You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
postgres/src/backend/access/gist/gistutil.c

688 lines
15 KiB

/*-------------------------------------------------------------------------
*
* gistutil.c
* utilities routines for the postgres GiST index access method.
*
*
* Portions Copyright (c) 1996-2011, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/access/gist/gistutil.c
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/gist_private.h"
#include "access/reloptions.h"
#include "storage/freespace.h"
#include "storage/indexfsm.h"
#include "storage/lmgr.h"
#include "storage/bufmgr.h"
#include "utils/rel.h"
/*
* static *S used for temrorary storage (saves stack and palloc() call)
*/
static Datum attrS[INDEX_MAX_KEYS];
static bool isnullS[INDEX_MAX_KEYS];
/*
* Write itup vector to page, has no control of free space.
*/
void
gistfillbuffer(Page page, IndexTuple *itup, int len, OffsetNumber off)
{
OffsetNumber l = InvalidOffsetNumber;
int i;
if (off == InvalidOffsetNumber)
off = (PageIsEmpty(page)) ? FirstOffsetNumber :
OffsetNumberNext(PageGetMaxOffsetNumber(page));
for (i = 0; i < len; i++)
{
Size sz = IndexTupleSize(itup[i]);
l = PageAddItem(page, (Item) itup[i], sz, off, false, false);
if (l == InvalidOffsetNumber)
elog(ERROR, "failed to add item to GiST index page, item %d out of %d, size %d bytes",
i, len, (int) sz);
off++;
}
}
/*
* Check space for itup vector on page
*/
bool
gistnospace(Page page, IndexTuple *itvec, int len, OffsetNumber todelete, Size freespace)
{
unsigned int size = freespace,
deleted = 0;
int i;
for (i = 0; i < len; i++)
size += IndexTupleSize(itvec[i]) + sizeof(ItemIdData);
if (todelete != InvalidOffsetNumber)
{
IndexTuple itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, todelete));
deleted = IndexTupleSize(itup) + sizeof(ItemIdData);
}
return (PageGetFreeSpace(page) + deleted < size);
}
bool
gistfitpage(IndexTuple *itvec, int len)
{
int i;
Size size = 0;
for (i = 0; i < len; i++)
size += IndexTupleSize(itvec[i]) + sizeof(ItemIdData);
/* TODO: Consider fillfactor */
return (size <= GiSTPageSize);
}
/*
* Read buffer into itup vector
*/
IndexTuple *
gistextractpage(Page page, int *len /* out */ )
{
OffsetNumber i,
maxoff;
IndexTuple *itvec;
maxoff = PageGetMaxOffsetNumber(page);
*len = maxoff;
itvec = palloc(sizeof(IndexTuple) * maxoff);
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
itvec[i - FirstOffsetNumber] = (IndexTuple) PageGetItem(page, PageGetItemId(page, i));
return itvec;
}
/*
* join two vectors into one
*/
IndexTuple *
gistjoinvector(IndexTuple *itvec, int *len, IndexTuple *additvec, int addlen)
{
itvec = (IndexTuple *) repalloc((void *) itvec, sizeof(IndexTuple) * ((*len) + addlen));
memmove(&itvec[*len], additvec, sizeof(IndexTuple) * addlen);
*len += addlen;
return itvec;
}
/*
* make plain IndexTupleVector
*/
IndexTupleData *
gistfillitupvec(IndexTuple *vec, int veclen, int *memlen)
{
char *ptr,
*ret;
int i;
*memlen = 0;
for (i = 0; i < veclen; i++)
*memlen += IndexTupleSize(vec[i]);
ptr = ret = palloc(*memlen);
for (i = 0; i < veclen; i++)
{
memcpy(ptr, vec[i], IndexTupleSize(vec[i]));
ptr += IndexTupleSize(vec[i]);
}
return (IndexTupleData *) ret;
}
/*
* Make unions of keys in IndexTuple vector, return FALSE if itvec contains
* invalid tuple. Resulting Datums aren't compressed.
*/
Rewrite the GiST insertion logic so that we don't need the post-recovery cleanup stage to finish incomplete inserts or splits anymore. There was two reasons for the cleanup step: 1. When a new tuple was inserted to a leaf page, the downlink in the parent needed to be updated to contain (ie. to be consistent with) the new key. Updating the parent in turn might require recursively updating the parent of the parent. We now handle that by updating the parent while traversing down the tree, so that when we insert the leaf tuple, all the parents are already consistent with the new key, and the tree is consistent at every step. 2. When a page is split, we need to insert the downlink for the new right page(s), and update the downlink for the original page to not include keys that moved to the right page(s). We now handle that by setting a new flag, F_FOLLOW_RIGHT, on the non-rightmost pages in the split. When that flag is set, scans always follow the rightlink, regardless of the NSN mechanism used to detect concurrent page splits. That way the tree is consistent right after split, even though the downlink is still missing. This is very similar to the way B-tree splits are handled. When the downlink is inserted in the parent, the flag is cleared. To keep the insertion algorithm simple, when an insertion sees an incomplete split, indicated by the F_FOLLOW_RIGHT flag, it finishes the split before doing anything else. These changes allow removing the whole "invalid tuple" mechanism, but I retained the scan code to still follow invalid tuples correctly. While we don't create any such tuples anymore, we want to handle them gracefully in case you pg_upgrade a GiST index that has them. If we encounter any on an insert, though, we just throw an error saying that you need to REINDEX. The issue that got me into doing this is that if you did a checkpoint while an insert or split was in progress, and the checkpoint finishes quickly so that there is no WAL record related to the insert between RedoRecPtr and the checkpoint record, recovery from that checkpoint would not know to finish the incomplete insert. IOW, we have the same issue we solved with the rm_safe_restartpoint mechanism during normal operation too. It's highly unlikely to happen in practice, and this fix is far too large to backpatch, so we're just going to live with in previous versions, but this refactoring fixes it going forward. With this patch, you don't get the annoying 'index "FOO" needs VACUUM or REINDEX to finish crash recovery' notices anymore if you crash at an unfortunate moment.
15 years ago
void
gistMakeUnionItVec(GISTSTATE *giststate, IndexTuple *itvec, int len, int startkey,
Datum *attr, bool *isnull)
{
int i;
GistEntryVector *evec;
int attrsize;
evec = (GistEntryVector *) palloc((len + 2) * sizeof(GISTENTRY) + GEVHDRSZ);
for (i = startkey; i < giststate->tupdesc->natts; i++)
{
int j;
evec->n = 0;
if (!isnull[i])
{
gistentryinit(evec->vector[evec->n], attr[i],
NULL, NULL, (OffsetNumber) 0,
FALSE);
evec->n++;
}
for (j = 0; j < len; j++)
{
Datum datum;
bool IsNull;
datum = index_getattr(itvec[j], i + 1, giststate->tupdesc, &IsNull);
if (IsNull)
continue;
gistdentryinit(giststate, i,
evec->vector + evec->n,
datum,
NULL, NULL, (OffsetNumber) 0,
FALSE, IsNull);
evec->n++;
}
/* If this tuple vector was all NULLs, the union is NULL */
if (evec->n == 0)
{
attr[i] = (Datum) 0;
isnull[i] = TRUE;
}
else
{
if (evec->n == 1)
{
evec->n = 2;
evec->vector[1] = evec->vector[0];
}
/* Make union and store in attr array */
attr[i] = FunctionCall2(&giststate->unionFn[i],
PointerGetDatum(evec),
PointerGetDatum(&attrsize));
isnull[i] = FALSE;
}
}
}
/*
* Return an IndexTuple containing the result of applying the "union"
* method to the specified IndexTuple vector.
*/
IndexTuple
gistunion(Relation r, IndexTuple *itvec, int len, GISTSTATE *giststate)
{
memset(isnullS, TRUE, sizeof(bool) * giststate->tupdesc->natts);
Rewrite the GiST insertion logic so that we don't need the post-recovery cleanup stage to finish incomplete inserts or splits anymore. There was two reasons for the cleanup step: 1. When a new tuple was inserted to a leaf page, the downlink in the parent needed to be updated to contain (ie. to be consistent with) the new key. Updating the parent in turn might require recursively updating the parent of the parent. We now handle that by updating the parent while traversing down the tree, so that when we insert the leaf tuple, all the parents are already consistent with the new key, and the tree is consistent at every step. 2. When a page is split, we need to insert the downlink for the new right page(s), and update the downlink for the original page to not include keys that moved to the right page(s). We now handle that by setting a new flag, F_FOLLOW_RIGHT, on the non-rightmost pages in the split. When that flag is set, scans always follow the rightlink, regardless of the NSN mechanism used to detect concurrent page splits. That way the tree is consistent right after split, even though the downlink is still missing. This is very similar to the way B-tree splits are handled. When the downlink is inserted in the parent, the flag is cleared. To keep the insertion algorithm simple, when an insertion sees an incomplete split, indicated by the F_FOLLOW_RIGHT flag, it finishes the split before doing anything else. These changes allow removing the whole "invalid tuple" mechanism, but I retained the scan code to still follow invalid tuples correctly. While we don't create any such tuples anymore, we want to handle them gracefully in case you pg_upgrade a GiST index that has them. If we encounter any on an insert, though, we just throw an error saying that you need to REINDEX. The issue that got me into doing this is that if you did a checkpoint while an insert or split was in progress, and the checkpoint finishes quickly so that there is no WAL record related to the insert between RedoRecPtr and the checkpoint record, recovery from that checkpoint would not know to finish the incomplete insert. IOW, we have the same issue we solved with the rm_safe_restartpoint mechanism during normal operation too. It's highly unlikely to happen in practice, and this fix is far too large to backpatch, so we're just going to live with in previous versions, but this refactoring fixes it going forward. With this patch, you don't get the annoying 'index "FOO" needs VACUUM or REINDEX to finish crash recovery' notices anymore if you crash at an unfortunate moment.
15 years ago
gistMakeUnionItVec(giststate, itvec, len, 0, attrS, isnullS);
return gistFormTuple(giststate, r, attrS, isnullS, false);
}
/*
* makes union of two key
*/
void
gistMakeUnionKey(GISTSTATE *giststate, int attno,
GISTENTRY *entry1, bool isnull1,
GISTENTRY *entry2, bool isnull2,
Datum *dst, bool *dstisnull)
{
int dstsize;
static char storage[2 * sizeof(GISTENTRY) + GEVHDRSZ];
GistEntryVector *evec = (GistEntryVector *) storage;
evec->n = 2;
if (isnull1 && isnull2)
{
*dstisnull = TRUE;
*dst = (Datum) 0;
}
else
{
if (isnull1 == FALSE && isnull2 == FALSE)
{
evec->vector[0] = *entry1;
evec->vector[1] = *entry2;
}
else if (isnull1 == FALSE)
{
evec->vector[0] = *entry1;
evec->vector[1] = *entry1;
}
else
{
evec->vector[0] = *entry2;
evec->vector[1] = *entry2;
}
*dstisnull = FALSE;
*dst = FunctionCall2(&giststate->unionFn[attno],
PointerGetDatum(evec),
PointerGetDatum(&dstsize));
}
}
bool
gistKeyIsEQ(GISTSTATE *giststate, int attno, Datum a, Datum b)
{
bool result;
FunctionCall3(&giststate->equalFn[attno],
a, b,
PointerGetDatum(&result));
return result;
}
/*
* Decompress all keys in tuple
*/
void
gistDeCompressAtt(GISTSTATE *giststate, Relation r, IndexTuple tuple, Page p,
OffsetNumber o, GISTENTRY *attdata, bool *isnull)
{
int i;
for (i = 0; i < r->rd_att->natts; i++)
{
Datum datum = index_getattr(tuple, i + 1, giststate->tupdesc, &isnull[i]);
gistdentryinit(giststate, i, &attdata[i],
datum, r, p, o,
FALSE, isnull[i]);
}
}
/*
* Forms union of oldtup and addtup, if union == oldtup then return NULL
*/
IndexTuple
gistgetadjusted(Relation r, IndexTuple oldtup, IndexTuple addtup, GISTSTATE *giststate)
{
bool neednew = FALSE;
GISTENTRY oldentries[INDEX_MAX_KEYS],
addentries[INDEX_MAX_KEYS];
bool oldisnull[INDEX_MAX_KEYS],
addisnull[INDEX_MAX_KEYS];
IndexTuple newtup = NULL;
int i;
gistDeCompressAtt(giststate, r, oldtup, NULL,
(OffsetNumber) 0, oldentries, oldisnull);
gistDeCompressAtt(giststate, r, addtup, NULL,
(OffsetNumber) 0, addentries, addisnull);
for (i = 0; i < r->rd_att->natts; i++)
{
gistMakeUnionKey(giststate, i,
oldentries + i, oldisnull[i],
addentries + i, addisnull[i],
attrS + i, isnullS + i);
if (neednew)
/* we already need new key, so we can skip check */
continue;
if (isnullS[i])
/* union of key may be NULL if and only if both keys are NULL */
continue;
if (!addisnull[i])
{
if (oldisnull[i] || gistKeyIsEQ(giststate, i, oldentries[i].key, attrS[i]) == false)
neednew = true;
}
}
if (neednew)
{
/* need to update key */
newtup = gistFormTuple(giststate, r, attrS, isnullS, false);
newtup->t_tid = oldtup->t_tid;
}
return newtup;
}
/*
* find entry with lowest penalty
*/
OffsetNumber
gistchoose(Relation r, Page p, IndexTuple it, /* it has compressed entry */
GISTSTATE *giststate)
{
OffsetNumber maxoff;
OffsetNumber i;
OffsetNumber which;
float sum_grow,
which_grow[INDEX_MAX_KEYS];
GISTENTRY entry,
identry[INDEX_MAX_KEYS];
bool isnull[INDEX_MAX_KEYS];
maxoff = PageGetMaxOffsetNumber(p);
*which_grow = -1.0;
which = InvalidOffsetNumber;
sum_grow = 1;
gistDeCompressAtt(giststate, r,
it, NULL, (OffsetNumber) 0,
identry, isnull);
Assert(maxoff >= FirstOffsetNumber);
Assert(!GistPageIsLeaf(p));
for (i = FirstOffsetNumber; i <= maxoff && sum_grow; i = OffsetNumberNext(i))
{
int j;
IndexTuple itup = (IndexTuple) PageGetItem(p, PageGetItemId(p, i));
sum_grow = 0;
for (j = 0; j < r->rd_att->natts; j++)
{
Datum datum;
float usize;
bool IsNull;
datum = index_getattr(itup, j + 1, giststate->tupdesc, &IsNull);
gistdentryinit(giststate, j, &entry, datum, r, p, i,
FALSE, IsNull);
usize = gistpenalty(giststate, j, &entry, IsNull,
&identry[j], isnull[j]);
if (which_grow[j] < 0 || usize < which_grow[j])
{
which = i;
which_grow[j] = usize;
if (j < r->rd_att->natts - 1 && i == FirstOffsetNumber)
which_grow[j + 1] = -1;
sum_grow += which_grow[j];
}
else if (which_grow[j] == usize)
sum_grow += usize;
else
{
sum_grow = 1;
break;
}
}
}
if (which == InvalidOffsetNumber)
which = FirstOffsetNumber;
return which;
}
/*
* initialize a GiST entry with a decompressed version of key
*/
void
gistdentryinit(GISTSTATE *giststate, int nkey, GISTENTRY *e,
Datum k, Relation r, Page pg, OffsetNumber o,
bool l, bool isNull)
{
if (!isNull)
{
GISTENTRY *dep;
gistentryinit(*e, k, r, pg, o, l);
dep = (GISTENTRY *)
DatumGetPointer(FunctionCall1(&giststate->decompressFn[nkey],
PointerGetDatum(e)));
/* decompressFn may just return the given pointer */
if (dep != e)
gistentryinit(*e, dep->key, dep->rel, dep->page, dep->offset,
dep->leafkey);
}
else
gistentryinit(*e, (Datum) 0, r, pg, o, l);
}
/*
* initialize a GiST entry with a compressed version of key
*/
void
gistcentryinit(GISTSTATE *giststate, int nkey,
GISTENTRY *e, Datum k, Relation r,
Page pg, OffsetNumber o, bool l, bool isNull)
{
if (!isNull)
{
GISTENTRY *cep;
gistentryinit(*e, k, r, pg, o, l);
cep = (GISTENTRY *)
DatumGetPointer(FunctionCall1(&giststate->compressFn[nkey],
PointerGetDatum(e)));
/* compressFn may just return the given pointer */
if (cep != e)
gistentryinit(*e, cep->key, cep->rel, cep->page, cep->offset,
cep->leafkey);
}
else
gistentryinit(*e, (Datum) 0, r, pg, o, l);
}
IndexTuple
gistFormTuple(GISTSTATE *giststate, Relation r,
Datum attdata[], bool isnull[], bool newValues)
{
GISTENTRY centry[INDEX_MAX_KEYS];
Datum compatt[INDEX_MAX_KEYS];
int i;
IndexTuple res;
for (i = 0; i < r->rd_att->natts; i++)
{
if (isnull[i])
compatt[i] = (Datum) 0;
else
{
gistcentryinit(giststate, i, &centry[i], attdata[i],
r, NULL, (OffsetNumber) 0,
newValues,
FALSE);
compatt[i] = centry[i].key;
}
}
res = index_form_tuple(giststate->tupdesc, compatt, isnull);
Rewrite the GiST insertion logic so that we don't need the post-recovery cleanup stage to finish incomplete inserts or splits anymore. There was two reasons for the cleanup step: 1. When a new tuple was inserted to a leaf page, the downlink in the parent needed to be updated to contain (ie. to be consistent with) the new key. Updating the parent in turn might require recursively updating the parent of the parent. We now handle that by updating the parent while traversing down the tree, so that when we insert the leaf tuple, all the parents are already consistent with the new key, and the tree is consistent at every step. 2. When a page is split, we need to insert the downlink for the new right page(s), and update the downlink for the original page to not include keys that moved to the right page(s). We now handle that by setting a new flag, F_FOLLOW_RIGHT, on the non-rightmost pages in the split. When that flag is set, scans always follow the rightlink, regardless of the NSN mechanism used to detect concurrent page splits. That way the tree is consistent right after split, even though the downlink is still missing. This is very similar to the way B-tree splits are handled. When the downlink is inserted in the parent, the flag is cleared. To keep the insertion algorithm simple, when an insertion sees an incomplete split, indicated by the F_FOLLOW_RIGHT flag, it finishes the split before doing anything else. These changes allow removing the whole "invalid tuple" mechanism, but I retained the scan code to still follow invalid tuples correctly. While we don't create any such tuples anymore, we want to handle them gracefully in case you pg_upgrade a GiST index that has them. If we encounter any on an insert, though, we just throw an error saying that you need to REINDEX. The issue that got me into doing this is that if you did a checkpoint while an insert or split was in progress, and the checkpoint finishes quickly so that there is no WAL record related to the insert between RedoRecPtr and the checkpoint record, recovery from that checkpoint would not know to finish the incomplete insert. IOW, we have the same issue we solved with the rm_safe_restartpoint mechanism during normal operation too. It's highly unlikely to happen in practice, and this fix is far too large to backpatch, so we're just going to live with in previous versions, but this refactoring fixes it going forward. With this patch, you don't get the annoying 'index "FOO" needs VACUUM or REINDEX to finish crash recovery' notices anymore if you crash at an unfortunate moment.
15 years ago
/*
* The offset number on tuples on internal pages is unused. For historical
* reasons, it is set 0xffff.
*/
ItemPointerSetOffsetNumber(&(res->t_tid), 0xffff);
return res;
}
float
gistpenalty(GISTSTATE *giststate, int attno,
GISTENTRY *orig, bool isNullOrig,
GISTENTRY *add, bool isNullAdd)
{
float penalty = 0.0;
if (giststate->penaltyFn[attno].fn_strict == FALSE || (isNullOrig == FALSE && isNullAdd == FALSE))
FunctionCall3(&giststate->penaltyFn[attno],
PointerGetDatum(orig),
PointerGetDatum(add),
PointerGetDatum(&penalty));
else if (isNullOrig && isNullAdd)
penalty = 0.0;
else
penalty = 1e10; /* try to prevent to mix null and non-null
* value */
return penalty;
}
/*
* Initialize a new index page
*/
void
GISTInitBuffer(Buffer b, uint32 f)
{
GISTPageOpaque opaque;
Page page;
Size pageSize;
pageSize = BufferGetPageSize(b);
page = BufferGetPage(b);
PageInit(page, pageSize, sizeof(GISTPageOpaqueData));
opaque = GistPageGetOpaque(page);
/* page was already zeroed by PageInit, so this is not needed: */
/* memset(&(opaque->nsn), 0, sizeof(GistNSN)); */
opaque->rightlink = InvalidBlockNumber;
opaque->flags = f;
opaque->gist_page_id = GIST_PAGE_ID;
}
/*
* Verify that a freshly-read page looks sane.
*/
void
gistcheckpage(Relation rel, Buffer buf)
{
Page page = BufferGetPage(buf);
/*
* ReadBuffer verifies that every newly-read page passes
* PageHeaderIsValid, which means it either contains a reasonably sane
* page header or is all-zero. We have to defend against the all-zero
* case, however.
*/
if (PageIsNew(page))
ereport(ERROR,
(errcode(ERRCODE_INDEX_CORRUPTED),
errmsg("index \"%s\" contains unexpected zero page at block %u",
RelationGetRelationName(rel),
BufferGetBlockNumber(buf)),
errhint("Please REINDEX it.")));
/*
* Additionally check that the special area looks sane.
*/
if (PageGetSpecialSize(page) != MAXALIGN(sizeof(GISTPageOpaqueData)))
ereport(ERROR,
(errcode(ERRCODE_INDEX_CORRUPTED),
errmsg("index \"%s\" contains corrupted page at block %u",
RelationGetRelationName(rel),
BufferGetBlockNumber(buf)),
errhint("Please REINDEX it.")));
}
/*
* Allocate a new page (either by recycling, or by extending the index file)
*
* The returned buffer is already pinned and exclusive-locked
*
* Caller is responsible for initializing the page by calling GISTInitBuffer
*/
Buffer
gistNewBuffer(Relation r)
{
Buffer buffer;
bool needLock;
/* First, try to get a page from FSM */
for (;;)
{
BlockNumber blkno = GetFreeIndexPage(r);
if (blkno == InvalidBlockNumber)
break; /* nothing left in FSM */
buffer = ReadBuffer(r, blkno);
/*
* We have to guard against the possibility that someone else already
* recycled this page; the buffer may be locked if so.
*/
if (ConditionalLockBuffer(buffer))
{
Page page = BufferGetPage(buffer);
if (PageIsNew(page))
return buffer; /* OK to use, if never initialized */
gistcheckpage(r, buffer);
if (GistPageIsDeleted(page))
return buffer; /* OK to use */
LockBuffer(buffer, GIST_UNLOCK);
}
/* Can't use it, so release buffer and try again */
ReleaseBuffer(buffer);
}
/* Must extend the file */
needLock = !RELATION_IS_LOCAL(r);
if (needLock)
LockRelationForExtension(r, ExclusiveLock);
buffer = ReadBuffer(r, P_NEW);
LockBuffer(buffer, GIST_EXCLUSIVE);
if (needLock)
UnlockRelationForExtension(r, ExclusiveLock);
return buffer;
}
Datum
gistoptions(PG_FUNCTION_ARGS)
{
Datum reloptions = PG_GETARG_DATUM(0);
bool validate = PG_GETARG_BOOL(1);
bytea *result;
result = default_reloptions(reloptions, validate, RELOPT_KIND_GIST);
if (result)
PG_RETURN_BYTEA_P(result);
PG_RETURN_NULL();
}
/*
* Temporary GiST indexes are not WAL-logged, but we need LSNs to detect
* concurrent page splits anyway. GetXLogRecPtrForTemp() provides a fake
* sequence of LSNs for that purpose. Each call generates an LSN that is
* greater than any previous value returned by this function in the same
* session.
*/
XLogRecPtr
GetXLogRecPtrForTemp(void)
{
static XLogRecPtr counter = {0, 1};
counter.xrecoff++;
if (counter.xrecoff == 0)
{
counter.xlogid++;
counter.xrecoff++;
}
return counter;
}