You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
postgres/src/backend/utils/activity/pgstat_shmem.c

1008 lines
26 KiB

pgstat: store statistics in shared memory. Previously the statistics collector received statistics updates via UDP and shared statistics data by writing them out to temporary files regularly. These files can reach tens of megabytes and are written out up to twice a second. This has repeatedly prevented us from adding additional useful statistics. Now statistics are stored in shared memory. Statistics for variable-numbered objects are stored in a dshash hashtable (backed by dynamic shared memory). Fixed-numbered stats are stored in plain shared memory. The header for pgstat.c contains an overview of the architecture. The stats collector is not needed anymore, remove it. By utilizing the transactional statistics drop infrastructure introduced in a prior commit statistics entries cannot "leak" anymore. Previously leaked statistics were dropped by pgstat_vacuum_stat(), called from [auto-]vacuum. On systems with many small relations pgstat_vacuum_stat() could be quite expensive. Now that replicas drop statistics entries for dropped objects, it is not necessary anymore to reset stats when starting from a cleanly shut down replica. Subsequent commits will perform some further code cleanup, adapt docs and add tests. Bumps PGSTAT_FILE_FORMAT_ID. Author: Kyotaro Horiguchi <horikyota.ntt@gmail.com> Author: Andres Freund <andres@anarazel.de> Author: Melanie Plageman <melanieplageman@gmail.com> Reviewed-By: Andres Freund <andres@anarazel.de> Reviewed-By: Thomas Munro <thomas.munro@gmail.com> Reviewed-By: Justin Pryzby <pryzby@telsasoft.com> Reviewed-By: "David G. Johnston" <david.g.johnston@gmail.com> Reviewed-By: Tomas Vondra <tomas.vondra@2ndquadrant.com> (in a much earlier version) Reviewed-By: Arthur Zakirov <a.zakirov@postgrespro.ru> (in a much earlier version) Reviewed-By: Antonin Houska <ah@cybertec.at> (in a much earlier version) Discussion: https://postgr.es/m/20220303021600.hs34ghqcw6zcokdh@alap3.anarazel.de Discussion: https://postgr.es/m/20220308205351.2xcn6k4x5yivcxyd@alap3.anarazel.de Discussion: https://postgr.es/m/20210319235115.y3wz7hpnnrshdyv6@alap3.anarazel.de
3 years ago
/* -------------------------------------------------------------------------
*
* pgstat_shmem.c
* Storage of stats entries in shared memory
*
* Copyright (c) 2001-2024, PostgreSQL Global Development Group
pgstat: store statistics in shared memory. Previously the statistics collector received statistics updates via UDP and shared statistics data by writing them out to temporary files regularly. These files can reach tens of megabytes and are written out up to twice a second. This has repeatedly prevented us from adding additional useful statistics. Now statistics are stored in shared memory. Statistics for variable-numbered objects are stored in a dshash hashtable (backed by dynamic shared memory). Fixed-numbered stats are stored in plain shared memory. The header for pgstat.c contains an overview of the architecture. The stats collector is not needed anymore, remove it. By utilizing the transactional statistics drop infrastructure introduced in a prior commit statistics entries cannot "leak" anymore. Previously leaked statistics were dropped by pgstat_vacuum_stat(), called from [auto-]vacuum. On systems with many small relations pgstat_vacuum_stat() could be quite expensive. Now that replicas drop statistics entries for dropped objects, it is not necessary anymore to reset stats when starting from a cleanly shut down replica. Subsequent commits will perform some further code cleanup, adapt docs and add tests. Bumps PGSTAT_FILE_FORMAT_ID. Author: Kyotaro Horiguchi <horikyota.ntt@gmail.com> Author: Andres Freund <andres@anarazel.de> Author: Melanie Plageman <melanieplageman@gmail.com> Reviewed-By: Andres Freund <andres@anarazel.de> Reviewed-By: Thomas Munro <thomas.munro@gmail.com> Reviewed-By: Justin Pryzby <pryzby@telsasoft.com> Reviewed-By: "David G. Johnston" <david.g.johnston@gmail.com> Reviewed-By: Tomas Vondra <tomas.vondra@2ndquadrant.com> (in a much earlier version) Reviewed-By: Arthur Zakirov <a.zakirov@postgrespro.ru> (in a much earlier version) Reviewed-By: Antonin Houska <ah@cybertec.at> (in a much earlier version) Discussion: https://postgr.es/m/20220303021600.hs34ghqcw6zcokdh@alap3.anarazel.de Discussion: https://postgr.es/m/20220308205351.2xcn6k4x5yivcxyd@alap3.anarazel.de Discussion: https://postgr.es/m/20210319235115.y3wz7hpnnrshdyv6@alap3.anarazel.de
3 years ago
*
* IDENTIFICATION
* src/backend/utils/activity/pgstat_shmem.c
* -------------------------------------------------------------------------
*/
#include "postgres.h"
#include "pgstat.h"
#include "storage/shmem.h"
#include "utils/memutils.h"
#include "utils/pgstat_internal.h"
#define PGSTAT_ENTRY_REF_HASH_SIZE 128
/* hash table entry for finding the PgStat_EntryRef for a key */
typedef struct PgStat_EntryRefHashEntry
{
PgStat_HashKey key; /* hash key */
char status; /* for simplehash use */
PgStat_EntryRef *entry_ref;
} PgStat_EntryRefHashEntry;
/* for references to shared statistics entries */
#define SH_PREFIX pgstat_entry_ref_hash
#define SH_ELEMENT_TYPE PgStat_EntryRefHashEntry
#define SH_KEY_TYPE PgStat_HashKey
#define SH_KEY key
#define SH_HASH_KEY(tb, key) \
pgstat_hash_hash_key(&key, sizeof(PgStat_HashKey), NULL)
#define SH_EQUAL(tb, a, b) \
pgstat_cmp_hash_key(&a, &b, sizeof(PgStat_HashKey), NULL) == 0
#define SH_SCOPE static inline
#define SH_DEFINE
#define SH_DECLARE
#include "lib/simplehash.h"
static void pgstat_drop_database_and_contents(Oid dboid);
static void pgstat_free_entry(PgStatShared_HashEntry *shent, dshash_seq_status *hstat);
static void pgstat_release_entry_ref(PgStat_HashKey key, PgStat_EntryRef *entry_ref, bool discard_pending);
static bool pgstat_need_entry_refs_gc(void);
static void pgstat_gc_entry_refs(void);
static void pgstat_release_all_entry_refs(bool discard_pending);
typedef bool (*ReleaseMatchCB) (PgStat_EntryRefHashEntry *, Datum data);
static void pgstat_release_matching_entry_refs(bool discard_pending, ReleaseMatchCB match, Datum match_data);
static void pgstat_setup_memcxt(void);
/* parameter for the shared hash */
static const dshash_parameters dsh_params = {
sizeof(PgStat_HashKey),
sizeof(PgStatShared_HashEntry),
pgstat_cmp_hash_key,
pgstat_hash_hash_key,
LWTRANCHE_PGSTATS_HASH
};
/*
* Backend local references to shared stats entries. If there are pending
* updates to a stats entry, the PgStat_EntryRef is added to the pgStatPending
* list.
*
* When a stats entry is dropped each backend needs to release its reference
* to it before the memory can be released. To trigger that
* pgStatLocal.shmem->gc_request_count is incremented - which each backend
* compares to their copy of pgStatSharedRefAge on a regular basis.
*/
static pgstat_entry_ref_hash_hash *pgStatEntryRefHash = NULL;
static int pgStatSharedRefAge = 0; /* cache age of pgStatShmLookupCache */
/*
* Memory contexts containing the pgStatEntryRefHash table and the
* pgStatSharedRef entries respectively. Kept separate to make it easier to
* track / attribute memory usage.
*/
static MemoryContext pgStatSharedRefContext = NULL;
static MemoryContext pgStatEntryRefHashContext = NULL;
/* ------------------------------------------------------------
* Public functions called from postmaster follow
* ------------------------------------------------------------
*/
/*
* The size of the shared memory allocation for stats stored in the shared
* stats hash table. This allocation will be done as part of the main shared
* memory, rather than dynamic shared memory, allowing it to be initialized in
* postmaster.
*/
static Size
pgstat_dsa_init_size(void)
{
Size sz;
/*
* The dshash header / initial buckets array needs to fit into "plain"
* shared memory, but it's beneficial to not need dsm segments
* immediately. A size of 256kB seems works well and is not
* disproportional compared to other constant sized shared memory
* allocations. NB: To avoid DSMs further, the user can configure
* min_dynamic_shared_memory.
*/
sz = 256 * 1024;
Assert(dsa_minimum_size() <= sz);
return MAXALIGN(sz);
}
/*
* Compute shared memory space needed for cumulative statistics
*/
Size
StatsShmemSize(void)
{
Size sz;
sz = MAXALIGN(sizeof(PgStat_ShmemControl));
sz = add_size(sz, pgstat_dsa_init_size());
return sz;
}
/*
* Initialize cumulative statistics system during startup
*/
void
StatsShmemInit(void)
{
bool found;
Size sz;
sz = StatsShmemSize();
pgStatLocal.shmem = (PgStat_ShmemControl *)
ShmemInitStruct("Shared Memory Stats", sz, &found);
if (!IsUnderPostmaster)
{
dsa_area *dsa;
dshash_table *dsh;
PgStat_ShmemControl *ctl = pgStatLocal.shmem;
char *p = (char *) ctl;
Assert(!found);
/* the allocation of pgStatLocal.shmem itself */
p += MAXALIGN(sizeof(PgStat_ShmemControl));
/*
* Create a small dsa allocation in plain shared memory. This is
* required because postmaster cannot use dsm segments. It also
* provides a small efficiency win.
*/
ctl->raw_dsa_area = p;
p += MAXALIGN(pgstat_dsa_init_size());
dsa = dsa_create_in_place(ctl->raw_dsa_area,
pgstat_dsa_init_size(),
LWTRANCHE_PGSTATS_DSA, 0);
dsa_pin(dsa);
/*
* To ensure dshash is created in "plain" shared memory, temporarily
* limit size of dsa to the initial size of the dsa.
*/
dsa_set_size_limit(dsa, pgstat_dsa_init_size());
/*
* With the limit in place, create the dshash table. XXX: It'd be nice
* if there were dshash_create_in_place().
*/
dsh = dshash_create(dsa, &dsh_params, NULL);
pgstat: store statistics in shared memory. Previously the statistics collector received statistics updates via UDP and shared statistics data by writing them out to temporary files regularly. These files can reach tens of megabytes and are written out up to twice a second. This has repeatedly prevented us from adding additional useful statistics. Now statistics are stored in shared memory. Statistics for variable-numbered objects are stored in a dshash hashtable (backed by dynamic shared memory). Fixed-numbered stats are stored in plain shared memory. The header for pgstat.c contains an overview of the architecture. The stats collector is not needed anymore, remove it. By utilizing the transactional statistics drop infrastructure introduced in a prior commit statistics entries cannot "leak" anymore. Previously leaked statistics were dropped by pgstat_vacuum_stat(), called from [auto-]vacuum. On systems with many small relations pgstat_vacuum_stat() could be quite expensive. Now that replicas drop statistics entries for dropped objects, it is not necessary anymore to reset stats when starting from a cleanly shut down replica. Subsequent commits will perform some further code cleanup, adapt docs and add tests. Bumps PGSTAT_FILE_FORMAT_ID. Author: Kyotaro Horiguchi <horikyota.ntt@gmail.com> Author: Andres Freund <andres@anarazel.de> Author: Melanie Plageman <melanieplageman@gmail.com> Reviewed-By: Andres Freund <andres@anarazel.de> Reviewed-By: Thomas Munro <thomas.munro@gmail.com> Reviewed-By: Justin Pryzby <pryzby@telsasoft.com> Reviewed-By: "David G. Johnston" <david.g.johnston@gmail.com> Reviewed-By: Tomas Vondra <tomas.vondra@2ndquadrant.com> (in a much earlier version) Reviewed-By: Arthur Zakirov <a.zakirov@postgrespro.ru> (in a much earlier version) Reviewed-By: Antonin Houska <ah@cybertec.at> (in a much earlier version) Discussion: https://postgr.es/m/20220303021600.hs34ghqcw6zcokdh@alap3.anarazel.de Discussion: https://postgr.es/m/20220308205351.2xcn6k4x5yivcxyd@alap3.anarazel.de Discussion: https://postgr.es/m/20210319235115.y3wz7hpnnrshdyv6@alap3.anarazel.de
3 years ago
ctl->hash_handle = dshash_get_hash_table_handle(dsh);
/* lift limit set above */
dsa_set_size_limit(dsa, -1);
/*
* Postmaster will never access these again, thus free the local
* dsa/dshash references.
*/
dshash_detach(dsh);
dsa_detach(dsa);
pg_atomic_init_u64(&ctl->gc_request_count, 1);
/* initialize fixed-numbered stats */
LWLockInitialize(&ctl->archiver.lock, LWTRANCHE_PGSTATS_DATA);
LWLockInitialize(&ctl->bgwriter.lock, LWTRANCHE_PGSTATS_DATA);
LWLockInitialize(&ctl->checkpointer.lock, LWTRANCHE_PGSTATS_DATA);
LWLockInitialize(&ctl->slru.lock, LWTRANCHE_PGSTATS_DATA);
LWLockInitialize(&ctl->wal.lock, LWTRANCHE_PGSTATS_DATA);
pgstat: Infrastructure for more detailed IO statistics This commit adds the infrastructure for more detailed IO statistics. The calls to actually count IOs, a system view to access the new statistics, documentation and tests will be added in subsequent commits, to make review easier. While we already had some IO statistics, e.g. in pg_stat_bgwriter and pg_stat_database, they did not provide sufficient detail to understand what the main sources of IO are, or whether configuration changes could avoid IO. E.g., pg_stat_bgwriter.buffers_backend does contain the number of buffers written out by a backend, but as that includes extending relations (always done by backends) and writes triggered by the use of buffer access strategies, it cannot easily be used to tune background writer or checkpointer. Similarly, pg_stat_database.blks_read cannot easily be used to tune shared_buffers / compute a cache hit ratio, as the use of buffer access strategies will often prevent a large fraction of the read blocks to end up in shared_buffers. The new IO statistics count IO operations (evict, extend, fsync, read, reuse, and write), and are aggregated for each combination of backend type (backend, autovacuum worker, bgwriter, etc), target object of the IO (relations, temp relations) and context of the IO (normal, vacuum, bulkread, bulkwrite). What is tracked in this series of patches, is sufficient to perform the aforementioned analyses. Further details, e.g. tracking the number of buffer hits, would make that even easier, but was left out for now, to keep the scope of the already large patchset manageable. Bumps PGSTAT_FILE_FORMAT_ID. Author: Melanie Plageman <melanieplageman@gmail.com> Reviewed-by: Andres Freund <andres@anarazel.de> Reviewed-by: Justin Pryzby <pryzby@telsasoft.com> Reviewed-by: Kyotaro Horiguchi <horikyota.ntt@gmail.com> Discussion: https://postgr.es/m/20200124195226.lth52iydq2n2uilq@alap3.anarazel.de
3 years ago
for (int i = 0; i < BACKEND_NUM_TYPES; i++)
LWLockInitialize(&ctl->io.locks[i],
LWTRANCHE_PGSTATS_DATA);
pgstat: store statistics in shared memory. Previously the statistics collector received statistics updates via UDP and shared statistics data by writing them out to temporary files regularly. These files can reach tens of megabytes and are written out up to twice a second. This has repeatedly prevented us from adding additional useful statistics. Now statistics are stored in shared memory. Statistics for variable-numbered objects are stored in a dshash hashtable (backed by dynamic shared memory). Fixed-numbered stats are stored in plain shared memory. The header for pgstat.c contains an overview of the architecture. The stats collector is not needed anymore, remove it. By utilizing the transactional statistics drop infrastructure introduced in a prior commit statistics entries cannot "leak" anymore. Previously leaked statistics were dropped by pgstat_vacuum_stat(), called from [auto-]vacuum. On systems with many small relations pgstat_vacuum_stat() could be quite expensive. Now that replicas drop statistics entries for dropped objects, it is not necessary anymore to reset stats when starting from a cleanly shut down replica. Subsequent commits will perform some further code cleanup, adapt docs and add tests. Bumps PGSTAT_FILE_FORMAT_ID. Author: Kyotaro Horiguchi <horikyota.ntt@gmail.com> Author: Andres Freund <andres@anarazel.de> Author: Melanie Plageman <melanieplageman@gmail.com> Reviewed-By: Andres Freund <andres@anarazel.de> Reviewed-By: Thomas Munro <thomas.munro@gmail.com> Reviewed-By: Justin Pryzby <pryzby@telsasoft.com> Reviewed-By: "David G. Johnston" <david.g.johnston@gmail.com> Reviewed-By: Tomas Vondra <tomas.vondra@2ndquadrant.com> (in a much earlier version) Reviewed-By: Arthur Zakirov <a.zakirov@postgrespro.ru> (in a much earlier version) Reviewed-By: Antonin Houska <ah@cybertec.at> (in a much earlier version) Discussion: https://postgr.es/m/20220303021600.hs34ghqcw6zcokdh@alap3.anarazel.de Discussion: https://postgr.es/m/20220308205351.2xcn6k4x5yivcxyd@alap3.anarazel.de Discussion: https://postgr.es/m/20210319235115.y3wz7hpnnrshdyv6@alap3.anarazel.de
3 years ago
}
else
{
Assert(found);
}
}
void
pgstat_attach_shmem(void)
{
MemoryContext oldcontext;
Assert(pgStatLocal.dsa == NULL);
/* stats shared memory persists for the backend lifetime */
oldcontext = MemoryContextSwitchTo(TopMemoryContext);
pgStatLocal.dsa = dsa_attach_in_place(pgStatLocal.shmem->raw_dsa_area,
NULL);
dsa_pin_mapping(pgStatLocal.dsa);
pgStatLocal.shared_hash = dshash_attach(pgStatLocal.dsa, &dsh_params,
pgStatLocal.shmem->hash_handle, 0);
MemoryContextSwitchTo(oldcontext);
}
void
pgstat_detach_shmem(void)
{
Assert(pgStatLocal.dsa);
/* we shouldn't leave references to shared stats */
pgstat_release_all_entry_refs(false);
dshash_detach(pgStatLocal.shared_hash);
pgStatLocal.shared_hash = NULL;
dsa_detach(pgStatLocal.dsa);
pgStatLocal.dsa = NULL;
}
/* ------------------------------------------------------------
* Maintenance of shared memory stats entries
* ------------------------------------------------------------
*/
PgStatShared_Common *
pgstat_init_entry(PgStat_Kind kind,
PgStatShared_HashEntry *shhashent)
{
/* Create new stats entry. */
dsa_pointer chunk;
PgStatShared_Common *shheader;
/*
* Initialize refcount to 1, marking it as valid / not dropped. The entry
* can't be freed before the initialization because it can't be found as
* long as we hold the dshash partition lock. Caller needs to increase
* further if a longer lived reference is needed.
*/
pg_atomic_init_u32(&shhashent->refcount, 1);
shhashent->dropped = false;
chunk = dsa_allocate0(pgStatLocal.dsa, pgstat_get_kind_info(kind)->shared_size);
shheader = dsa_get_address(pgStatLocal.dsa, chunk);
shheader->magic = 0xdeadbeef;
/* Link the new entry from the hash entry. */
shhashent->body = chunk;
LWLockInitialize(&shheader->lock, LWTRANCHE_PGSTATS_DATA);
return shheader;
}
static PgStatShared_Common *
pgstat_reinit_entry(PgStat_Kind kind, PgStatShared_HashEntry *shhashent)
{
PgStatShared_Common *shheader;
shheader = dsa_get_address(pgStatLocal.dsa, shhashent->body);
/* mark as not dropped anymore */
pg_atomic_fetch_add_u32(&shhashent->refcount, 1);
shhashent->dropped = false;
/* reinitialize content */
Assert(shheader->magic == 0xdeadbeef);
memset(pgstat_get_entry_data(kind, shheader), 0,
pgstat_get_entry_len(kind));
pgstat: store statistics in shared memory. Previously the statistics collector received statistics updates via UDP and shared statistics data by writing them out to temporary files regularly. These files can reach tens of megabytes and are written out up to twice a second. This has repeatedly prevented us from adding additional useful statistics. Now statistics are stored in shared memory. Statistics for variable-numbered objects are stored in a dshash hashtable (backed by dynamic shared memory). Fixed-numbered stats are stored in plain shared memory. The header for pgstat.c contains an overview of the architecture. The stats collector is not needed anymore, remove it. By utilizing the transactional statistics drop infrastructure introduced in a prior commit statistics entries cannot "leak" anymore. Previously leaked statistics were dropped by pgstat_vacuum_stat(), called from [auto-]vacuum. On systems with many small relations pgstat_vacuum_stat() could be quite expensive. Now that replicas drop statistics entries for dropped objects, it is not necessary anymore to reset stats when starting from a cleanly shut down replica. Subsequent commits will perform some further code cleanup, adapt docs and add tests. Bumps PGSTAT_FILE_FORMAT_ID. Author: Kyotaro Horiguchi <horikyota.ntt@gmail.com> Author: Andres Freund <andres@anarazel.de> Author: Melanie Plageman <melanieplageman@gmail.com> Reviewed-By: Andres Freund <andres@anarazel.de> Reviewed-By: Thomas Munro <thomas.munro@gmail.com> Reviewed-By: Justin Pryzby <pryzby@telsasoft.com> Reviewed-By: "David G. Johnston" <david.g.johnston@gmail.com> Reviewed-By: Tomas Vondra <tomas.vondra@2ndquadrant.com> (in a much earlier version) Reviewed-By: Arthur Zakirov <a.zakirov@postgrespro.ru> (in a much earlier version) Reviewed-By: Antonin Houska <ah@cybertec.at> (in a much earlier version) Discussion: https://postgr.es/m/20220303021600.hs34ghqcw6zcokdh@alap3.anarazel.de Discussion: https://postgr.es/m/20220308205351.2xcn6k4x5yivcxyd@alap3.anarazel.de Discussion: https://postgr.es/m/20210319235115.y3wz7hpnnrshdyv6@alap3.anarazel.de
3 years ago
return shheader;
}
static void
pgstat_setup_shared_refs(void)
{
if (likely(pgStatEntryRefHash != NULL))
return;
pgStatEntryRefHash =
pgstat_entry_ref_hash_create(pgStatEntryRefHashContext,
PGSTAT_ENTRY_REF_HASH_SIZE, NULL);
pgStatSharedRefAge = pg_atomic_read_u64(&pgStatLocal.shmem->gc_request_count);
Assert(pgStatSharedRefAge != 0);
}
/*
* Helper function for pgstat_get_entry_ref().
*/
static void
pgstat_acquire_entry_ref(PgStat_EntryRef *entry_ref,
PgStatShared_HashEntry *shhashent,
PgStatShared_Common *shheader)
{
Assert(shheader->magic == 0xdeadbeef);
Assert(pg_atomic_read_u32(&shhashent->refcount) > 0);
pg_atomic_fetch_add_u32(&shhashent->refcount, 1);
dshash_release_lock(pgStatLocal.shared_hash, shhashent);
entry_ref->shared_stats = shheader;
entry_ref->shared_entry = shhashent;
}
/*
* Helper function for pgstat_get_entry_ref().
*/
static bool
pgstat_get_entry_ref_cached(PgStat_HashKey key, PgStat_EntryRef **entry_ref_p)
{
bool found;
PgStat_EntryRefHashEntry *cache_entry;
/*
* We immediately insert a cache entry, because it avoids 1) multiple
* hashtable lookups in case of a cache miss 2) having to deal with
* out-of-memory errors after incrementing PgStatShared_Common->refcount.
*/
cache_entry = pgstat_entry_ref_hash_insert(pgStatEntryRefHash, key, &found);
if (!found || !cache_entry->entry_ref)
{
PgStat_EntryRef *entry_ref;
cache_entry->entry_ref = entry_ref =
MemoryContextAlloc(pgStatSharedRefContext,
sizeof(PgStat_EntryRef));
entry_ref->shared_stats = NULL;
entry_ref->shared_entry = NULL;
entry_ref->pending = NULL;
found = false;
}
else if (cache_entry->entry_ref->shared_stats == NULL)
{
Assert(cache_entry->entry_ref->pending == NULL);
found = false;
}
else
{
PgStat_EntryRef *entry_ref PG_USED_FOR_ASSERTS_ONLY;
entry_ref = cache_entry->entry_ref;
Assert(entry_ref->shared_entry != NULL);
Assert(entry_ref->shared_stats != NULL);
Assert(entry_ref->shared_stats->magic == 0xdeadbeef);
/* should have at least our reference */
Assert(pg_atomic_read_u32(&entry_ref->shared_entry->refcount) > 0);
}
*entry_ref_p = cache_entry->entry_ref;
return found;
}
/*
* Get a shared stats reference. If create is true, the shared stats object is
* created if it does not exist.
*
* When create is true, and created_entry is non-NULL, it'll be set to true
* if the entry is newly created, false otherwise.
*/
PgStat_EntryRef *
pgstat_get_entry_ref(PgStat_Kind kind, Oid dboid, Oid objoid, bool create,
bool *created_entry)
{
PgStat_HashKey key = {.kind = kind,.dboid = dboid,.objoid = objoid};
PgStatShared_HashEntry *shhashent;
PgStatShared_Common *shheader = NULL;
PgStat_EntryRef *entry_ref;
/*
* passing in created_entry only makes sense if we possibly could create
* entry.
*/
Assert(create || created_entry == NULL);
pgstat: store statistics in shared memory. Previously the statistics collector received statistics updates via UDP and shared statistics data by writing them out to temporary files regularly. These files can reach tens of megabytes and are written out up to twice a second. This has repeatedly prevented us from adding additional useful statistics. Now statistics are stored in shared memory. Statistics for variable-numbered objects are stored in a dshash hashtable (backed by dynamic shared memory). Fixed-numbered stats are stored in plain shared memory. The header for pgstat.c contains an overview of the architecture. The stats collector is not needed anymore, remove it. By utilizing the transactional statistics drop infrastructure introduced in a prior commit statistics entries cannot "leak" anymore. Previously leaked statistics were dropped by pgstat_vacuum_stat(), called from [auto-]vacuum. On systems with many small relations pgstat_vacuum_stat() could be quite expensive. Now that replicas drop statistics entries for dropped objects, it is not necessary anymore to reset stats when starting from a cleanly shut down replica. Subsequent commits will perform some further code cleanup, adapt docs and add tests. Bumps PGSTAT_FILE_FORMAT_ID. Author: Kyotaro Horiguchi <horikyota.ntt@gmail.com> Author: Andres Freund <andres@anarazel.de> Author: Melanie Plageman <melanieplageman@gmail.com> Reviewed-By: Andres Freund <andres@anarazel.de> Reviewed-By: Thomas Munro <thomas.munro@gmail.com> Reviewed-By: Justin Pryzby <pryzby@telsasoft.com> Reviewed-By: "David G. Johnston" <david.g.johnston@gmail.com> Reviewed-By: Tomas Vondra <tomas.vondra@2ndquadrant.com> (in a much earlier version) Reviewed-By: Arthur Zakirov <a.zakirov@postgrespro.ru> (in a much earlier version) Reviewed-By: Antonin Houska <ah@cybertec.at> (in a much earlier version) Discussion: https://postgr.es/m/20220303021600.hs34ghqcw6zcokdh@alap3.anarazel.de Discussion: https://postgr.es/m/20220308205351.2xcn6k4x5yivcxyd@alap3.anarazel.de Discussion: https://postgr.es/m/20210319235115.y3wz7hpnnrshdyv6@alap3.anarazel.de
3 years ago
pgstat_assert_is_up();
Assert(pgStatLocal.shared_hash != NULL);
Assert(!pgStatLocal.shmem->is_shutdown);
pgstat_setup_memcxt();
pgstat_setup_shared_refs();
if (created_entry != NULL)
*created_entry = false;
/*
* Check if other backends dropped stats that could not be deleted because
* somebody held references to it. If so, check this backend's references.
* This is not expected to happen often. The location of the check is a
* bit random, but this is a relatively frequently called path, so better
* than most.
*/
if (pgstat_need_entry_refs_gc())
pgstat_gc_entry_refs();
/*
* First check the lookup cache hashtable in local memory. If we find a
* match here we can avoid taking locks / causing contention.
*/
if (pgstat_get_entry_ref_cached(key, &entry_ref))
return entry_ref;
Assert(entry_ref != NULL);
/*
* Do a lookup in the hash table first - it's quite likely that the entry
* already exists, and that way we only need a shared lock.
*/
shhashent = dshash_find(pgStatLocal.shared_hash, &key, false);
if (create && !shhashent)
{
bool shfound;
/*
* It's possible that somebody created the entry since the above
* lookup. If so, fall through to the same path as if we'd have if it
* already had been created before the dshash_find() calls.
*/
shhashent = dshash_find_or_insert(pgStatLocal.shared_hash, &key, &shfound);
if (!shfound)
{
shheader = pgstat_init_entry(kind, shhashent);
pgstat_acquire_entry_ref(entry_ref, shhashent, shheader);
if (created_entry != NULL)
*created_entry = true;
return entry_ref;
}
}
if (!shhashent)
{
/*
* If we're not creating, delete the reference again. In all
* likelihood it's just a stats lookup - no point wasting memory for a
* shared ref to nothing...
*/
pgstat_release_entry_ref(key, entry_ref, false);
return NULL;
}
else
{
/*
* Can get here either because dshash_find() found a match, or if
* dshash_find_or_insert() found a concurrently inserted entry.
*/
if (shhashent->dropped && create)
{
/*
* There are legitimate cases where the old stats entry might not
* yet have been dropped by the time it's reused. The most obvious
* case are replication slot stats, where a new slot can be
* created with the same index just after dropping. But oid
* wraparound can lead to other cases as well. We just reset the
* stats to their plain state.
*/
shheader = pgstat_reinit_entry(kind, shhashent);
pgstat_acquire_entry_ref(entry_ref, shhashent, shheader);
if (created_entry != NULL)
*created_entry = true;
return entry_ref;
}
else if (shhashent->dropped)
{
dshash_release_lock(pgStatLocal.shared_hash, shhashent);
pgstat_release_entry_ref(key, entry_ref, false);
return NULL;
}
else
{
shheader = dsa_get_address(pgStatLocal.dsa, shhashent->body);
pgstat_acquire_entry_ref(entry_ref, shhashent, shheader);
return entry_ref;
}
}
}
static void
pgstat_release_entry_ref(PgStat_HashKey key, PgStat_EntryRef *entry_ref,
bool discard_pending)
{
if (entry_ref && entry_ref->pending)
{
if (discard_pending)
pgstat_delete_pending_entry(entry_ref);
else
elog(ERROR, "releasing ref with pending data");
}
if (entry_ref && entry_ref->shared_stats)
{
Assert(entry_ref->shared_stats->magic == 0xdeadbeef);
Assert(entry_ref->pending == NULL);
/*
* This can't race with another backend looking up the stats entry and
* increasing the refcount because it is not "legal" to create
* additional references to dropped entries.
*/
if (pg_atomic_fetch_sub_u32(&entry_ref->shared_entry->refcount, 1) == 1)
{
PgStatShared_HashEntry *shent;
/*
* We're the last referrer to this entry, try to drop the shared
* entry.
*/
/* only dropped entries can reach a 0 refcount */
Assert(entry_ref->shared_entry->dropped);
shent = dshash_find(pgStatLocal.shared_hash,
&entry_ref->shared_entry->key,
true);
if (!shent)
elog(ERROR, "could not find just referenced shared stats entry");
Assert(pg_atomic_read_u32(&entry_ref->shared_entry->refcount) == 0);
Assert(entry_ref->shared_entry == shent);
pgstat_free_entry(shent, NULL);
}
}
if (!pgstat_entry_ref_hash_delete(pgStatEntryRefHash, key))
elog(ERROR, "entry ref vanished before deletion");
if (entry_ref)
pfree(entry_ref);
}
bool
pgstat_lock_entry(PgStat_EntryRef *entry_ref, bool nowait)
{
LWLock *lock = &entry_ref->shared_stats->lock;
if (nowait)
return LWLockConditionalAcquire(lock, LW_EXCLUSIVE);
LWLockAcquire(lock, LW_EXCLUSIVE);
return true;
}
/*
* Separate from pgstat_lock_entry() as most callers will need to lock
* exclusively.
*/
bool
pgstat_lock_entry_shared(PgStat_EntryRef *entry_ref, bool nowait)
{
LWLock *lock = &entry_ref->shared_stats->lock;
if (nowait)
return LWLockConditionalAcquire(lock, LW_SHARED);
LWLockAcquire(lock, LW_SHARED);
return true;
}
pgstat: store statistics in shared memory. Previously the statistics collector received statistics updates via UDP and shared statistics data by writing them out to temporary files regularly. These files can reach tens of megabytes and are written out up to twice a second. This has repeatedly prevented us from adding additional useful statistics. Now statistics are stored in shared memory. Statistics for variable-numbered objects are stored in a dshash hashtable (backed by dynamic shared memory). Fixed-numbered stats are stored in plain shared memory. The header for pgstat.c contains an overview of the architecture. The stats collector is not needed anymore, remove it. By utilizing the transactional statistics drop infrastructure introduced in a prior commit statistics entries cannot "leak" anymore. Previously leaked statistics were dropped by pgstat_vacuum_stat(), called from [auto-]vacuum. On systems with many small relations pgstat_vacuum_stat() could be quite expensive. Now that replicas drop statistics entries for dropped objects, it is not necessary anymore to reset stats when starting from a cleanly shut down replica. Subsequent commits will perform some further code cleanup, adapt docs and add tests. Bumps PGSTAT_FILE_FORMAT_ID. Author: Kyotaro Horiguchi <horikyota.ntt@gmail.com> Author: Andres Freund <andres@anarazel.de> Author: Melanie Plageman <melanieplageman@gmail.com> Reviewed-By: Andres Freund <andres@anarazel.de> Reviewed-By: Thomas Munro <thomas.munro@gmail.com> Reviewed-By: Justin Pryzby <pryzby@telsasoft.com> Reviewed-By: "David G. Johnston" <david.g.johnston@gmail.com> Reviewed-By: Tomas Vondra <tomas.vondra@2ndquadrant.com> (in a much earlier version) Reviewed-By: Arthur Zakirov <a.zakirov@postgrespro.ru> (in a much earlier version) Reviewed-By: Antonin Houska <ah@cybertec.at> (in a much earlier version) Discussion: https://postgr.es/m/20220303021600.hs34ghqcw6zcokdh@alap3.anarazel.de Discussion: https://postgr.es/m/20220308205351.2xcn6k4x5yivcxyd@alap3.anarazel.de Discussion: https://postgr.es/m/20210319235115.y3wz7hpnnrshdyv6@alap3.anarazel.de
3 years ago
void
pgstat_unlock_entry(PgStat_EntryRef *entry_ref)
{
LWLockRelease(&entry_ref->shared_stats->lock);
}
/*
* Helper function to fetch and lock shared stats.
*/
PgStat_EntryRef *
pgstat_get_entry_ref_locked(PgStat_Kind kind, Oid dboid, Oid objoid,
bool nowait)
{
PgStat_EntryRef *entry_ref;
/* find shared table stats entry corresponding to the local entry */
entry_ref = pgstat_get_entry_ref(kind, dboid, objoid, true, NULL);
/* lock the shared entry to protect the content, skip if failed */
if (!pgstat_lock_entry(entry_ref, nowait))
return NULL;
return entry_ref;
}
void
pgstat_request_entry_refs_gc(void)
{
pg_atomic_fetch_add_u64(&pgStatLocal.shmem->gc_request_count, 1);
}
static bool
pgstat_need_entry_refs_gc(void)
{
uint64 curage;
if (!pgStatEntryRefHash)
return false;
/* should have been initialized when creating pgStatEntryRefHash */
Assert(pgStatSharedRefAge != 0);
curage = pg_atomic_read_u64(&pgStatLocal.shmem->gc_request_count);
return pgStatSharedRefAge != curage;
}
static void
pgstat_gc_entry_refs(void)
{
pgstat_entry_ref_hash_iterator i;
PgStat_EntryRefHashEntry *ent;
uint64 curage;
curage = pg_atomic_read_u64(&pgStatLocal.shmem->gc_request_count);
Assert(curage != 0);
/*
* Some entries have been dropped. Invalidate cache pointer to them.
*/
pgstat_entry_ref_hash_start_iterate(pgStatEntryRefHash, &i);
while ((ent = pgstat_entry_ref_hash_iterate(pgStatEntryRefHash, &i)) != NULL)
{
PgStat_EntryRef *entry_ref = ent->entry_ref;
Assert(!entry_ref->shared_stats ||
entry_ref->shared_stats->magic == 0xdeadbeef);
if (!entry_ref->shared_entry->dropped)
continue;
/* cannot gc shared ref that has pending data */
if (entry_ref->pending != NULL)
continue;
pgstat_release_entry_ref(ent->key, entry_ref, false);
}
pgStatSharedRefAge = curage;
}
static void
pgstat_release_matching_entry_refs(bool discard_pending, ReleaseMatchCB match,
Datum match_data)
{
pgstat_entry_ref_hash_iterator i;
PgStat_EntryRefHashEntry *ent;
if (pgStatEntryRefHash == NULL)
return;
pgstat_entry_ref_hash_start_iterate(pgStatEntryRefHash, &i);
while ((ent = pgstat_entry_ref_hash_iterate(pgStatEntryRefHash, &i))
!= NULL)
{
Assert(ent->entry_ref != NULL);
if (match && !match(ent, match_data))
continue;
pgstat_release_entry_ref(ent->key, ent->entry_ref, discard_pending);
}
}
/*
* Release all local references to shared stats entries.
*
* When a process exits it cannot do so while still holding references onto
* stats entries, otherwise the shared stats entries could never be freed.
*/
static void
pgstat_release_all_entry_refs(bool discard_pending)
{
if (pgStatEntryRefHash == NULL)
return;
pgstat_release_matching_entry_refs(discard_pending, NULL, 0);
Assert(pgStatEntryRefHash->members == 0);
pgstat_entry_ref_hash_destroy(pgStatEntryRefHash);
pgStatEntryRefHash = NULL;
}
static bool
match_db(PgStat_EntryRefHashEntry *ent, Datum match_data)
{
Oid dboid = DatumGetObjectId(match_data);
return ent->key.dboid == dboid;
}
static void
pgstat_release_db_entry_refs(Oid dboid)
{
pgstat_release_matching_entry_refs( /* discard pending = */ true,
match_db,
ObjectIdGetDatum(dboid));
}
/* ------------------------------------------------------------
* Dropping and resetting of stats entries
* ------------------------------------------------------------
*/
static void
pgstat_free_entry(PgStatShared_HashEntry *shent, dshash_seq_status *hstat)
{
dsa_pointer pdsa;
/*
* Fetch dsa pointer before deleting entry - that way we can free the
* memory after releasing the lock.
*/
pdsa = shent->body;
if (!hstat)
dshash_delete_entry(pgStatLocal.shared_hash, shent);
else
dshash_delete_current(hstat);
dsa_free(pgStatLocal.dsa, pdsa);
}
/*
* Helper for both pgstat_drop_database_and_contents() and
* pgstat_drop_entry(). If hstat is non-null delete the shared entry using
* dshash_delete_current(), otherwise use dshash_delete_entry(). In either
* case the entry needs to be already locked.
*/
static bool
pgstat_drop_entry_internal(PgStatShared_HashEntry *shent,
dshash_seq_status *hstat)
{
Assert(shent->body != InvalidDsaPointer);
/* should already have released local reference */
if (pgStatEntryRefHash)
Assert(!pgstat_entry_ref_hash_lookup(pgStatEntryRefHash, shent->key));
/*
* Signal that the entry is dropped - this will eventually cause other
* backends to release their references.
*/
if (shent->dropped)
elog(ERROR, "can only drop stats once");
shent->dropped = true;
/* release refcount marking entry as not dropped */
if (pg_atomic_sub_fetch_u32(&shent->refcount, 1) == 0)
{
pgstat_free_entry(shent, hstat);
return true;
}
else
{
if (!hstat)
dshash_release_lock(pgStatLocal.shared_hash, shent);
return false;
}
}
/*
* Drop stats for the database and all the objects inside that database.
*/
static void
pgstat_drop_database_and_contents(Oid dboid)
{
dshash_seq_status hstat;
PgStatShared_HashEntry *p;
uint64 not_freed_count = 0;
Assert(OidIsValid(dboid));
Assert(pgStatLocal.shared_hash != NULL);
/*
* This backend might very well be the only backend holding a reference to
* about-to-be-dropped entries. Ensure that we're not preventing it from
* being cleaned up till later.
*
* Doing this separately from the dshash iteration below avoids having to
* do so while holding a partition lock on the shared hashtable.
*/
pgstat_release_db_entry_refs(dboid);
/* some of the dshash entries are to be removed, take exclusive lock. */
dshash_seq_init(&hstat, pgStatLocal.shared_hash, true);
while ((p = dshash_seq_next(&hstat)) != NULL)
{
if (p->dropped)
continue;
if (p->key.dboid != dboid)
continue;
if (!pgstat_drop_entry_internal(p, &hstat))
{
/*
* Even statistics for a dropped database might currently be
* accessed (consider e.g. database stats for pg_stat_database).
*/
not_freed_count++;
}
}
dshash_seq_term(&hstat);
/*
* If some of the stats data could not be freed, signal the reference
* holders to run garbage collection of their cached pgStatShmLookupCache.
*/
if (not_freed_count > 0)
pgstat_request_entry_refs_gc();
}
bool
pgstat_drop_entry(PgStat_Kind kind, Oid dboid, Oid objoid)
{
PgStat_HashKey key = {.kind = kind,.dboid = dboid,.objoid = objoid};
PgStatShared_HashEntry *shent;
bool freed = true;
/* delete local reference */
if (pgStatEntryRefHash)
{
PgStat_EntryRefHashEntry *lohashent =
pgstat_entry_ref_hash_lookup(pgStatEntryRefHash, key);
pgstat: store statistics in shared memory. Previously the statistics collector received statistics updates via UDP and shared statistics data by writing them out to temporary files regularly. These files can reach tens of megabytes and are written out up to twice a second. This has repeatedly prevented us from adding additional useful statistics. Now statistics are stored in shared memory. Statistics for variable-numbered objects are stored in a dshash hashtable (backed by dynamic shared memory). Fixed-numbered stats are stored in plain shared memory. The header for pgstat.c contains an overview of the architecture. The stats collector is not needed anymore, remove it. By utilizing the transactional statistics drop infrastructure introduced in a prior commit statistics entries cannot "leak" anymore. Previously leaked statistics were dropped by pgstat_vacuum_stat(), called from [auto-]vacuum. On systems with many small relations pgstat_vacuum_stat() could be quite expensive. Now that replicas drop statistics entries for dropped objects, it is not necessary anymore to reset stats when starting from a cleanly shut down replica. Subsequent commits will perform some further code cleanup, adapt docs and add tests. Bumps PGSTAT_FILE_FORMAT_ID. Author: Kyotaro Horiguchi <horikyota.ntt@gmail.com> Author: Andres Freund <andres@anarazel.de> Author: Melanie Plageman <melanieplageman@gmail.com> Reviewed-By: Andres Freund <andres@anarazel.de> Reviewed-By: Thomas Munro <thomas.munro@gmail.com> Reviewed-By: Justin Pryzby <pryzby@telsasoft.com> Reviewed-By: "David G. Johnston" <david.g.johnston@gmail.com> Reviewed-By: Tomas Vondra <tomas.vondra@2ndquadrant.com> (in a much earlier version) Reviewed-By: Arthur Zakirov <a.zakirov@postgrespro.ru> (in a much earlier version) Reviewed-By: Antonin Houska <ah@cybertec.at> (in a much earlier version) Discussion: https://postgr.es/m/20220303021600.hs34ghqcw6zcokdh@alap3.anarazel.de Discussion: https://postgr.es/m/20220308205351.2xcn6k4x5yivcxyd@alap3.anarazel.de Discussion: https://postgr.es/m/20210319235115.y3wz7hpnnrshdyv6@alap3.anarazel.de
3 years ago
if (lohashent)
pgstat_release_entry_ref(lohashent->key, lohashent->entry_ref,
true);
}
/* mark entry in shared hashtable as deleted, drop if possible */
shent = dshash_find(pgStatLocal.shared_hash, &key, true);
if (shent)
{
freed = pgstat_drop_entry_internal(shent, NULL);
/*
* Database stats contain other stats. Drop those as well when
* dropping the database. XXX: Perhaps this should be done in a
* slightly more principled way? But not obvious what that'd look
* like, and so far this is the only case...
*/
if (key.kind == PGSTAT_KIND_DATABASE)
pgstat_drop_database_and_contents(key.dboid);
}
return freed;
}
void
pgstat_drop_all_entries(void)
{
dshash_seq_status hstat;
PgStatShared_HashEntry *ps;
uint64 not_freed_count = 0;
dshash_seq_init(&hstat, pgStatLocal.shared_hash, true);
pgstat: store statistics in shared memory. Previously the statistics collector received statistics updates via UDP and shared statistics data by writing them out to temporary files regularly. These files can reach tens of megabytes and are written out up to twice a second. This has repeatedly prevented us from adding additional useful statistics. Now statistics are stored in shared memory. Statistics for variable-numbered objects are stored in a dshash hashtable (backed by dynamic shared memory). Fixed-numbered stats are stored in plain shared memory. The header for pgstat.c contains an overview of the architecture. The stats collector is not needed anymore, remove it. By utilizing the transactional statistics drop infrastructure introduced in a prior commit statistics entries cannot "leak" anymore. Previously leaked statistics were dropped by pgstat_vacuum_stat(), called from [auto-]vacuum. On systems with many small relations pgstat_vacuum_stat() could be quite expensive. Now that replicas drop statistics entries for dropped objects, it is not necessary anymore to reset stats when starting from a cleanly shut down replica. Subsequent commits will perform some further code cleanup, adapt docs and add tests. Bumps PGSTAT_FILE_FORMAT_ID. Author: Kyotaro Horiguchi <horikyota.ntt@gmail.com> Author: Andres Freund <andres@anarazel.de> Author: Melanie Plageman <melanieplageman@gmail.com> Reviewed-By: Andres Freund <andres@anarazel.de> Reviewed-By: Thomas Munro <thomas.munro@gmail.com> Reviewed-By: Justin Pryzby <pryzby@telsasoft.com> Reviewed-By: "David G. Johnston" <david.g.johnston@gmail.com> Reviewed-By: Tomas Vondra <tomas.vondra@2ndquadrant.com> (in a much earlier version) Reviewed-By: Arthur Zakirov <a.zakirov@postgrespro.ru> (in a much earlier version) Reviewed-By: Antonin Houska <ah@cybertec.at> (in a much earlier version) Discussion: https://postgr.es/m/20220303021600.hs34ghqcw6zcokdh@alap3.anarazel.de Discussion: https://postgr.es/m/20220308205351.2xcn6k4x5yivcxyd@alap3.anarazel.de Discussion: https://postgr.es/m/20210319235115.y3wz7hpnnrshdyv6@alap3.anarazel.de
3 years ago
while ((ps = dshash_seq_next(&hstat)) != NULL)
{
if (ps->dropped)
continue;
if (!pgstat_drop_entry_internal(ps, &hstat))
not_freed_count++;
}
dshash_seq_term(&hstat);
if (not_freed_count > 0)
pgstat_request_entry_refs_gc();
}
static void
shared_stat_reset_contents(PgStat_Kind kind, PgStatShared_Common *header,
TimestampTz ts)
{
const PgStat_KindInfo *kind_info = pgstat_get_kind_info(kind);
memset(pgstat_get_entry_data(kind, header), 0,
pgstat_get_entry_len(kind));
if (kind_info->reset_timestamp_cb)
kind_info->reset_timestamp_cb(header, ts);
}
/*
* Reset one variable-numbered stats entry.
*/
void
pgstat_reset_entry(PgStat_Kind kind, Oid dboid, Oid objoid, TimestampTz ts)
{
PgStat_EntryRef *entry_ref;
Assert(!pgstat_get_kind_info(kind)->fixed_amount);
entry_ref = pgstat_get_entry_ref(kind, dboid, objoid, false, NULL);
if (!entry_ref || entry_ref->shared_entry->dropped)
return;
(void) pgstat_lock_entry(entry_ref, false);
pgstat: store statistics in shared memory. Previously the statistics collector received statistics updates via UDP and shared statistics data by writing them out to temporary files regularly. These files can reach tens of megabytes and are written out up to twice a second. This has repeatedly prevented us from adding additional useful statistics. Now statistics are stored in shared memory. Statistics for variable-numbered objects are stored in a dshash hashtable (backed by dynamic shared memory). Fixed-numbered stats are stored in plain shared memory. The header for pgstat.c contains an overview of the architecture. The stats collector is not needed anymore, remove it. By utilizing the transactional statistics drop infrastructure introduced in a prior commit statistics entries cannot "leak" anymore. Previously leaked statistics were dropped by pgstat_vacuum_stat(), called from [auto-]vacuum. On systems with many small relations pgstat_vacuum_stat() could be quite expensive. Now that replicas drop statistics entries for dropped objects, it is not necessary anymore to reset stats when starting from a cleanly shut down replica. Subsequent commits will perform some further code cleanup, adapt docs and add tests. Bumps PGSTAT_FILE_FORMAT_ID. Author: Kyotaro Horiguchi <horikyota.ntt@gmail.com> Author: Andres Freund <andres@anarazel.de> Author: Melanie Plageman <melanieplageman@gmail.com> Reviewed-By: Andres Freund <andres@anarazel.de> Reviewed-By: Thomas Munro <thomas.munro@gmail.com> Reviewed-By: Justin Pryzby <pryzby@telsasoft.com> Reviewed-By: "David G. Johnston" <david.g.johnston@gmail.com> Reviewed-By: Tomas Vondra <tomas.vondra@2ndquadrant.com> (in a much earlier version) Reviewed-By: Arthur Zakirov <a.zakirov@postgrespro.ru> (in a much earlier version) Reviewed-By: Antonin Houska <ah@cybertec.at> (in a much earlier version) Discussion: https://postgr.es/m/20220303021600.hs34ghqcw6zcokdh@alap3.anarazel.de Discussion: https://postgr.es/m/20220308205351.2xcn6k4x5yivcxyd@alap3.anarazel.de Discussion: https://postgr.es/m/20210319235115.y3wz7hpnnrshdyv6@alap3.anarazel.de
3 years ago
shared_stat_reset_contents(kind, entry_ref->shared_stats, ts);
pgstat_unlock_entry(entry_ref);
}
/*
* Scan through the shared hashtable of stats, resetting statistics if
* approved by the provided do_reset() function.
*/
void
pgstat_reset_matching_entries(bool (*do_reset) (PgStatShared_HashEntry *, Datum),
Datum match_data, TimestampTz ts)
{
dshash_seq_status hstat;
PgStatShared_HashEntry *p;
/* dshash entry is not modified, take shared lock */
dshash_seq_init(&hstat, pgStatLocal.shared_hash, false);
while ((p = dshash_seq_next(&hstat)) != NULL)
{
PgStatShared_Common *header;
if (p->dropped)
continue;
if (!do_reset(p, match_data))
continue;
header = dsa_get_address(pgStatLocal.dsa, p->body);
LWLockAcquire(&header->lock, LW_EXCLUSIVE);
shared_stat_reset_contents(p->key.kind, header, ts);
LWLockRelease(&header->lock);
}
dshash_seq_term(&hstat);
}
static bool
match_kind(PgStatShared_HashEntry *p, Datum match_data)
{
return p->key.kind == DatumGetInt32(match_data);
}
void
pgstat_reset_entries_of_kind(PgStat_Kind kind, TimestampTz ts)
{
pgstat_reset_matching_entries(match_kind, Int32GetDatum(kind), ts);
}
static void
pgstat_setup_memcxt(void)
{
if (unlikely(!pgStatSharedRefContext))
pgStatSharedRefContext =
AllocSetContextCreate(TopMemoryContext,
pgstat: store statistics in shared memory. Previously the statistics collector received statistics updates via UDP and shared statistics data by writing them out to temporary files regularly. These files can reach tens of megabytes and are written out up to twice a second. This has repeatedly prevented us from adding additional useful statistics. Now statistics are stored in shared memory. Statistics for variable-numbered objects are stored in a dshash hashtable (backed by dynamic shared memory). Fixed-numbered stats are stored in plain shared memory. The header for pgstat.c contains an overview of the architecture. The stats collector is not needed anymore, remove it. By utilizing the transactional statistics drop infrastructure introduced in a prior commit statistics entries cannot "leak" anymore. Previously leaked statistics were dropped by pgstat_vacuum_stat(), called from [auto-]vacuum. On systems with many small relations pgstat_vacuum_stat() could be quite expensive. Now that replicas drop statistics entries for dropped objects, it is not necessary anymore to reset stats when starting from a cleanly shut down replica. Subsequent commits will perform some further code cleanup, adapt docs and add tests. Bumps PGSTAT_FILE_FORMAT_ID. Author: Kyotaro Horiguchi <horikyota.ntt@gmail.com> Author: Andres Freund <andres@anarazel.de> Author: Melanie Plageman <melanieplageman@gmail.com> Reviewed-By: Andres Freund <andres@anarazel.de> Reviewed-By: Thomas Munro <thomas.munro@gmail.com> Reviewed-By: Justin Pryzby <pryzby@telsasoft.com> Reviewed-By: "David G. Johnston" <david.g.johnston@gmail.com> Reviewed-By: Tomas Vondra <tomas.vondra@2ndquadrant.com> (in a much earlier version) Reviewed-By: Arthur Zakirov <a.zakirov@postgrespro.ru> (in a much earlier version) Reviewed-By: Antonin Houska <ah@cybertec.at> (in a much earlier version) Discussion: https://postgr.es/m/20220303021600.hs34ghqcw6zcokdh@alap3.anarazel.de Discussion: https://postgr.es/m/20220308205351.2xcn6k4x5yivcxyd@alap3.anarazel.de Discussion: https://postgr.es/m/20210319235115.y3wz7hpnnrshdyv6@alap3.anarazel.de
3 years ago
"PgStat Shared Ref",
ALLOCSET_SMALL_SIZES);
if (unlikely(!pgStatEntryRefHashContext))
pgStatEntryRefHashContext =
AllocSetContextCreate(TopMemoryContext,
pgstat: store statistics in shared memory. Previously the statistics collector received statistics updates via UDP and shared statistics data by writing them out to temporary files regularly. These files can reach tens of megabytes and are written out up to twice a second. This has repeatedly prevented us from adding additional useful statistics. Now statistics are stored in shared memory. Statistics for variable-numbered objects are stored in a dshash hashtable (backed by dynamic shared memory). Fixed-numbered stats are stored in plain shared memory. The header for pgstat.c contains an overview of the architecture. The stats collector is not needed anymore, remove it. By utilizing the transactional statistics drop infrastructure introduced in a prior commit statistics entries cannot "leak" anymore. Previously leaked statistics were dropped by pgstat_vacuum_stat(), called from [auto-]vacuum. On systems with many small relations pgstat_vacuum_stat() could be quite expensive. Now that replicas drop statistics entries for dropped objects, it is not necessary anymore to reset stats when starting from a cleanly shut down replica. Subsequent commits will perform some further code cleanup, adapt docs and add tests. Bumps PGSTAT_FILE_FORMAT_ID. Author: Kyotaro Horiguchi <horikyota.ntt@gmail.com> Author: Andres Freund <andres@anarazel.de> Author: Melanie Plageman <melanieplageman@gmail.com> Reviewed-By: Andres Freund <andres@anarazel.de> Reviewed-By: Thomas Munro <thomas.munro@gmail.com> Reviewed-By: Justin Pryzby <pryzby@telsasoft.com> Reviewed-By: "David G. Johnston" <david.g.johnston@gmail.com> Reviewed-By: Tomas Vondra <tomas.vondra@2ndquadrant.com> (in a much earlier version) Reviewed-By: Arthur Zakirov <a.zakirov@postgrespro.ru> (in a much earlier version) Reviewed-By: Antonin Houska <ah@cybertec.at> (in a much earlier version) Discussion: https://postgr.es/m/20220303021600.hs34ghqcw6zcokdh@alap3.anarazel.de Discussion: https://postgr.es/m/20220308205351.2xcn6k4x5yivcxyd@alap3.anarazel.de Discussion: https://postgr.es/m/20210319235115.y3wz7hpnnrshdyv6@alap3.anarazel.de
3 years ago
"PgStat Shared Ref Hash",
ALLOCSET_SMALL_SIZES);
}