low level physical stuff we're not
* interested in.
*/
case XLOG_HEAP2_FREEZE_PAGE:
Remove tupgone special case from vacuumlazy.c. Retry the call to heap_prune_page() in rare cases where there is disagreement between the heap_prune_page() call and the call to HeapTupleSatisfiesVacuum() that immediately follows. Disagreement is possible when a concurrently-aborted transaction makes a tuple DEAD during the tiny window between each step. This was the only case where a tuple considered DEAD by VACUUM still had storage following pruning. VACUUM's definition of dead tuples is now uniformly simple and unambiguous: dead tuples from each page are always LP_DEAD line pointers that were encountered just after we performed pruning (and just before we considered freezing remaining items with tuple storage). Eliminating the tupgone=true special case enables INDEX_CLEANUP=off style skipping of index vacuuming that takes place based on flexible, dynamic criteria. The INDEX_CLEANUP=off case had to know about skipping indexes up-front before now, due to a subtle interaction with the special case (see commit dd695979) -- this was a special case unto itself. Now there are no special cases. And so now it won't matter when or how we decide to skip index vacuuming: it won't affect how pruning behaves, and it won't be affected by any of the implementation details of pruning or freezing. Also remove XLOG_HEAP2_CLEANUP_INFO records. These are no longer necessary because we now rely entirely on heap pruning taking care of recovery conflicts. There is no longer any need to generate recovery conflicts for DEAD tuples that pruning just missed. This also means that heap vacuuming now uses exactly the same strategy for recovery conflicts as index vacuuming always has: REDO routines never need to process a latestRemovedXid from the WAL record, since earlier REDO of the WAL record from pruning is sufficient in all cases. The generic XLOG_HEAP2_CLEAN record type is now split into two new record types to reflect this new division (these are called XLOG_HEAP2_PRUNE and XLOG_HEAP2_VACUUM). Also stop acquiring a super-exclusive lock for heap pages when they're vacuumed during VACUUM's second heap pass. A regular exclusive lock is enough. This is correct because heap page vacuuming is now strictly a matter of setting the LP_DEAD line pointers to LP_UNUSED. No other backend can have a pointer to a tuple located in a pinned buffer that can be invalidated by a concurrent heap page vacuum operation. Heap vacuuming can now be thought of as conceptually similar to index vacuuming and conceptually dissimilar to heap pruning. Heap pruning now has sole responsibility for anything involving the logical contents of the database (e.g., managing transaction status information, recovery conflicts, considering what to do with HOT chains). Index vacuuming and heap vacuuming are now only concerned with recycling garbage items from physical data structures that back the logical database. Bump XLOG_PAGE_MAGIC due to pruning and heap page vacuum WAL record changes. Credit for the idea of retrying pruning a page to avoid the tupgone case goes to Andres Freund. Author: Peter Geoghegan <pg@bowt.ie> Reviewed-By: Andres Freund <andres@anarazel.de> Reviewed-By: Masahiko Sawada <sawada.mshk@gmail.com> Discussion: https://postgr.es/m/CAH2-WznneCXTzuFmcwx_EyRQgfsfJAAsu+CsqRFmFXCAar=nJw@mail.gmail.com
5 years ago
case XLOG_HEAP2_PRUNE:
case XLOG_HEAP2_VACUUM:
case XLOG_HEAP2_VISIBLE:
case XLOG_HEAP2_LOCK_UPDATED:
break;
default:
elog(ERROR, "unexpected RM_HEAP2_ID record type: %u", info);
}
}
/*
* Handle rmgr HEAP_ID records for DecodeRecordIntoReorderBuffer().
*/
static void
DecodeHeapOp(LogicalDecodingContext *ctx, XLogRecordBuffer *buf)
{
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
uint8 info = XLogRecGetInfo(buf->record) & XLOG_HEAP_OPMASK;
TransactionId xid = XLogRecGetXid(buf->record);
SnapBuild *builder = ctx->snapshot_builder;
ReorderBufferProcessXid(ctx->reorder, xid, buf->origptr);
/*
* If we don't have snapshot or we are just fast-forwarding, there is no
* point in decoding data changes.
*/
if (SnapBuildCurrentState(builder) < SNAPBUILD_FULL_SNAPSHOT ||
ctx->fast_forward)
return;
switch (info)
{
case XLOG_HEAP_INSERT:
if (SnapBuildProcessChange(builder, xid, buf->origptr))
DecodeInsert(ctx, buf);
break;
/*
* Treat HOT update as normal updates. There is no useful
* information in the fact that we could make it a HOT update
* locally and the WAL layout is compatible.
*/
case XLOG_HEAP_HOT_UPDATE:
case XLOG_HEAP_UPDATE:
if (SnapBuildProcessChange(builder, xid, buf->origptr))
DecodeUpdate(ctx, buf);
break;
case XLOG_HEAP_DELETE:
if (SnapBuildProcessChange(builder, xid, buf->origptr))
DecodeDelete(ctx, buf);
break;
case XLOG_HEAP_TRUNCATE:
if (SnapBuildProcessChange(builder, xid, buf->origptr))
DecodeTruncate(ctx, buf);
break;
case XLOG_HEAP_INPLACE:
/*
* Inplace updates are only ever performed on catalog tuples and
* can, per definition, not change tuple visibility. Since we
* don't decode catalog tuples, we're not interested in the
* record's contents.
*
* In-place updates can be used either by XID-bearing transactions
* (e.g. in CREATE INDEX CONCURRENTLY) or by XID-less
* transactions (e.g. VACUUM). In the former case, the commit
* record will include cache invalidations, so we mark the
* transaction as catalog modifying here. Currently that's
* redundant because the commit will do that as well, but once we
* support decoding in-progress relations, this will be important.
*/
if (!TransactionIdIsValid(xid))
break;
SnapBuildProcessChange(builder, xid, buf->origptr);
ReorderBufferXidSetCatalogChanges(ctx->reorder, xid, buf->origptr);
break;
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
11 years ago
case XLOG_HEAP_CONFIRM:
if (SnapBuildProcessChange(builder, xid, buf->origptr))
DecodeSpecConfirm(ctx, buf);
break;
case XLOG_HEAP_LOCK:
/* we don't care about row level locks for now */
break;
default:
elog(ERROR, "unexpected RM_HEAP_ID record type: %u", info);
break;
}
}
/*
* Ask output plugin whether we want to skip this PREPARE and send
* this transaction as a regular commit later.
*/
static inline bool
FilterPrepare(LogicalDecodingContext *ctx, TransactionId xid,
const char *gid)
{
/*
* Skip if decoding of two-phase transactions at PREPARE time is not
* enabled. In that case, all two-phase transactions are considered
* filtered out and will be applied as regular transactions at COMMIT
* PREPARED.
*/
if (!ctx->twophase)
return true;
/*
* The filter_prepare callback is optional. When not supplied, all
* prepared transactions should go through.
*/
if (ctx->callbacks.filter_prepare_cb == NULL)
return false;
return filter_prepare_cb_wrapper(ctx, xid, gid);
}
static inline bool
FilterByOrigin(LogicalDecodingContext *ctx, RepOriginId origin_id)
{
if (ctx->callbacks.filter_by_origin_cb == NULL)
return false;
return filter_by_origin_cb_wrapper(ctx, origin_id);
}
/*
* Handle rmgr LOGICALMSG_ID records for DecodeRecordIntoReorderBuffer().
*/
static void
DecodeLogicalMsgOp(LogicalDecodingContext *ctx, XLogRecordBuffer *buf)
{
SnapBuild *builder = ctx->snapshot_builder;
XLogReaderState *r = buf->record;
TransactionId xid = XLogRecGetXid(r);
uint8 info = XLogRecGetInfo(r) & ~XLR_INFO_MASK;
RepOriginId origin_id = XLogRecGetOrigin(r);
Snapshot snapshot;
xl_logical_message *message;
if (info != XLOG_LOGICAL_MESSAGE)
elog(ERROR, "unexpected RM_LOGICALMSG_ID record type: %u", info);
ReorderBufferProcessXid(ctx->reorder, XLogRecGetXid(r), buf->origptr);
/*
* If we don't have snapshot or we are just fast-forwarding, there is no
* point in decoding messages.
*/
if (SnapBuildCurrentState(builder) < SNAPBUILD_FULL_SNAPSHOT ||
ctx->fast_forward)
return;
message = (xl_logical_message *) XLogRecGetData(r);
if (message->dbId != ctx->slot->data.database ||
FilterByOrigin(ctx, origin_id))
return;
if (message->transactional &&
!SnapBuildProcessChange(builder, xid, buf->origptr))
return;
else if (!message->transactional &&
(SnapBuildCurrentState(builder) != SNAPBUILD_CONSISTENT ||
SnapBuildXactNeedsSkip(builder, buf->origptr)))
return;
snapshot = SnapBuildGetOrBuildSnapshot(builder, xid);
ReorderBufferQueueMessage(ctx->reorder, xid, snapshot, buf->endptr,
message->transactional,
message->message, /* first part of message is
* prefix */
message->message_size,
message->message + message->prefix_size);
}
/*
* Consolidated commit record handling between the different form of commit
* records.
*
* 'two_phase' indicates that caller wants to process the transaction in two
* phases, first process prepare if not already done and then process
* commit_prepared.
*/
static void
DecodeCommit(LogicalDecodingContext *ctx, XLogRecordBuffer *buf,
xl_xact_parsed_commit *parsed, TransactionId xid,
bool two_phase)
{
Introduce replication progress tracking infrastructure. When implementing a replication solution ontop of logical decoding, two related problems exist: * How to safely keep track of replication progress * How to change replication behavior, based on the origin of a row; e.g. to avoid loops in bi-directional replication setups The solution to these problems, as implemented here, consist out of three parts: 1) 'replication origins', which identify nodes in a replication setup. 2) 'replication progress tracking', which remembers, for each replication origin, how far replay has progressed in a efficient and crash safe manner. 3) The ability to filter out changes performed on the behest of a replication origin during logical decoding; this allows complex replication topologies. E.g. by filtering all replayed changes out. Most of this could also be implemented in "userspace", e.g. by inserting additional rows contain origin information, but that ends up being much less efficient and more complicated. We don't want to require various replication solutions to reimplement logic for this independently. The infrastructure is intended to be generic enough to be reusable. This infrastructure also replaces the 'nodeid' infrastructure of commit timestamps. It is intended to provide all the former capabilities, except that there's only 2^16 different origins; but now they integrate with logical decoding. Additionally more functionality is accessible via SQL. Since the commit timestamp infrastructure has also been introduced in 9.5 (commit 73c986add) changing the API is not a problem. For now the number of origins for which the replication progress can be tracked simultaneously is determined by the max_replication_slots GUC. That GUC is not a perfect match to configure this, but there doesn't seem to be sufficient reason to introduce a separate new one. Bumps both catversion and wal page magic. Author: Andres Freund, with contributions from Petr Jelinek and Craig Ringer Reviewed-By: Heikki Linnakangas, Petr Jelinek, Robert Haas, Steve Singer Discussion: 20150216002155.GI15326@awork2.anarazel.de, 20140923182422.GA15776@alap3.anarazel.de, 20131114172632.GE7522@alap2.anarazel.de
11 years ago
XLogRecPtr origin_lsn = InvalidXLogRecPtr;
TimestampTz commit_time = parsed->xact_time;
RepOriginId origin_id = XLogRecGetOrigin(buf->record);
int i;
Introduce replication progress tracking infrastructure. When implementing a replication solution ontop of logical decoding, two related problems exist: * How to safely keep track of replication progress * How to change replication behavior, based on the origin of a row; e.g. to avoid loops in bi-directional replication setups The solution to these problems, as implemented here, consist out of three parts: 1) 'replication origins', which identify nodes in a replication setup. 2) 'replication progress tracking', which remembers, for each replication origin, how far replay has progressed in a efficient and crash safe manner. 3) The ability to filter out changes performed on the behest of a replication origin during logical decoding; this allows complex replication topologies. E.g. by filtering all replayed changes out. Most of this could also be implemented in "userspace", e.g. by inserting additional rows contain origin information, but that ends up being much less efficient and more complicated. We don't want to require various replication solutions to reimplement logic for this independently. The infrastructure is intended to be generic enough to be reusable. This infrastructure also replaces the 'nodeid' infrastructure of commit timestamps. It is intended to provide all the former capabilities, except that there's only 2^16 different origins; but now they integrate with logical decoding. Additionally more functionality is accessible via SQL. Since the commit timestamp infrastructure has also been introduced in 9.5 (commit 73c986add) changing the API is not a problem. For now the number of origins for which the replication progress can be tracked simultaneously is determined by the max_replication_slots GUC. That GUC is not a perfect match to configure this, but there doesn't seem to be sufficient reason to introduce a separate new one. Bumps both catversion and wal page magic. Author: Andres Freund, with contributions from Petr Jelinek and Craig Ringer Reviewed-By: Heikki Linnakangas, Petr Jelinek, Robert Haas, Steve Singer Discussion: 20150216002155.GI15326@awork2.anarazel.de, 20140923182422.GA15776@alap3.anarazel.de, 20131114172632.GE7522@alap2.anarazel.de
11 years ago
if (parsed->xinfo & XACT_XINFO_HAS_ORIGIN)
{
origin_lsn = parsed->origin_lsn;
commit_time = parsed->origin_timestamp;
}
SnapBuildCommitTxn(ctx->snapshot_builder, buf->origptr, xid,
Merge the various forms of transaction commit & abort records. Since 465883b0a two versions of commit records have existed. A compact version that was used when no cache invalidations, smgr unlinks and similar were needed, and a full version that could deal with all that. Additionally the full version was embedded into twophase commit records. That resulted in a measurable reduction in the size of the logged WAL in some workloads. But more recently additions like logical decoding, which e.g. needs information about the database something was executed on, made it applicable in fewer situations. The static split generally made it hard to expand the commit record, because concerns over the size made it hard to add anything to the compact version. Additionally it's not particularly pretty to have twophase.c insert RM_XACT records. Rejigger things so that the commit and abort records only have one form each, including the twophase equivalents. The presence of the various optional (in the sense of not being in every record) pieces is indicated by a bits in the 'xinfo' flag. That flag previously was not included in compact commit records. To prevent an increase in size due to its presence, it's only included if necessary; signalled by a bit in the xl_info bits available for xact.c, similar to heapam.c's XLOG_HEAP_OPMASK/XLOG_HEAP_INIT_PAGE. Twophase commit/aborts are now the same as their normal counterparts. The original transaction's xid is included in an optional data field. This means that commit records generally are smaller, except in the case of a transaction with subtransactions, but no other special cases; the increase there is four bytes, which seems acceptable given that the more common case of not having subtransactions shrank. The savings are especially measurable for twophase commits, which previously always used the full version; but will in practice only infrequently have required that. The motivation for this work are not the space savings and and deduplication though; it's that it makes it easier to extend commit records with additional information. That's just a few lines of code now; without impacting the common case where that information is not needed. Discussion: 20150220152150.GD4149@awork2.anarazel.de, 235610.92468.qm%40web29004.mail.ird.yahoo.com Reviewed-By: Heikki Linnakangas, Simon Riggs
11 years ago
parsed->nsubxacts, parsed->subxacts);
/* ----
* Check whether we are interested in this specific transaction, and tell
* the reorderbuffer to forget the content of the (sub-)transactions
* if not.
*
* We can't just use ReorderBufferAbort() here, because we need to execute
* the transaction's invalidations. This currently won't be needed if
* we're just skipping over the transaction because currently we only do
* so during startup, to get to the first transaction the client needs. As
* we have reset the catalog caches before starting to read WAL, and we
* haven't yet touched any catalogs, there can't be anything to invalidate.
* But if we're "forgetting" this commit because it happened in another
* database, the invalidations might be important, because they could be
* for shared catalogs and we might have loaded data into the relevant
* syscaches.
* ---
*/
if (DecodeTXNNeedSkip(ctx, buf, parsed->dbId, origin_id))
{
Merge the various forms of transaction commit & abort records. Since 465883b0a two versions of commit records have existed. A compact version that was used when no cache invalidations, smgr unlinks and similar were needed, and a full version that could deal with all that. Additionally the full version was embedded into twophase commit records. That resulted in a measurable reduction in the size of the logged WAL in some workloads. But more recently additions like logical decoding, which e.g. needs information about the database something was executed on, made it applicable in fewer situations. The static split generally made it hard to expand the commit record, because concerns over the size made it hard to add anything to the compact version. Additionally it's not particularly pretty to have twophase.c insert RM_XACT records. Rejigger things so that the commit and abort records only have one form each, including the twophase equivalents. The presence of the various optional (in the sense of not being in every record) pieces is indicated by a bits in the 'xinfo' flag. That flag previously was not included in compact commit records. To prevent an increase in size due to its presence, it's only included if necessary; signalled by a bit in the xl_info bits available for xact.c, similar to heapam.c's XLOG_HEAP_OPMASK/XLOG_HEAP_INIT_PAGE. Twophase commit/aborts are now the same as their normal counterparts. The original transaction's xid is included in an optional data field. This means that commit records generally are smaller, except in the case of a transaction with subtransactions, but no other special cases; the increase there is four bytes, which seems acceptable given that the more common case of not having subtransactions shrank. The savings are especially measurable for twophase commits, which previously always used the full version; but will in practice only infrequently have required that. The motivation for this work are not the space savings and and deduplication though; it's that it makes it easier to extend commit records with additional information. That's just a few lines of code now; without impacting the common case where that information is not needed. Discussion: 20150220152150.GD4149@awork2.anarazel.de, 235610.92468.qm%40web29004.mail.ird.yahoo.com Reviewed-By: Heikki Linnakangas, Simon Riggs
11 years ago
for (i = 0; i < parsed->nsubxacts; i++)
{
Merge the various forms of transaction commit & abort records. Since 465883b0a two versions of commit records have existed. A compact version that was used when no cache invalidations, smgr unlinks and similar were needed, and a full version that could deal with all that. Additionally the full version was embedded into twophase commit records. That resulted in a measurable reduction in the size of the logged WAL in some workloads. But more recently additions like logical decoding, which e.g. needs information about the database something was executed on, made it applicable in fewer situations. The static split generally made it hard to expand the commit record, because concerns over the size made it hard to add anything to the compact version. Additionally it's not particularly pretty to have twophase.c insert RM_XACT records. Rejigger things so that the commit and abort records only have one form each, including the twophase equivalents. The presence of the various optional (in the sense of not being in every record) pieces is indicated by a bits in the 'xinfo' flag. That flag previously was not included in compact commit records. To prevent an increase in size due to its presence, it's only included if necessary; signalled by a bit in the xl_info bits available for xact.c, similar to heapam.c's XLOG_HEAP_OPMASK/XLOG_HEAP_INIT_PAGE. Twophase commit/aborts are now the same as their normal counterparts. The original transaction's xid is included in an optional data field. This means that commit records generally are smaller, except in the case of a transaction with subtransactions, but no other special cases; the increase there is four bytes, which seems acceptable given that the more common case of not having subtransactions shrank. The savings are especially measurable for twophase commits, which previously always used the full version; but will in practice only infrequently have required that. The motivation for this work are not the space savings and and deduplication though; it's that it makes it easier to extend commit records with additional information. That's just a few lines of code now; without impacting the common case where that information is not needed. Discussion: 20150220152150.GD4149@awork2.anarazel.de, 235610.92468.qm%40web29004.mail.ird.yahoo.com Reviewed-By: Heikki Linnakangas, Simon Riggs
11 years ago
ReorderBufferForget(ctx->reorder, parsed->subxacts[i], buf->origptr);
}
ReorderBufferForget(ctx->reorder, xid, buf->origptr);
return;
}
/* tell the reorderbuffer about the surviving subtransactions */
Merge the various forms of transaction commit & abort records. Since 465883b0a two versions of commit records have existed. A compact version that was used when no cache invalidations, smgr unlinks and similar were needed, and a full version that could deal with all that. Additionally the full version was embedded into twophase commit records. That resulted in a measurable reduction in the size of the logged WAL in some workloads. But more recently additions like logical decoding, which e.g. needs information about the database something was executed on, made it applicable in fewer situations. The static split generally made it hard to expand the commit record, because concerns over the size made it hard to add anything to the compact version. Additionally it's not particularly pretty to have twophase.c insert RM_XACT records. Rejigger things so that the commit and abort records only have one form each, including the twophase equivalents. The presence of the various optional (in the sense of not being in every record) pieces is indicated by a bits in the 'xinfo' flag. That flag previously was not included in compact commit records. To prevent an increase in size due to its presence, it's only included if necessary; signalled by a bit in the xl_info bits available for xact.c, similar to heapam.c's XLOG_HEAP_OPMASK/XLOG_HEAP_INIT_PAGE. Twophase commit/aborts are now the same as their normal counterparts. The original transaction's xid is included in an optional data field. This means that commit records generally are smaller, except in the case of a transaction with subtransactions, but no other special cases; the increase there is four bytes, which seems acceptable given that the more common case of not having subtransactions shrank. The savings are especially measurable for twophase commits, which previously always used the full version; but will in practice only infrequently have required that. The motivation for this work are not the space savings and and deduplication though; it's that it makes it easier to extend commit records with additional information. That's just a few lines of code now; without impacting the common case where that information is not needed. Discussion: 20150220152150.GD4149@awork2.anarazel.de, 235610.92468.qm%40web29004.mail.ird.yahoo.com Reviewed-By: Heikki Linnakangas, Simon Riggs
11 years ago
for (i = 0; i < parsed->nsubxacts; i++)
{
Merge the various forms of transaction commit & abort records. Since 465883b0a two versions of commit records have existed. A compact version that was used when no cache invalidations, smgr unlinks and similar were needed, and a full version that could deal with all that. Additionally the full version was embedded into twophase commit records. That resulted in a measurable reduction in the size of the logged WAL in some workloads. But more recently additions like logical decoding, which e.g. needs information about the database something was executed on, made it applicable in fewer situations. The static split generally made it hard to expand the commit record, because concerns over the size made it hard to add anything to the compact version. Additionally it's not particularly pretty to have twophase.c insert RM_XACT records. Rejigger things so that the commit and abort records only have one form each, including the twophase equivalents. The presence of the various optional (in the sense of not being in every record) pieces is indicated by a bits in the 'xinfo' flag. That flag previously was not included in compact commit records. To prevent an increase in size due to its presence, it's only included if necessary; signalled by a bit in the xl_info bits available for xact.c, similar to heapam.c's XLOG_HEAP_OPMASK/XLOG_HEAP_INIT_PAGE. Twophase commit/aborts are now the same as their normal counterparts. The original transaction's xid is included in an optional data field. This means that commit records generally are smaller, except in the case of a transaction with subtransactions, but no other special cases; the increase there is four bytes, which seems acceptable given that the more common case of not having subtransactions shrank. The savings are especially measurable for twophase commits, which previously always used the full version; but will in practice only infrequently have required that. The motivation for this work are not the space savings and and deduplication though; it's that it makes it easier to extend commit records with additional information. That's just a few lines of code now; without impacting the common case where that information is not needed. Discussion: 20150220152150.GD4149@awork2.anarazel.de, 235610.92468.qm%40web29004.mail.ird.yahoo.com Reviewed-By: Heikki Linnakangas, Simon Riggs
11 years ago
ReorderBufferCommitChild(ctx->reorder, xid, parsed->subxacts[i],
buf->origptr, buf->endptr);
}
/*
* Send the final commit record if the transaction data is already
* decoded, otherwise, process the entire transaction.
*/
if (two_phase)
{
ReorderBufferFinishPrepared(ctx->reorder, xid, buf->origptr, buf->endptr,
Add support for prepared transactions to built-in logical replication. To add support for streaming transactions at prepare time into the built-in logical replication, we need to do the following things: * Modify the output plugin (pgoutput) to implement the new two-phase API callbacks, by leveraging the extended replication protocol. * Modify the replication apply worker, to properly handle two-phase transactions by replaying them on prepare. * Add a new SUBSCRIPTION option "two_phase" to allow users to enable two-phase transactions. We enable the two_phase once the initial data sync is over. We however must explicitly disable replication of two-phase transactions during replication slot creation, even if the plugin supports it. We don't need to replicate the changes accumulated during this phase, and moreover, we don't have a replication connection open so we don't know where to send the data anyway. The streaming option is not allowed with this new two_phase option. This can be done as a separate patch. We don't allow to toggle two_phase option of a subscription because it can lead to an inconsistent replica. For the same reason, we don't allow to refresh the publication once the two_phase is enabled for a subscription unless copy_data option is false. Author: Peter Smith, Ajin Cherian and Amit Kapila based on previous work by Nikhil Sontakke and Stas Kelvich Reviewed-by: Amit Kapila, Sawada Masahiko, Vignesh C, Dilip Kumar, Takamichi Osumi, Greg Nancarrow Tested-By: Haiying Tang Discussion: https://postgr.es/m/02DA5F5E-CECE-4D9C-8B4B-418077E2C010@postgrespro.ru Discussion: https://postgr.es/m/CAA4eK1+opiV4aFTmWWUF9h_32=HfPOW9vZASHarT0UA5oBrtGw@mail.gmail.com
4 years ago
SnapBuildGetTwoPhaseAt(ctx->snapshot_builder),
commit_time, origin_id, origin_lsn,
parsed->twophase_gid, true);
}
else
{
ReorderBufferCommit(ctx->reorder, xid, buf->origptr, buf->endptr,
commit_time, origin_id, origin_lsn);
}
/*
* Update the decoding stats at transaction prepare/commit/abort.
* Additionally we send the stats when we spill or stream the changes to
* avoid losing them in case the decoding is interrupted. It is not clear
* that sending more or less frequently than this would be better.
*/
UpdateDecodingStats(ctx);
}
/*
* Decode PREPARE record. Similar logic as in DecodeCommit.
*
* Note that we don't skip prepare even if have detected concurrent abort
* because it is quite possible that we had already sent some changes before we
* detect abort in which case we need to abort those changes in the subscriber.
* To abort such changes, we do send the prepare and then the rollback prepared
* which is what happened on the publisher-side as well. Now, we can invent a
* new abort API wherein in such cases we send abort and skip sending prepared
* and rollback prepared but then it is not that straightforward because we
* might have streamed this transaction by that time in which case it is
* handled when the rollback is encountered. It is not impossible to optimize
* the concurrent abort case but it can introduce design complexity w.r.t
* handling different cases so leaving it for now as it doesn't seem worth it.
*/
static void
DecodePrepare(LogicalDecodingContext *ctx, XLogRecordBuffer *buf,
xl_xact_parsed_prepare *parsed)
{
SnapBuild *builder = ctx->snapshot_builder;
XLogRecPtr origin_lsn = parsed->origin_lsn;
TimestampTz prepare_time = parsed->xact_time;
XLogRecPtr origin_id = XLogRecGetOrigin(buf->record);
int i;
TransactionId xid = parsed->twophase_xid;
if (parsed->origin_timestamp != 0)
prepare_time = parsed->origin_timestamp;
/*
* Remember the prepare info for a txn so that it can be used later in
* commit prepared if required. See ReorderBufferFinishPrepared.
*/
if (!ReorderBufferRememberPrepareInfo(ctx->reorder, xid, buf->origptr,
buf->endptr, prepare_time, origin_id,
origin_lsn))
return;
/* We can't start streaming unless a consistent state is reached. */
if (SnapBuildCurrentState(builder) < SNAPBUILD_CONSISTENT)
{
ReorderBufferSkipPrepare(ctx->reorder, xid);
return;
}
/*
* Check whether we need to process this transaction. See
* DecodeTXNNeedSkip for the reasons why we sometimes want to skip the
* transaction.
*
* We can't call ReorderBufferForget as we did in DecodeCommit as the txn
* hasn't yet been committed, removing this txn before a commit might
* result in the computation of an incorrect restart_lsn. See
* SnapBuildProcessRunningXacts. But we need to process cache
* invalidations if there are any for the reasons mentioned in
* DecodeCommit.
*/
if (DecodeTXNNeedSkip(ctx, buf, parsed->dbId, origin_id))
{
ReorderBufferSkipPrepare(ctx->reorder, xid);
ReorderBufferInvalidate(ctx->reorder, xid, buf->origptr);
return;
}
/* Tell the reorderbuffer about the surviving subtransactions. */
for (i = 0; i < parsed->nsubxacts; i++)
{
ReorderBufferCommitChild(ctx->reorder, xid, parsed->subxacts[i],
buf->origptr, buf->endptr);
}
/* replay actions of all transaction + subtransactions in order */
ReorderBufferPrepare(ctx->reorder, xid, parsed->twophase_gid);
/*
* Update the decoding stats at transaction prepare/commit/abort.
* Additionally we send the stats when we spill or stream the changes to
* avoid losing them in case the decoding is interrupted. It is not clear
* that sending more or less frequently than this would be better.
*/
UpdateDecodingStats(ctx);
}
/*
* Get the data from the various forms of abort records and pass it on to
* snapbuild.c and reorderbuffer.c.
*
* 'two_phase' indicates to finish prepared transaction.
*/
static void
Merge the various forms of transaction commit & abort records. Since 465883b0a two versions of commit records have existed. A compact version that was used when no cache invalidations, smgr unlinks and similar were needed, and a full version that could deal with all that. Additionally the full version was embedded into twophase commit records. That resulted in a measurable reduction in the size of the logged WAL in some workloads. But more recently additions like logical decoding, which e.g. needs information about the database something was executed on, made it applicable in fewer situations. The static split generally made it hard to expand the commit record, because concerns over the size made it hard to add anything to the compact version. Additionally it's not particularly pretty to have twophase.c insert RM_XACT records. Rejigger things so that the commit and abort records only have one form each, including the twophase equivalents. The presence of the various optional (in the sense of not being in every record) pieces is indicated by a bits in the 'xinfo' flag. That flag previously was not included in compact commit records. To prevent an increase in size due to its presence, it's only included if necessary; signalled by a bit in the xl_info bits available for xact.c, similar to heapam.c's XLOG_HEAP_OPMASK/XLOG_HEAP_INIT_PAGE. Twophase commit/aborts are now the same as their normal counterparts. The original transaction's xid is included in an optional data field. This means that commit records generally are smaller, except in the case of a transaction with subtransactions, but no other special cases; the increase there is four bytes, which seems acceptable given that the more common case of not having subtransactions shrank. The savings are especially measurable for twophase commits, which previously always used the full version; but will in practice only infrequently have required that. The motivation for this work are not the space savings and and deduplication though; it's that it makes it easier to extend commit records with additional information. That's just a few lines of code now; without impacting the common case where that information is not needed. Discussion: 20150220152150.GD4149@awork2.anarazel.de, 235610.92468.qm%40web29004.mail.ird.yahoo.com Reviewed-By: Heikki Linnakangas, Simon Riggs
11 years ago
DecodeAbort(LogicalDecodingContext *ctx, XLogRecordBuffer *buf,
xl_xact_parsed_abort *parsed, TransactionId xid,
bool two_phase)
{
int i;
XLogRecPtr origin_lsn = InvalidXLogRecPtr;
TimestampTz abort_time = parsed->xact_time;
XLogRecPtr origin_id = XLogRecGetOrigin(buf->record);
bool skip_xact;
if (parsed->xinfo & XACT_XINFO_HAS_ORIGIN)
{
origin_lsn = parsed->origin_lsn;
abort_time = parsed->origin_timestamp;
}
/*
* Check whether we need to process this transaction. See
* DecodeTXNNeedSkip for the reasons why we sometimes want to skip the
* transaction.
*/
skip_xact = DecodeTXNNeedSkip(ctx, buf, parsed->dbId, origin_id);
/*
* Send the final rollback record for a prepared transaction unless we
* need to skip it. For non-two-phase xacts, simply forget the xact.
*/
if (two_phase && !skip_xact)
{
ReorderBufferFinishPrepared(ctx->reorder, xid, buf->origptr, buf->endptr,
abort_time, origin_id, origin_lsn,
InvalidXLogRecPtr,
parsed->twophase_gid, false);
}
else
{
for (i = 0; i < parsed->nsubxacts; i++)
{
ReorderBufferAbort(ctx->reorder, parsed->subxacts[i],
buf->record->EndRecPtr);
}
ReorderBufferAbort(ctx->reorder, xid, buf->record->EndRecPtr);
}
/* update the decoding stats */
UpdateDecodingStats(ctx);
}
/*
* Parse XLOG_HEAP_INSERT (not MULTI_INSERT!) records into tuplebufs.
*
* Deletes can contain the new tuple.
*/
static void
DecodeInsert(LogicalDecodingContext *ctx, XLogRecordBuffer *buf)
{
Do not decode TOAST data for table rewrites During table rewrites (VACUUM FULL and CLUSTER), the main heap is logged using XLOG / FPI records, and thus (correctly) ignored in decoding. But the associated TOAST table is WAL-logged as plain INSERT records, and so was logically decoded and passed to reorder buffer. That has severe consequences with TOAST tables of non-trivial size. Firstly, reorder buffer has to keep all those changes, possibly spilling them to a file, incurring I/O costs and disk space. Secondly, ReoderBufferCommit() was stashing all those TOAST chunks into a hash table, which got discarded only after processing the row from the main heap. But as the main heap is not decoded for rewrites, this never happened, so all the TOAST data accumulated in memory, resulting either in excessive memory consumption or OOM. The fix is simple, as commit e9edc1ba already introduced infrastructure (namely HEAP_INSERT_NO_LOGICAL flag) to skip logical decoding of TOAST tables, but it only applied it to system tables. So simply use it for all TOAST data in raw_heap_insert(). That would however solve only the memory consumption issue - the TOAST changes would still be decoded and added to the reorder buffer, and spilled to disk (although without TOAST tuple data, so much smaller). But we can solve that by tweaking DecodeInsert() to just ignore such INSERT records altogether, using XLH_INSERT_CONTAINS_NEW_TUPLE flag, instead of skipping them later in ReorderBufferCommit(). Review: Masahiko Sawada Discussion: https://www.postgresql.org/message-id/flat/1a17c643-e9af-3dba-486b-fbe31bc1823a%402ndquadrant.com Backpatch: 9.4-, where logical decoding was introduced
7 years ago
Size datalen;
char *tupledata;
Size tuplelen;
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
XLogReaderState *r = buf->record;
xl_heap_insert *xlrec;
ReorderBufferChange *change;
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
RelFileNode target_node;
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
xlrec = (xl_heap_insert *) XLogRecGetData(r);
Do not decode TOAST data for table rewrites During table rewrites (VACUUM FULL and CLUSTER), the main heap is logged using XLOG / FPI records, and thus (correctly) ignored in decoding. But the associated TOAST table is WAL-logged as plain INSERT records, and so was logically decoded and passed to reorder buffer. That has severe consequences with TOAST tables of non-trivial size. Firstly, reorder buffer has to keep all those changes, possibly spilling them to a file, incurring I/O costs and disk space. Secondly, ReoderBufferCommit() was stashing all those TOAST chunks into a hash table, which got discarded only after processing the row from the main heap. But as the main heap is not decoded for rewrites, this never happened, so all the TOAST data accumulated in memory, resulting either in excessive memory consumption or OOM. The fix is simple, as commit e9edc1ba already introduced infrastructure (namely HEAP_INSERT_NO_LOGICAL flag) to skip logical decoding of TOAST tables, but it only applied it to system tables. So simply use it for all TOAST data in raw_heap_insert(). That would however solve only the memory consumption issue - the TOAST changes would still be decoded and added to the reorder buffer, and spilled to disk (although without TOAST tuple data, so much smaller). But we can solve that by tweaking DecodeInsert() to just ignore such INSERT records altogether, using XLH_INSERT_CONTAINS_NEW_TUPLE flag, instead of skipping them later in ReorderBufferCommit(). Review: Masahiko Sawada Discussion: https://www.postgresql.org/message-id/flat/1a17c643-e9af-3dba-486b-fbe31bc1823a%402ndquadrant.com Backpatch: 9.4-, where logical decoding was introduced
7 years ago
/*
* Ignore insert records without new tuples (this does happen when
* raw_heap_insert marks the TOAST record as HEAP_INSERT_NO_LOGICAL).
*/
if (!(xlrec->flags & XLH_INSERT_CONTAINS_NEW_TUPLE))
return;
/* only interested in our database */
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
XLogRecGetBlockTag(r, 0, &target_node, NULL, NULL);
if (target_node.dbNode != ctx->slot->data.database)
return;
Introduce replication progress tracking infrastructure. When implementing a replication solution ontop of logical decoding, two related problems exist: * How to safely keep track of replication progress * How to change replication behavior, based on the origin of a row; e.g. to avoid loops in bi-directional replication setups The solution to these problems, as implemented here, consist out of three parts: 1) 'replication origins', which identify nodes in a replication setup. 2) 'replication progress tracking', which remembers, for each replication origin, how far replay has progressed in a efficient and crash safe manner. 3) The ability to filter out changes performed on the behest of a replication origin during logical decoding; this allows complex replication topologies. E.g. by filtering all replayed changes out. Most of this could also be implemented in "userspace", e.g. by inserting additional rows contain origin information, but that ends up being much less efficient and more complicated. We don't want to require various replication solutions to reimplement logic for this independently. The infrastructure is intended to be generic enough to be reusable. This infrastructure also replaces the 'nodeid' infrastructure of commit timestamps. It is intended to provide all the former capabilities, except that there's only 2^16 different origins; but now they integrate with logical decoding. Additionally more functionality is accessible via SQL. Since the commit timestamp infrastructure has also been introduced in 9.5 (commit 73c986add) changing the API is not a problem. For now the number of origins for which the replication progress can be tracked simultaneously is determined by the max_replication_slots GUC. That GUC is not a perfect match to configure this, but there doesn't seem to be sufficient reason to introduce a separate new one. Bumps both catversion and wal page magic. Author: Andres Freund, with contributions from Petr Jelinek and Craig Ringer Reviewed-By: Heikki Linnakangas, Petr Jelinek, Robert Haas, Steve Singer Discussion: 20150216002155.GI15326@awork2.anarazel.de, 20140923182422.GA15776@alap3.anarazel.de, 20131114172632.GE7522@alap2.anarazel.de
11 years ago
/* output plugin doesn't look for this origin, no need to queue */
if (FilterByOrigin(ctx, XLogRecGetOrigin(r)))
return;
change = ReorderBufferGetChange(ctx->reorder);
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
11 years ago
if (!(xlrec->flags & XLH_INSERT_IS_SPECULATIVE))
change->action = REORDER_BUFFER_CHANGE_INSERT;
else
change->action = REORDER_BUFFER_CHANGE_INTERNAL_SPEC_INSERT;
Introduce replication progress tracking infrastructure. When implementing a replication solution ontop of logical decoding, two related problems exist: * How to safely keep track of replication progress * How to change replication behavior, based on the origin of a row; e.g. to avoid loops in bi-directional replication setups The solution to these problems, as implemented here, consist out of three parts: 1) 'replication origins', which identify nodes in a replication setup. 2) 'replication progress tracking', which remembers, for each replication origin, how far replay has progressed in a efficient and crash safe manner. 3) The ability to filter out changes performed on the behest of a replication origin during logical decoding; this allows complex replication topologies. E.g. by filtering all replayed changes out. Most of this could also be implemented in "userspace", e.g. by inserting additional rows contain origin information, but that ends up being much less efficient and more complicated. We don't want to require various replication solutions to reimplement logic for this independently. The infrastructure is intended to be generic enough to be reusable. This infrastructure also replaces the 'nodeid' infrastructure of commit timestamps. It is intended to provide all the former capabilities, except that there's only 2^16 different origins; but now they integrate with logical decoding. Additionally more functionality is accessible via SQL. Since the commit timestamp infrastructure has also been introduced in 9.5 (commit 73c986add) changing the API is not a problem. For now the number of origins for which the replication progress can be tracked simultaneously is determined by the max_replication_slots GUC. That GUC is not a perfect match to configure this, but there doesn't seem to be sufficient reason to introduce a separate new one. Bumps both catversion and wal page magic. Author: Andres Freund, with contributions from Petr Jelinek and Craig Ringer Reviewed-By: Heikki Linnakangas, Petr Jelinek, Robert Haas, Steve Singer Discussion: 20150216002155.GI15326@awork2.anarazel.de, 20140923182422.GA15776@alap3.anarazel.de, 20131114172632.GE7522@alap2.anarazel.de
11 years ago
change->origin_id = XLogRecGetOrigin(r);
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
11 years ago
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
memcpy(&change->data.tp.relnode, &target_node, sizeof(RelFileNode));
Do not decode TOAST data for table rewrites During table rewrites (VACUUM FULL and CLUSTER), the main heap is logged using XLOG / FPI records, and thus (correctly) ignored in decoding. But the associated TOAST table is WAL-logged as plain INSERT records, and so was logically decoded and passed to reorder buffer. That has severe consequences with TOAST tables of non-trivial size. Firstly, reorder buffer has to keep all those changes, possibly spilling them to a file, incurring I/O costs and disk space. Secondly, ReoderBufferCommit() was stashing all those TOAST chunks into a hash table, which got discarded only after processing the row from the main heap. But as the main heap is not decoded for rewrites, this never happened, so all the TOAST data accumulated in memory, resulting either in excessive memory consumption or OOM. The fix is simple, as commit e9edc1ba already introduced infrastructure (namely HEAP_INSERT_NO_LOGICAL flag) to skip logical decoding of TOAST tables, but it only applied it to system tables. So simply use it for all TOAST data in raw_heap_insert(). That would however solve only the memory consumption issue - the TOAST changes would still be decoded and added to the reorder buffer, and spilled to disk (although without TOAST tuple data, so much smaller). But we can solve that by tweaking DecodeInsert() to just ignore such INSERT records altogether, using XLH_INSERT_CONTAINS_NEW_TUPLE flag, instead of skipping them later in ReorderBufferCommit(). Review: Masahiko Sawada Discussion: https://www.postgresql.org/message-id/flat/1a17c643-e9af-3dba-486b-fbe31bc1823a%402ndquadrant.com Backpatch: 9.4-, where logical decoding was introduced
7 years ago
tupledata = XLogRecGetBlockData(r, 0, &datalen);
tuplelen = datalen - SizeOfHeapHeader;
Do not decode TOAST data for table rewrites During table rewrites (VACUUM FULL and CLUSTER), the main heap is logged using XLOG / FPI records, and thus (correctly) ignored in decoding. But the associated TOAST table is WAL-logged as plain INSERT records, and so was logically decoded and passed to reorder buffer. That has severe consequences with TOAST tables of non-trivial size. Firstly, reorder buffer has to keep all those changes, possibly spilling them to a file, incurring I/O costs and disk space. Secondly, ReoderBufferCommit() was stashing all those TOAST chunks into a hash table, which got discarded only after processing the row from the main heap. But as the main heap is not decoded for rewrites, this never happened, so all the TOAST data accumulated in memory, resulting either in excessive memory consumption or OOM. The fix is simple, as commit e9edc1ba already introduced infrastructure (namely HEAP_INSERT_NO_LOGICAL flag) to skip logical decoding of TOAST tables, but it only applied it to system tables. So simply use it for all TOAST data in raw_heap_insert(). That would however solve only the memory consumption issue - the TOAST changes would still be decoded and added to the reorder buffer, and spilled to disk (although without TOAST tuple data, so much smaller). But we can solve that by tweaking DecodeInsert() to just ignore such INSERT records altogether, using XLH_INSERT_CONTAINS_NEW_TUPLE flag, instead of skipping them later in ReorderBufferCommit(). Review: Masahiko Sawada Discussion: https://www.postgresql.org/message-id/flat/1a17c643-e9af-3dba-486b-fbe31bc1823a%402ndquadrant.com Backpatch: 9.4-, where logical decoding was introduced
7 years ago
change->data.tp.newtuple =
ReorderBufferGetTupleBuf(ctx->reorder, tuplelen);
Do not decode TOAST data for table rewrites During table rewrites (VACUUM FULL and CLUSTER), the main heap is logged using XLOG / FPI records, and thus (correctly) ignored in decoding. But the associated TOAST table is WAL-logged as plain INSERT records, and so was logically decoded and passed to reorder buffer. That has severe consequences with TOAST tables of non-trivial size. Firstly, reorder buffer has to keep all those changes, possibly spilling them to a file, incurring I/O costs and disk space. Secondly, ReoderBufferCommit() was stashing all those TOAST chunks into a hash table, which got discarded only after processing the row from the main heap. But as the main heap is not decoded for rewrites, this never happened, so all the TOAST data accumulated in memory, resulting either in excessive memory consumption or OOM. The fix is simple, as commit e9edc1ba already introduced infrastructure (namely HEAP_INSERT_NO_LOGICAL flag) to skip logical decoding of TOAST tables, but it only applied it to system tables. So simply use it for all TOAST data in raw_heap_insert(). That would however solve only the memory consumption issue - the TOAST changes would still be decoded and added to the reorder buffer, and spilled to disk (although without TOAST tuple data, so much smaller). But we can solve that by tweaking DecodeInsert() to just ignore such INSERT records altogether, using XLH_INSERT_CONTAINS_NEW_TUPLE flag, instead of skipping them later in ReorderBufferCommit(). Review: Masahiko Sawada Discussion: https://www.postgresql.org/message-id/flat/1a17c643-e9af-3dba-486b-fbe31bc1823a%402ndquadrant.com Backpatch: 9.4-, where logical decoding was introduced
7 years ago
DecodeXLogTuple(tupledata, datalen, change->data.tp.newtuple);
change->data.tp.clear_toast_afterwards = true;
Implement streaming mode in ReorderBuffer. Instead of serializing the transaction to disk after reaching the logical_decoding_work_mem limit in memory, we consume the changes we have in memory and invoke stream API methods added by commit 45fdc9738b. However, sometimes if we have incomplete toast or speculative insert we spill to the disk because we can't generate the complete tuple and stream. And, as soon as we get the complete tuple we stream the transaction including the serialized changes. We can do this incremental processing thanks to having assignments (associating subxact with toplevel xacts) in WAL right away, and thanks to logging the invalidation messages at each command end. These features are added by commits 0bead9af48 and c55040ccd0 respectively. Now that we can stream in-progress transactions, the concurrent aborts may cause failures when the output plugin consults catalogs (both system and user-defined). We handle such failures by returning ERRCODE_TRANSACTION_ROLLBACK sqlerrcode from system table scan APIs to the backend or WALSender decoding a specific uncommitted transaction. The decoding logic on the receipt of such a sqlerrcode aborts the decoding of the current transaction and continue with the decoding of other transactions. We have ReorderBufferTXN pointer in each ReorderBufferChange by which we know which xact it belongs to. The output plugin can use this to decide which changes to discard in case of stream_abort_cb (e.g. when a subxact gets discarded). We also provide a new option via SQL APIs to fetch the changes being streamed. Author: Dilip Kumar, Tomas Vondra, Amit Kapila, Nikhil Sontakke Reviewed-by: Amit Kapila, Kuntal Ghosh, Ajin Cherian Tested-by: Neha Sharma, Mahendra Singh Thalor and Ajin Cherian Discussion: https://postgr.es/m/688b0b7f-2f6c-d827-c27b-216a8e3ea700@2ndquadrant.com
5 years ago
ReorderBufferQueueChange(ctx->reorder, XLogRecGetXid(r), buf->origptr,
change,
xlrec->flags & XLH_INSERT_ON_TOAST_RELATION);
}
/*
* Parse XLOG_HEAP_UPDATE and XLOG_HEAP_HOT_UPDATE, which have the same layout
* in the record, from wal into proper tuplebufs.
*
* Updates can possibly contain a new tuple and the old primary key.
*/
static void
DecodeUpdate(LogicalDecodingContext *ctx, XLogRecordBuffer *buf)
{
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
XLogReaderState *r = buf->record;
xl_heap_update *xlrec;
ReorderBufferChange *change;
char *data;
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
RelFileNode target_node;
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
xlrec = (xl_heap_update *) XLogRecGetData(r);
/* only interested in our database */
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
XLogRecGetBlockTag(r, 0, &target_node, NULL, NULL);
if (target_node.dbNode != ctx->slot->data.database)
return;
Introduce replication progress tracking infrastructure. When implementing a replication solution ontop of logical decoding, two related problems exist: * How to safely keep track of replication progress * How to change replication behavior, based on the origin of a row; e.g. to avoid loops in bi-directional replication setups The solution to these problems, as implemented here, consist out of three parts: 1) 'replication origins', which identify nodes in a replication setup. 2) 'replication progress tracking', which remembers, for each replication origin, how far replay has progressed in a efficient and crash safe manner. 3) The ability to filter out changes performed on the behest of a replication origin during logical decoding; this allows complex replication topologies. E.g. by filtering all replayed changes out. Most of this could also be implemented in "userspace", e.g. by inserting additional rows contain origin information, but that ends up being much less efficient and more complicated. We don't want to require various replication solutions to reimplement logic for this independently. The infrastructure is intended to be generic enough to be reusable. This infrastructure also replaces the 'nodeid' infrastructure of commit timestamps. It is intended to provide all the former capabilities, except that there's only 2^16 different origins; but now they integrate with logical decoding. Additionally more functionality is accessible via SQL. Since the commit timestamp infrastructure has also been introduced in 9.5 (commit 73c986add) changing the API is not a problem. For now the number of origins for which the replication progress can be tracked simultaneously is determined by the max_replication_slots GUC. That GUC is not a perfect match to configure this, but there doesn't seem to be sufficient reason to introduce a separate new one. Bumps both catversion and wal page magic. Author: Andres Freund, with contributions from Petr Jelinek and Craig Ringer Reviewed-By: Heikki Linnakangas, Petr Jelinek, Robert Haas, Steve Singer Discussion: 20150216002155.GI15326@awork2.anarazel.de, 20140923182422.GA15776@alap3.anarazel.de, 20131114172632.GE7522@alap2.anarazel.de
11 years ago
/* output plugin doesn't look for this origin, no need to queue */
if (FilterByOrigin(ctx, XLogRecGetOrigin(r)))
return;
change = ReorderBufferGetChange(ctx->reorder);
change->action = REORDER_BUFFER_CHANGE_UPDATE;
Introduce replication progress tracking infrastructure. When implementing a replication solution ontop of logical decoding, two related problems exist: * How to safely keep track of replication progress * How to change replication behavior, based on the origin of a row; e.g. to avoid loops in bi-directional replication setups The solution to these problems, as implemented here, consist out of three parts: 1) 'replication origins', which identify nodes in a replication setup. 2) 'replication progress tracking', which remembers, for each replication origin, how far replay has progressed in a efficient and crash safe manner. 3) The ability to filter out changes performed on the behest of a replication origin during logical decoding; this allows complex replication topologies. E.g. by filtering all replayed changes out. Most of this could also be implemented in "userspace", e.g. by inserting additional rows contain origin information, but that ends up being much less efficient and more complicated. We don't want to require various replication solutions to reimplement logic for this independently. The infrastructure is intended to be generic enough to be reusable. This infrastructure also replaces the 'nodeid' infrastructure of commit timestamps. It is intended to provide all the former capabilities, except that there's only 2^16 different origins; but now they integrate with logical decoding. Additionally more functionality is accessible via SQL. Since the commit timestamp infrastructure has also been introduced in 9.5 (commit 73c986add) changing the API is not a problem. For now the number of origins for which the replication progress can be tracked simultaneously is determined by the max_replication_slots GUC. That GUC is not a perfect match to configure this, but there doesn't seem to be sufficient reason to introduce a separate new one. Bumps both catversion and wal page magic. Author: Andres Freund, with contributions from Petr Jelinek and Craig Ringer Reviewed-By: Heikki Linnakangas, Petr Jelinek, Robert Haas, Steve Singer Discussion: 20150216002155.GI15326@awork2.anarazel.de, 20140923182422.GA15776@alap3.anarazel.de, 20131114172632.GE7522@alap2.anarazel.de
11 years ago
change->origin_id = XLogRecGetOrigin(r);
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
memcpy(&change->data.tp.relnode, &target_node, sizeof(RelFileNode));
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
11 years ago
if (xlrec->flags & XLH_UPDATE_CONTAINS_NEW_TUPLE)
{
Size datalen;
Size tuplelen;
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
data = XLogRecGetBlockData(r, 0, &datalen);
tuplelen = datalen - SizeOfHeapHeader;
change->data.tp.newtuple =
ReorderBufferGetTupleBuf(ctx->reorder, tuplelen);
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
DecodeXLogTuple(data, datalen, change->data.tp.newtuple);
}
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
11 years ago
if (xlrec->flags & XLH_UPDATE_CONTAINS_OLD)
{
Size datalen;
Size tuplelen;
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
/* caution, remaining data in record is not aligned */
data = XLogRecGetData(r) + SizeOfHeapUpdate;
datalen = XLogRecGetDataLen(r) - SizeOfHeapUpdate;
tuplelen = datalen - SizeOfHeapHeader;
change->data.tp.oldtuple =
ReorderBufferGetTupleBuf(ctx->reorder, tuplelen);
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
DecodeXLogTuple(data, datalen, change->data.tp.oldtuple);
}
change->data.tp.clear_toast_afterwards = true;
Implement streaming mode in ReorderBuffer. Instead of serializing the transaction to disk after reaching the logical_decoding_work_mem limit in memory, we consume the changes we have in memory and invoke stream API methods added by commit 45fdc9738b. However, sometimes if we have incomplete toast or speculative insert we spill to the disk because we can't generate the complete tuple and stream. And, as soon as we get the complete tuple we stream the transaction including the serialized changes. We can do this incremental processing thanks to having assignments (associating subxact with toplevel xacts) in WAL right away, and thanks to logging the invalidation messages at each command end. These features are added by commits 0bead9af48 and c55040ccd0 respectively. Now that we can stream in-progress transactions, the concurrent aborts may cause failures when the output plugin consults catalogs (both system and user-defined). We handle such failures by returning ERRCODE_TRANSACTION_ROLLBACK sqlerrcode from system table scan APIs to the backend or WALSender decoding a specific uncommitted transaction. The decoding logic on the receipt of such a sqlerrcode aborts the decoding of the current transaction and continue with the decoding of other transactions. We have ReorderBufferTXN pointer in each ReorderBufferChange by which we know which xact it belongs to. The output plugin can use this to decide which changes to discard in case of stream_abort_cb (e.g. when a subxact gets discarded). We also provide a new option via SQL APIs to fetch the changes being streamed. Author: Dilip Kumar, Tomas Vondra, Amit Kapila, Nikhil Sontakke Reviewed-by: Amit Kapila, Kuntal Ghosh, Ajin Cherian Tested-by: Neha Sharma, Mahendra Singh Thalor and Ajin Cherian Discussion: https://postgr.es/m/688b0b7f-2f6c-d827-c27b-216a8e3ea700@2ndquadrant.com
5 years ago
ReorderBufferQueueChange(ctx->reorder, XLogRecGetXid(r), buf->origptr,
change, false);
}
/*
* Parse XLOG_HEAP_DELETE from wal into proper tuplebufs.
*
* Deletes can possibly contain the old primary key.
*/
static void
DecodeDelete(LogicalDecodingContext *ctx, XLogRecordBuffer *buf)
{
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
XLogReaderState *r = buf->record;
xl_heap_delete *xlrec;
ReorderBufferChange *change;
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
RelFileNode target_node;
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
xlrec = (xl_heap_delete *) XLogRecGetData(r);
/* only interested in our database */
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
XLogRecGetBlockTag(r, 0, &target_node, NULL, NULL);
if (target_node.dbNode != ctx->slot->data.database)
return;
Introduce replication progress tracking infrastructure. When implementing a replication solution ontop of logical decoding, two related problems exist: * How to safely keep track of replication progress * How to change replication behavior, based on the origin of a row; e.g. to avoid loops in bi-directional replication setups The solution to these problems, as implemented here, consist out of three parts: 1) 'replication origins', which identify nodes in a replication setup. 2) 'replication progress tracking', which remembers, for each replication origin, how far replay has progressed in a efficient and crash safe manner. 3) The ability to filter out changes performed on the behest of a replication origin during logical decoding; this allows complex replication topologies. E.g. by filtering all replayed changes out. Most of this could also be implemented in "userspace", e.g. by inserting additional rows contain origin information, but that ends up being much less efficient and more complicated. We don't want to require various replication solutions to reimplement logic for this independently. The infrastructure is intended to be generic enough to be reusable. This infrastructure also replaces the 'nodeid' infrastructure of commit timestamps. It is intended to provide all the former capabilities, except that there's only 2^16 different origins; but now they integrate with logical decoding. Additionally more functionality is accessible via SQL. Since the commit timestamp infrastructure has also been introduced in 9.5 (commit 73c986add) changing the API is not a problem. For now the number of origins for which the replication progress can be tracked simultaneously is determined by the max_replication_slots GUC. That GUC is not a perfect match to configure this, but there doesn't seem to be sufficient reason to introduce a separate new one. Bumps both catversion and wal page magic. Author: Andres Freund, with contributions from Petr Jelinek and Craig Ringer Reviewed-By: Heikki Linnakangas, Petr Jelinek, Robert Haas, Steve Singer Discussion: 20150216002155.GI15326@awork2.anarazel.de, 20140923182422.GA15776@alap3.anarazel.de, 20131114172632.GE7522@alap2.anarazel.de
11 years ago
/* output plugin doesn't look for this origin, no need to queue */
if (FilterByOrigin(ctx, XLogRecGetOrigin(r)))
return;
change = ReorderBufferGetChange(ctx->reorder);
if (xlrec->flags & XLH_DELETE_IS_SUPER)
change->action = REORDER_BUFFER_CHANGE_INTERNAL_SPEC_ABORT;
else
change->action = REORDER_BUFFER_CHANGE_DELETE;
Introduce replication progress tracking infrastructure. When implementing a replication solution ontop of logical decoding, two related problems exist: * How to safely keep track of replication progress * How to change replication behavior, based on the origin of a row; e.g. to avoid loops in bi-directional replication setups The solution to these problems, as implemented here, consist out of three parts: 1) 'replication origins', which identify nodes in a replication setup. 2) 'replication progress tracking', which remembers, for each replication origin, how far replay has progressed in a efficient and crash safe manner. 3) The ability to filter out changes performed on the behest of a replication origin during logical decoding; this allows complex replication topologies. E.g. by filtering all replayed changes out. Most of this could also be implemented in "userspace", e.g. by inserting additional rows contain origin information, but that ends up being much less efficient and more complicated. We don't want to require various replication solutions to reimplement logic for this independently. The infrastructure is intended to be generic enough to be reusable. This infrastructure also replaces the 'nodeid' infrastructure of commit timestamps. It is intended to provide all the former capabilities, except that there's only 2^16 different origins; but now they integrate with logical decoding. Additionally more functionality is accessible via SQL. Since the commit timestamp infrastructure has also been introduced in 9.5 (commit 73c986add) changing the API is not a problem. For now the number of origins for which the replication progress can be tracked simultaneously is determined by the max_replication_slots GUC. That GUC is not a perfect match to configure this, but there doesn't seem to be sufficient reason to introduce a separate new one. Bumps both catversion and wal page magic. Author: Andres Freund, with contributions from Petr Jelinek and Craig Ringer Reviewed-By: Heikki Linnakangas, Petr Jelinek, Robert Haas, Steve Singer Discussion: 20150216002155.GI15326@awork2.anarazel.de, 20140923182422.GA15776@alap3.anarazel.de, 20131114172632.GE7522@alap2.anarazel.de
11 years ago
change->origin_id = XLogRecGetOrigin(r);
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
memcpy(&change->data.tp.relnode, &target_node, sizeof(RelFileNode));
/* old primary key stored */
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
11 years ago
if (xlrec->flags & XLH_DELETE_CONTAINS_OLD)
{
Size datalen = XLogRecGetDataLen(r) - SizeOfHeapDelete;
Size tuplelen = datalen - SizeOfHeapHeader;
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
Assert(XLogRecGetDataLen(r) > (SizeOfHeapDelete + SizeOfHeapHeader));
change->data.tp.oldtuple =
ReorderBufferGetTupleBuf(ctx->reorder, tuplelen);
DecodeXLogTuple((char *) xlrec + SizeOfHeapDelete,
datalen, change->data.tp.oldtuple);
}
change->data.tp.clear_toast_afterwards = true;
Implement streaming mode in ReorderBuffer. Instead of serializing the transaction to disk after reaching the logical_decoding_work_mem limit in memory, we consume the changes we have in memory and invoke stream API methods added by commit 45fdc9738b. However, sometimes if we have incomplete toast or speculative insert we spill to the disk because we can't generate the complete tuple and stream. And, as soon as we get the complete tuple we stream the transaction including the serialized changes. We can do this incremental processing thanks to having assignments (associating subxact with toplevel xacts) in WAL right away, and thanks to logging the invalidation messages at each command end. These features are added by commits 0bead9af48 and c55040ccd0 respectively. Now that we can stream in-progress transactions, the concurrent aborts may cause failures when the output plugin consults catalogs (both system and user-defined). We handle such failures by returning ERRCODE_TRANSACTION_ROLLBACK sqlerrcode from system table scan APIs to the backend or WALSender decoding a specific uncommitted transaction. The decoding logic on the receipt of such a sqlerrcode aborts the decoding of the current transaction and continue with the decoding of other transactions. We have ReorderBufferTXN pointer in each ReorderBufferChange by which we know which xact it belongs to. The output plugin can use this to decide which changes to discard in case of stream_abort_cb (e.g. when a subxact gets discarded). We also provide a new option via SQL APIs to fetch the changes being streamed. Author: Dilip Kumar, Tomas Vondra, Amit Kapila, Nikhil Sontakke Reviewed-by: Amit Kapila, Kuntal Ghosh, Ajin Cherian Tested-by: Neha Sharma, Mahendra Singh Thalor and Ajin Cherian Discussion: https://postgr.es/m/688b0b7f-2f6c-d827-c27b-216a8e3ea700@2ndquadrant.com
5 years ago
ReorderBufferQueueChange(ctx->reorder, XLogRecGetXid(r), buf->origptr,
change, false);
}
/*
* Parse XLOG_HEAP_TRUNCATE from wal
*/
static void
DecodeTruncate(LogicalDecodingContext *ctx, XLogRecordBuffer *buf)
{
XLogReaderState *r = buf->record;
xl_heap_truncate *xlrec;
ReorderBufferChange *change;
xlrec = (xl_heap_truncate *) XLogRecGetData(r);
/* only interested in our database */
if (xlrec->dbId != ctx->slot->data.database)
return;
/* output plugin doesn't look for this origin, no need to queue */
if (FilterByOrigin(ctx, XLogRecGetOrigin(r)))
return;
change = ReorderBufferGetChange(ctx->reorder);
change->action = REORDER_BUFFER_CHANGE_TRUNCATE;
change->origin_id = XLogRecGetOrigin(r);
if (xlrec->flags & XLH_TRUNCATE_CASCADE)
change->data.truncate.cascade = true;
if (xlrec->flags & XLH_TRUNCATE_RESTART_SEQS)
change->data.truncate.restart_seqs = true;
change->data.truncate.nrelids = xlrec->nrelids;
change->data.truncate.relids = ReorderBufferGetRelids(ctx->reorder,
xlrec->nrelids);
memcpy(change->data.truncate.relids, xlrec->relids,
xlrec->nrelids * sizeof(Oid));
ReorderBufferQueueChange(ctx->reorder, XLogRecGetXid(r),
Implement streaming mode in ReorderBuffer. Instead of serializing the transaction to disk after reaching the logical_decoding_work_mem limit in memory, we consume the changes we have in memory and invoke stream API methods added by commit 45fdc9738b. However, sometimes if we have incomplete toast or speculative insert we spill to the disk because we can't generate the complete tuple and stream. And, as soon as we get the complete tuple we stream the transaction including the serialized changes. We can do this incremental processing thanks to having assignments (associating subxact with toplevel xacts) in WAL right away, and thanks to logging the invalidation messages at each command end. These features are added by commits 0bead9af48 and c55040ccd0 respectively. Now that we can stream in-progress transactions, the concurrent aborts may cause failures when the output plugin consults catalogs (both system and user-defined). We handle such failures by returning ERRCODE_TRANSACTION_ROLLBACK sqlerrcode from system table scan APIs to the backend or WALSender decoding a specific uncommitted transaction. The decoding logic on the receipt of such a sqlerrcode aborts the decoding of the current transaction and continue with the decoding of other transactions. We have ReorderBufferTXN pointer in each ReorderBufferChange by which we know which xact it belongs to. The output plugin can use this to decide which changes to discard in case of stream_abort_cb (e.g. when a subxact gets discarded). We also provide a new option via SQL APIs to fetch the changes being streamed. Author: Dilip Kumar, Tomas Vondra, Amit Kapila, Nikhil Sontakke Reviewed-by: Amit Kapila, Kuntal Ghosh, Ajin Cherian Tested-by: Neha Sharma, Mahendra Singh Thalor and Ajin Cherian Discussion: https://postgr.es/m/688b0b7f-2f6c-d827-c27b-216a8e3ea700@2ndquadrant.com
5 years ago
buf->origptr, change, false);
}
/*
* Decode XLOG_HEAP2_MULTI_INSERT_insert record into multiple tuplebufs.
*
* Currently MULTI_INSERT will always contain the full tuples.
*/
static void
DecodeMultiInsert(LogicalDecodingContext *ctx, XLogRecordBuffer *buf)
{
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
XLogReaderState *r = buf->record;
xl_heap_multi_insert *xlrec;
int i;
char *data;
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
char *tupledata;
Size tuplelen;
RelFileNode rnode;
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
xlrec = (xl_heap_multi_insert *) XLogRecGetData(r);
/*
* Ignore insert records without new tuples. This happens when a
* multi_insert is done on a catalog or on a non-persistent relation.
*/
if (!(xlrec->flags & XLH_INSERT_CONTAINS_NEW_TUPLE))
return;
/* only interested in our database */
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
XLogRecGetBlockTag(r, 0, &rnode, NULL, NULL);
if (rnode.dbNode != ctx->slot->data.database)
return;
Introduce replication progress tracking infrastructure. When implementing a replication solution ontop of logical decoding, two related problems exist: * How to safely keep track of replication progress * How to change replication behavior, based on the origin of a row; e.g. to avoid loops in bi-directional replication setups The solution to these problems, as implemented here, consist out of three parts: 1) 'replication origins', which identify nodes in a replication setup. 2) 'replication progress tracking', which remembers, for each replication origin, how far replay has progressed in a efficient and crash safe manner. 3) The ability to filter out changes performed on the behest of a replication origin during logical decoding; this allows complex replication topologies. E.g. by filtering all replayed changes out. Most of this could also be implemented in "userspace", e.g. by inserting additional rows contain origin information, but that ends up being much less efficient and more complicated. We don't want to require various replication solutions to reimplement logic for this independently. The infrastructure is intended to be generic enough to be reusable. This infrastructure also replaces the 'nodeid' infrastructure of commit timestamps. It is intended to provide all the former capabilities, except that there's only 2^16 different origins; but now they integrate with logical decoding. Additionally more functionality is accessible via SQL. Since the commit timestamp infrastructure has also been introduced in 9.5 (commit 73c986add) changing the API is not a problem. For now the number of origins for which the replication progress can be tracked simultaneously is determined by the max_replication_slots GUC. That GUC is not a perfect match to configure this, but there doesn't seem to be sufficient reason to introduce a separate new one. Bumps both catversion and wal page magic. Author: Andres Freund, with contributions from Petr Jelinek and Craig Ringer Reviewed-By: Heikki Linnakangas, Petr Jelinek, Robert Haas, Steve Singer Discussion: 20150216002155.GI15326@awork2.anarazel.de, 20140923182422.GA15776@alap3.anarazel.de, 20131114172632.GE7522@alap2.anarazel.de
11 years ago
/* output plugin doesn't look for this origin, no need to queue */
if (FilterByOrigin(ctx, XLogRecGetOrigin(r)))
return;
/*
* We know that this multi_insert isn't for a catalog, so the block should
* always have data even if a full-page write of it is taken.
*/
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
tupledata = XLogRecGetBlockData(r, 0, &tuplelen);
Assert(tupledata != NULL);
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
data = tupledata;
for (i = 0; i < xlrec->ntuples; i++)
{
ReorderBufferChange *change;
xl_multi_insert_tuple *xlhdr;
int datalen;
ReorderBufferTupleBuf *tuple;
HeapTupleHeader header;
change = ReorderBufferGetChange(ctx->reorder);
change->action = REORDER_BUFFER_CHANGE_INSERT;
Introduce replication progress tracking infrastructure. When implementing a replication solution ontop of logical decoding, two related problems exist: * How to safely keep track of replication progress * How to change replication behavior, based on the origin of a row; e.g. to avoid loops in bi-directional replication setups The solution to these problems, as implemented here, consist out of three parts: 1) 'replication origins', which identify nodes in a replication setup. 2) 'replication progress tracking', which remembers, for each replication origin, how far replay has progressed in a efficient and crash safe manner. 3) The ability to filter out changes performed on the behest of a replication origin during logical decoding; this allows complex replication topologies. E.g. by filtering all replayed changes out. Most of this could also be implemented in "userspace", e.g. by inserting additional rows contain origin information, but that ends up being much less efficient and more complicated. We don't want to require various replication solutions to reimplement logic for this independently. The infrastructure is intended to be generic enough to be reusable. This infrastructure also replaces the 'nodeid' infrastructure of commit timestamps. It is intended to provide all the former capabilities, except that there's only 2^16 different origins; but now they integrate with logical decoding. Additionally more functionality is accessible via SQL. Since the commit timestamp infrastructure has also been introduced in 9.5 (commit 73c986add) changing the API is not a problem. For now the number of origins for which the replication progress can be tracked simultaneously is determined by the max_replication_slots GUC. That GUC is not a perfect match to configure this, but there doesn't seem to be sufficient reason to introduce a separate new one. Bumps both catversion and wal page magic. Author: Andres Freund, with contributions from Petr Jelinek and Craig Ringer Reviewed-By: Heikki Linnakangas, Petr Jelinek, Robert Haas, Steve Singer Discussion: 20150216002155.GI15326@awork2.anarazel.de, 20140923182422.GA15776@alap3.anarazel.de, 20131114172632.GE7522@alap2.anarazel.de
11 years ago
change->origin_id = XLogRecGetOrigin(r);
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
memcpy(&change->data.tp.relnode, &rnode, sizeof(RelFileNode));
xlhdr = (xl_multi_insert_tuple *) SHORTALIGN(data);
data = ((char *) xlhdr) + SizeOfMultiInsertTuple;
datalen = xlhdr->datalen;
change->data.tp.newtuple =
ReorderBufferGetTupleBuf(ctx->reorder, datalen);
tuple = change->data.tp.newtuple;
header = tuple->tuple.t_data;
/* not a disk based tuple */
ItemPointerSetInvalid(&tuple->tuple.t_self);
/*
* We can only figure this out after reassembling the transactions.
*/
tuple->tuple.t_tableOid = InvalidOid;
tuple->tuple.t_len = datalen + SizeofHeapTupleHeader;
memset(header, 0, SizeofHeapTupleHeader);
memcpy((char *) tuple->tuple.t_data + SizeofHeapTupleHeader,
(char *) data,
datalen);
header->t_infomask = xlhdr->t_infomask;
header->t_infomask2 = xlhdr->t_infomask2;
header->t_hoff = xlhdr->t_hoff;
/*
* Reset toast reassembly state only after the last row in the last
* xl_multi_insert_tuple record emitted by one heap_multi_insert()
* call.
*/
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
11 years ago
if (xlrec->flags & XLH_INSERT_LAST_IN_MULTI &&
(i + 1) == xlrec->ntuples)
change->data.tp.clear_toast_afterwards = true;
else
change->data.tp.clear_toast_afterwards = false;
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
ReorderBufferQueueChange(ctx->reorder, XLogRecGetXid(r),
Implement streaming mode in ReorderBuffer. Instead of serializing the transaction to disk after reaching the logical_decoding_work_mem limit in memory, we consume the changes we have in memory and invoke stream API methods added by commit 45fdc9738b. However, sometimes if we have incomplete toast or speculative insert we spill to the disk because we can't generate the complete tuple and stream. And, as soon as we get the complete tuple we stream the transaction including the serialized changes. We can do this incremental processing thanks to having assignments (associating subxact with toplevel xacts) in WAL right away, and thanks to logging the invalidation messages at each command end. These features are added by commits 0bead9af48 and c55040ccd0 respectively. Now that we can stream in-progress transactions, the concurrent aborts may cause failures when the output plugin consults catalogs (both system and user-defined). We handle such failures by returning ERRCODE_TRANSACTION_ROLLBACK sqlerrcode from system table scan APIs to the backend or WALSender decoding a specific uncommitted transaction. The decoding logic on the receipt of such a sqlerrcode aborts the decoding of the current transaction and continue with the decoding of other transactions. We have ReorderBufferTXN pointer in each ReorderBufferChange by which we know which xact it belongs to. The output plugin can use this to decide which changes to discard in case of stream_abort_cb (e.g. when a subxact gets discarded). We also provide a new option via SQL APIs to fetch the changes being streamed. Author: Dilip Kumar, Tomas Vondra, Amit Kapila, Nikhil Sontakke Reviewed-by: Amit Kapila, Kuntal Ghosh, Ajin Cherian Tested-by: Neha Sharma, Mahendra Singh Thalor and Ajin Cherian Discussion: https://postgr.es/m/688b0b7f-2f6c-d827-c27b-216a8e3ea700@2ndquadrant.com
5 years ago
buf->origptr, change, false);
/* move to the next xl_multi_insert_tuple entry */
data += datalen;
}
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
11 years ago
Assert(data == tupledata + tuplelen);
}
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
11 years ago
/*
* Parse XLOG_HEAP_CONFIRM from wal into a confirmation change.
*
* This is pretty trivial, all the state essentially already setup by the
* speculative insertion.
*/
static void
DecodeSpecConfirm(LogicalDecodingContext *ctx, XLogRecordBuffer *buf)
{
XLogReaderState *r = buf->record;
ReorderBufferChange *change;
RelFileNode target_node;
/* only interested in our database */
XLogRecGetBlockTag(r, 0, &target_node, NULL, NULL);
if (target_node.dbNode != ctx->slot->data.database)
return;
/* output plugin doesn't look for this origin, no need to queue */
if (FilterByOrigin(ctx, XLogRecGetOrigin(r)))
return;
change = ReorderBufferGetChange(ctx->reorder);
change->action = REORDER_BUFFER_CHANGE_INTERNAL_SPEC_CONFIRM;
change->origin_id = XLogRecGetOrigin(r);
memcpy(&change->data.tp.relnode, &target_node, sizeof(RelFileNode));
change->data.tp.clear_toast_afterwards = true;
Implement streaming mode in ReorderBuffer. Instead of serializing the transaction to disk after reaching the logical_decoding_work_mem limit in memory, we consume the changes we have in memory and invoke stream API methods added by commit 45fdc9738b. However, sometimes if we have incomplete toast or speculative insert we spill to the disk because we can't generate the complete tuple and stream. And, as soon as we get the complete tuple we stream the transaction including the serialized changes. We can do this incremental processing thanks to having assignments (associating subxact with toplevel xacts) in WAL right away, and thanks to logging the invalidation messages at each command end. These features are added by commits 0bead9af48 and c55040ccd0 respectively. Now that we can stream in-progress transactions, the concurrent aborts may cause failures when the output plugin consults catalogs (both system and user-defined). We handle such failures by returning ERRCODE_TRANSACTION_ROLLBACK sqlerrcode from system table scan APIs to the backend or WALSender decoding a specific uncommitted transaction. The decoding logic on the receipt of such a sqlerrcode aborts the decoding of the current transaction and continue with the decoding of other transactions. We have ReorderBufferTXN pointer in each ReorderBufferChange by which we know which xact it belongs to. The output plugin can use this to decide which changes to discard in case of stream_abort_cb (e.g. when a subxact gets discarded). We also provide a new option via SQL APIs to fetch the changes being streamed. Author: Dilip Kumar, Tomas Vondra, Amit Kapila, Nikhil Sontakke Reviewed-by: Amit Kapila, Kuntal Ghosh, Ajin Cherian Tested-by: Neha Sharma, Mahendra Singh Thalor and Ajin Cherian Discussion: https://postgr.es/m/688b0b7f-2f6c-d827-c27b-216a8e3ea700@2ndquadrant.com
5 years ago
ReorderBufferQueueChange(ctx->reorder, XLogRecGetXid(r), buf->origptr,
change, false);
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
11 years ago
}
/*
* Read a HeapTuple as WAL logged by heap_insert, heap_update and heap_delete
* (but not by heap_multi_insert) into a tuplebuf.
*
* The size 'len' and the pointer 'data' in the record need to be
* computed outside as they are record specific.
*/
static void
DecodeXLogTuple(char *data, Size len, ReorderBufferTupleBuf *tuple)
{
xl_heap_header xlhdr;
int datalen = len - SizeOfHeapHeader;
HeapTupleHeader header;
Assert(datalen >= 0);
tuple->tuple.t_len = datalen + SizeofHeapTupleHeader;
header = tuple->tuple.t_data;
/* not a disk based tuple */
ItemPointerSetInvalid(&tuple->tuple.t_self);
/* we can only figure this out after reassembling the transactions */
tuple->tuple.t_tableOid = InvalidOid;
/* data is not stored aligned, copy to aligned storage */
memcpy((char *) &xlhdr,
data,
SizeOfHeapHeader);
memset(header, 0, SizeofHeapTupleHeader);
memcpy(((char *) tuple->tuple.t_data) + SizeofHeapTupleHeader,
data + SizeOfHeapHeader,
datalen);
header->t_infomask = xlhdr.t_infomask;
header->t_infomask2 = xlhdr.t_infomask2;
header->t_hoff = xlhdr.t_hoff;
}
/*
* Check whether we are interested in this specific transaction.
*
* There can be several reasons we might not be interested in this
* transaction:
* 1) We might not be interested in decoding transactions up to this
* LSN. This can happen because we previously decoded it and now just
* are restarting or if we haven't assembled a consistent snapshot yet.
* 2) The transaction happened in another database.
* 3) The output plugin is not interested in the origin.
* 4) We are doing fast-forwarding
*/
static bool
DecodeTXNNeedSkip(LogicalDecodingContext *ctx, XLogRecordBuffer *buf,
Oid txn_dbid, RepOriginId origin_id)
{
return (SnapBuildXactNeedsSkip(ctx->snapshot_builder, buf->origptr) ||
(txn_dbid != InvalidOid && txn_dbid != ctx->slot->data.database) ||
ctx->fast_forward || FilterByOrigin(ctx, origin_id));
}