You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
postgres/src/include/foreign/fdwapi.h

295 lines
10 KiB

/*-------------------------------------------------------------------------
*
* fdwapi.h
* API for foreign-data wrappers
*
* Copyright (c) 2010-2025, PostgreSQL Global Development Group
*
* src/include/foreign/fdwapi.h
*
*-------------------------------------------------------------------------
*/
#ifndef FDWAPI_H
#define FDWAPI_H
#include "access/parallel.h"
#include "nodes/execnodes.h"
#include "nodes/pathnodes.h"
/* avoid including explain_state.h here */
typedef struct ExplainState ExplainState;
/*
* Callback function signatures --- see fdwhandler.sgml for more info.
*/
Revise FDW planning API, again. Further reflection shows that a single callback isn't very workable if we desire to let FDWs generate multiple Paths, because that forces the FDW to do all work necessary to generate a valid Plan node for each Path. Instead split the former PlanForeignScan API into three steps: GetForeignRelSize, GetForeignPaths, GetForeignPlan. We had already bit the bullet of breaking the 9.1 FDW API for 9.2, so this shouldn't cause very much additional pain, and it's substantially more flexible for complex FDWs. Add an fdw_private field to RelOptInfo so that the new functions can save state there rather than possibly having to recalculate information two or three times. In addition, we'd not thought through what would be needed to allow an FDW to set up subexpressions of its choice for runtime execution. We could treat ForeignScan.fdw_private as an executable expression but that seems likely to break existing FDWs unnecessarily (in particular, it would restrict the set of node types allowable in fdw_private to those supported by expression_tree_walker). Instead, invent a separate field fdw_exprs which will receive the postprocessing appropriate for expression trees. (One field is enough since it can be a list of expressions; also, we assume the corresponding expression state tree(s) will be held within fdw_state, so we don't need to add anything to ForeignScanState.) Per review of Hanada Shigeru's pgsql_fdw patch. We may need to tweak this further as we continue to work on that patch, but to me it feels a lot closer to being right now.
14 years ago
typedef void (*GetForeignRelSize_function) (PlannerInfo *root,
9 years ago
RelOptInfo *baserel,
Oid foreigntableid);
Revise FDW planning API, again. Further reflection shows that a single callback isn't very workable if we desire to let FDWs generate multiple Paths, because that forces the FDW to do all work necessary to generate a valid Plan node for each Path. Instead split the former PlanForeignScan API into three steps: GetForeignRelSize, GetForeignPaths, GetForeignPlan. We had already bit the bullet of breaking the 9.1 FDW API for 9.2, so this shouldn't cause very much additional pain, and it's substantially more flexible for complex FDWs. Add an fdw_private field to RelOptInfo so that the new functions can save state there rather than possibly having to recalculate information two or three times. In addition, we'd not thought through what would be needed to allow an FDW to set up subexpressions of its choice for runtime execution. We could treat ForeignScan.fdw_private as an executable expression but that seems likely to break existing FDWs unnecessarily (in particular, it would restrict the set of node types allowable in fdw_private to those supported by expression_tree_walker). Instead, invent a separate field fdw_exprs which will receive the postprocessing appropriate for expression trees. (One field is enough since it can be a list of expressions; also, we assume the corresponding expression state tree(s) will be held within fdw_state, so we don't need to add anything to ForeignScanState.) Per review of Hanada Shigeru's pgsql_fdw patch. We may need to tweak this further as we continue to work on that patch, but to me it feels a lot closer to being right now.
14 years ago
typedef void (*GetForeignPaths_function) (PlannerInfo *root,
9 years ago
RelOptInfo *baserel,
Oid foreigntableid);
Revise FDW planning API, again. Further reflection shows that a single callback isn't very workable if we desire to let FDWs generate multiple Paths, because that forces the FDW to do all work necessary to generate a valid Plan node for each Path. Instead split the former PlanForeignScan API into three steps: GetForeignRelSize, GetForeignPaths, GetForeignPlan. We had already bit the bullet of breaking the 9.1 FDW API for 9.2, so this shouldn't cause very much additional pain, and it's substantially more flexible for complex FDWs. Add an fdw_private field to RelOptInfo so that the new functions can save state there rather than possibly having to recalculate information two or three times. In addition, we'd not thought through what would be needed to allow an FDW to set up subexpressions of its choice for runtime execution. We could treat ForeignScan.fdw_private as an executable expression but that seems likely to break existing FDWs unnecessarily (in particular, it would restrict the set of node types allowable in fdw_private to those supported by expression_tree_walker). Instead, invent a separate field fdw_exprs which will receive the postprocessing appropriate for expression trees. (One field is enough since it can be a list of expressions; also, we assume the corresponding expression state tree(s) will be held within fdw_state, so we don't need to add anything to ForeignScanState.) Per review of Hanada Shigeru's pgsql_fdw patch. We may need to tweak this further as we continue to work on that patch, but to me it feels a lot closer to being right now.
14 years ago
typedef ForeignScan *(*GetForeignPlan_function) (PlannerInfo *root,
9 years ago
RelOptInfo *baserel,
Oid foreigntableid,
ForeignPath *best_path,
List *tlist,
List *scan_clauses,
Plan *outer_plan);
typedef void (*BeginForeignScan_function) (ForeignScanState *node,
9 years ago
int eflags);
typedef TupleTableSlot *(*IterateForeignScan_function) (ForeignScanState *node);
typedef bool (*RecheckForeignScan_function) (ForeignScanState *node,
9 years ago
TupleTableSlot *slot);
typedef void (*ReScanForeignScan_function) (ForeignScanState *node);
typedef void (*EndForeignScan_function) (ForeignScanState *node);
Code review for foreign/custom join pushdown patch. Commit e7cb7ee14555cc9c5773e2c102efd6371f6f2005 included some design decisions that seem pretty questionable to me, and there was quite a lot of stuff not to like about the documentation and comments. Clean up as follows: * Consider foreign joins only between foreign tables on the same server, rather than between any two foreign tables with the same underlying FDW handler function. In most if not all cases, the FDW would simply have had to apply the same-server restriction itself (far more expensively, both for lack of caching and because it would be repeated for each combination of input sub-joins), or else risk nasty bugs. Anyone who's really intent on doing something outside this restriction can always use the set_join_pathlist_hook. * Rename fdw_ps_tlist/custom_ps_tlist to fdw_scan_tlist/custom_scan_tlist to better reflect what they're for, and allow these custom scan tlists to be used even for base relations. * Change make_foreignscan() API to include passing the fdw_scan_tlist value, since the FDW is required to set that. Backwards compatibility doesn't seem like an adequate reason to expect FDWs to set it in some ad-hoc extra step, and anyway existing FDWs can just pass NIL. * Change the API of path-generating subroutines of add_paths_to_joinrel, and in particular that of GetForeignJoinPaths and set_join_pathlist_hook, so that various less-used parameters are passed in a struct rather than as separate parameter-list entries. The objective here is to reduce the probability that future additions to those parameter lists will result in source-level API breaks for users of these hooks. It's possible that this is even a small win for the core code, since most CPU architectures can't pass more than half a dozen parameters efficiently anyway. I kept root, joinrel, outerrel, innerrel, and jointype as separate parameters to reduce code churn in joinpath.c --- in particular, putting jointype into the struct would have been problematic because of the subroutines' habit of changing their local copies of that variable. * Avoid ad-hocery in ExecAssignScanProjectionInfo. It was probably all right for it to know about IndexOnlyScan, but if the list is to grow we should refactor the knowledge out to the callers. * Restore nodeForeignscan.c's previous use of the relcache to avoid extra GetFdwRoutine lookups for base-relation scans. * Lots of cleanup of documentation and missed comments. Re-order some code additions into more logical places.
11 years ago
typedef void (*GetForeignJoinPaths_function) (PlannerInfo *root,
9 years ago
RelOptInfo *joinrel,
RelOptInfo *outerrel,
RelOptInfo *innerrel,
JoinType jointype,
JoinPathExtraData *extra);
Code review for foreign/custom join pushdown patch. Commit e7cb7ee14555cc9c5773e2c102efd6371f6f2005 included some design decisions that seem pretty questionable to me, and there was quite a lot of stuff not to like about the documentation and comments. Clean up as follows: * Consider foreign joins only between foreign tables on the same server, rather than between any two foreign tables with the same underlying FDW handler function. In most if not all cases, the FDW would simply have had to apply the same-server restriction itself (far more expensively, both for lack of caching and because it would be repeated for each combination of input sub-joins), or else risk nasty bugs. Anyone who's really intent on doing something outside this restriction can always use the set_join_pathlist_hook. * Rename fdw_ps_tlist/custom_ps_tlist to fdw_scan_tlist/custom_scan_tlist to better reflect what they're for, and allow these custom scan tlists to be used even for base relations. * Change make_foreignscan() API to include passing the fdw_scan_tlist value, since the FDW is required to set that. Backwards compatibility doesn't seem like an adequate reason to expect FDWs to set it in some ad-hoc extra step, and anyway existing FDWs can just pass NIL. * Change the API of path-generating subroutines of add_paths_to_joinrel, and in particular that of GetForeignJoinPaths and set_join_pathlist_hook, so that various less-used parameters are passed in a struct rather than as separate parameter-list entries. The objective here is to reduce the probability that future additions to those parameter lists will result in source-level API breaks for users of these hooks. It's possible that this is even a small win for the core code, since most CPU architectures can't pass more than half a dozen parameters efficiently anyway. I kept root, joinrel, outerrel, innerrel, and jointype as separate parameters to reduce code churn in joinpath.c --- in particular, putting jointype into the struct would have been problematic because of the subroutines' habit of changing their local copies of that variable. * Avoid ad-hocery in ExecAssignScanProjectionInfo. It was probably all right for it to know about IndexOnlyScan, but if the list is to grow we should refactor the knowledge out to the callers. * Restore nodeForeignscan.c's previous use of the relcache to avoid extra GetFdwRoutine lookups for base-relation scans. * Lots of cleanup of documentation and missed comments. Re-order some code additions into more logical places.
11 years ago
typedef void (*GetForeignUpperPaths_function) (PlannerInfo *root,
9 years ago
UpperRelationKind stage,
RelOptInfo *input_rel,
RelOptInfo *output_rel,
void *extra);
Rework planning and execution of UPDATE and DELETE. This patch makes two closely related sets of changes: 1. For UPDATE, the subplan of the ModifyTable node now only delivers the new values of the changed columns (i.e., the expressions computed in the query's SET clause) plus row identity information such as CTID. ModifyTable must re-fetch the original tuple to merge in the old values of any unchanged columns. The core advantage of this is that the changed columns are uniform across all tables of an inherited or partitioned target relation, whereas the other columns might not be. A secondary advantage, when the UPDATE involves joins, is that less data needs to pass through the plan tree. The disadvantage of course is an extra fetch of each tuple to be updated. However, that seems to be very nearly free in context; even worst-case tests don't show it to add more than a couple percent to the total query cost. At some point it might be interesting to combine the re-fetch with the tuple access that ModifyTable must do anyway to mark the old tuple dead; but that would require a good deal of refactoring and it seems it wouldn't buy all that much, so this patch doesn't attempt it. 2. For inherited UPDATE/DELETE, instead of generating a separate subplan for each target relation, we now generate a single subplan that is just exactly like a SELECT's plan, then stick ModifyTable on top of that. To let ModifyTable know which target relation a given incoming row refers to, a tableoid junk column is added to the row identity information. This gets rid of the horrid hack that was inheritance_planner(), eliminating O(N^2) planning cost and memory consumption in cases where there were many unprunable target relations. Point 2 of course requires point 1, so that there is a uniform definition of the non-junk columns to be returned by the subplan. We can't insist on uniform definition of the row identity junk columns however, if we want to keep the ability to have both plain and foreign tables in a partitioning hierarchy. Since it wouldn't scale very far to have every child table have its own row identity column, this patch includes provisions to merge similar row identity columns into one column of the subplan result. In particular, we can merge the whole-row Vars typically used as row identity by FDWs into one column by pretending they are type RECORD. (It's still okay for the actual composite Datums to be labeled with the table's rowtype OID, though.) There is more that can be done to file down residual inefficiencies in this patch, but it seems to be committable now. FDW authors should note several API changes: * The argument list for AddForeignUpdateTargets() has changed, and so has the method it must use for adding junk columns to the query. Call add_row_identity_var() instead of manipulating the parse tree directly. You might want to reconsider exactly what you're adding, too. * PlanDirectModify() must now work a little harder to find the ForeignScan plan node; if the foreign table is part of a partitioning hierarchy then the ForeignScan might not be the direct child of ModifyTable. See postgres_fdw for sample code. * To check whether a relation is a target relation, it's no longer sufficient to compare its relid to root->parse->resultRelation. Instead, check it against all_result_relids or leaf_result_relids, as appropriate. Amit Langote and Tom Lane Discussion: https://postgr.es/m/CA+HiwqHpHdqdDn48yCEhynnniahH78rwcrv1rEX65-fsZGBOLQ@mail.gmail.com
5 years ago
typedef void (*AddForeignUpdateTargets_function) (PlannerInfo *root,
Index rtindex,
9 years ago
RangeTblEntry *target_rte,
Relation target_relation);
typedef List *(*PlanForeignModify_function) (PlannerInfo *root,
9 years ago
ModifyTable *plan,
Index resultRelation,
int subplan_index);
typedef void (*BeginForeignModify_function) (ModifyTableState *mtstate,
9 years ago
ResultRelInfo *rinfo,
List *fdw_private,
int subplan_index,
int eflags);
typedef TupleTableSlot *(*ExecForeignInsert_function) (EState *estate,
9 years ago
ResultRelInfo *rinfo,
TupleTableSlot *slot,
TupleTableSlot *planSlot);
typedef TupleTableSlot **(*ExecForeignBatchInsert_function) (EState *estate,
ResultRelInfo *rinfo,
TupleTableSlot **slots,
TupleTableSlot **planSlots,
int *numSlots);
typedef int (*GetForeignModifyBatchSize_function) (ResultRelInfo *rinfo);
typedef TupleTableSlot *(*ExecForeignUpdate_function) (EState *estate,
9 years ago
ResultRelInfo *rinfo,
TupleTableSlot *slot,
TupleTableSlot *planSlot);
typedef TupleTableSlot *(*ExecForeignDelete_function) (EState *estate,
9 years ago
ResultRelInfo *rinfo,
TupleTableSlot *slot,
TupleTableSlot *planSlot);
typedef void (*EndForeignModify_function) (EState *estate,
9 years ago
ResultRelInfo *rinfo);
typedef void (*BeginForeignInsert_function) (ModifyTableState *mtstate,
ResultRelInfo *rinfo);
typedef void (*EndForeignInsert_function) (EState *estate,
ResultRelInfo *rinfo);
typedef int (*IsForeignRelUpdatable_function) (Relation rel);
typedef bool (*PlanDirectModify_function) (PlannerInfo *root,
9 years ago
ModifyTable *plan,
Index resultRelation,
int subplan_index);
typedef void (*BeginDirectModify_function) (ForeignScanState *node,
9 years ago
int eflags);
typedef TupleTableSlot *(*IterateDirectModify_function) (ForeignScanState *node);
typedef void (*EndDirectModify_function) (ForeignScanState *node);
typedef RowMarkType (*GetForeignRowMarkType_function) (RangeTblEntry *rte,
LockClauseStrength strength);
typedef void (*RefetchForeignRow_function) (EState *estate,
ExecRowMark *erm,
Datum rowid,
TupleTableSlot *slot,
bool *updated);
typedef void (*ExplainForeignScan_function) (ForeignScanState *node,
ExplainState *es);
typedef void (*ExplainForeignModify_function) (ModifyTableState *mtstate,
9 years ago
ResultRelInfo *rinfo,
List *fdw_private,
int subplan_index,
ExplainState *es);
typedef void (*ExplainDirectModify_function) (ForeignScanState *node,
ExplainState *es);
typedef int (*AcquireSampleRowsFunc) (Relation relation, int elevel,
HeapTuple *rows, int targrows,
double *totalrows,
double *totaldeadrows);
typedef bool (*AnalyzeForeignTable_function) (Relation relation,
AcquireSampleRowsFunc *func,
9 years ago
BlockNumber *totalpages);
typedef List *(*ImportForeignSchema_function) (ImportForeignSchemaStmt *stmt,
9 years ago
Oid serverOid);
typedef void (*ExecForeignTruncate_function) (List *rels,
DropBehavior behavior,
bool restart_seqs);
typedef Size (*EstimateDSMForeignScan_function) (ForeignScanState *node,
9 years ago
ParallelContext *pcxt);
typedef void (*InitializeDSMForeignScan_function) (ForeignScanState *node,
9 years ago
ParallelContext *pcxt,
void *coordinate);
typedef void (*ReInitializeDSMForeignScan_function) (ForeignScanState *node,
ParallelContext *pcxt,
void *coordinate);
typedef void (*InitializeWorkerForeignScan_function) (ForeignScanState *node,
9 years ago
shm_toc *toc,
void *coordinate);
typedef void (*ShutdownForeignScan_function) (ForeignScanState *node);
typedef bool (*IsForeignScanParallelSafe_function) (PlannerInfo *root,
9 years ago
RelOptInfo *rel,
RangeTblEntry *rte);
Basic partition-wise join functionality. Instead of joining two partitioned tables in their entirety we can, if it is an equi-join on the partition keys, join the matching partitions individually. This involves teaching the planner about "other join" rels, which are related to regular join rels in the same way that other member rels are related to baserels. This can use significantly more CPU time and memory than regular join planning, because there may now be a set of "other" rels not only for every base relation but also for every join relation. In most practical cases, this probably shouldn't be a problem, because (1) it's probably unusual to join many tables each with many partitions using the partition keys for all joins and (2) if you do that scenario then you probably have a big enough machine to handle the increased memory cost of planning and (3) the resulting plan is highly likely to be better, so what you spend in planning you'll make up on the execution side. All the same, for now, turn this feature off by default. Currently, we can only perform joins between two tables whose partitioning schemes are absolutely identical. It would be nice to cope with other scenarios, such as extra partitions on one side or the other with no match on the other side, but that will have to wait for a future patch. Ashutosh Bapat, reviewed and tested by Rajkumar Raghuwanshi, Amit Langote, Rafia Sabih, Thomas Munro, Dilip Kumar, Antonin Houska, Amit Khandekar, and by me. A few final adjustments by me. Discussion: http://postgr.es/m/CAFjFpRfQ8GrQvzp3jA2wnLqrHmaXna-urjm_UY9BqXj=EaDTSA@mail.gmail.com Discussion: http://postgr.es/m/CAFjFpRcitjfrULr5jfuKWRPsGUX0LQ0k8-yG0Qw2+1LBGNpMdw@mail.gmail.com
8 years ago
typedef List *(*ReparameterizeForeignPathByChild_function) (PlannerInfo *root,
List *fdw_private,
RelOptInfo *child_rel);
Add support for asynchronous execution. This implements asynchronous execution, which runs multiple parts of a non-parallel-aware Append concurrently rather than serially to improve performance when possible. Currently, the only node type that can be run concurrently is a ForeignScan that is an immediate child of such an Append. In the case where such ForeignScans access data on different remote servers, this would run those ForeignScans concurrently, and overlap the remote operations to be performed simultaneously, so it'll improve the performance especially when the operations involve time-consuming ones such as remote join and remote aggregation. We may extend this to other node types such as joins or aggregates over ForeignScans in the future. This also adds the support for postgres_fdw, which is enabled by the table-level/server-level option "async_capable". The default is false. Robert Haas, Kyotaro Horiguchi, Thomas Munro, and myself. This commit is mostly based on the patch proposed by Robert Haas, but also uses stuff from the patch proposed by Kyotaro Horiguchi and from the patch proposed by Thomas Munro. Reviewed by Kyotaro Horiguchi, Konstantin Knizhnik, Andrey Lepikhov, Movead Li, Thomas Munro, Justin Pryzby, and others. Discussion: https://postgr.es/m/CA%2BTgmoaXQEt4tZ03FtQhnzeDEMzBck%2BLrni0UWHVVgOTnA6C1w%40mail.gmail.com Discussion: https://postgr.es/m/CA%2BhUKGLBRyu0rHrDCMC4%3DRn3252gogyp1SjOgG8SEKKZv%3DFwfQ%40mail.gmail.com Discussion: https://postgr.es/m/20200228.170650.667613673625155850.horikyota.ntt%40gmail.com
5 years ago
typedef bool (*IsForeignPathAsyncCapable_function) (ForeignPath *path);
typedef void (*ForeignAsyncRequest_function) (AsyncRequest *areq);
typedef void (*ForeignAsyncConfigureWait_function) (AsyncRequest *areq);
typedef void (*ForeignAsyncNotify_function) (AsyncRequest *areq);
/*
* FdwRoutine is the struct returned by a foreign-data wrapper's handler
* function. It provides pointers to the callback functions needed by the
* planner and executor.
*
* More function pointers are likely to be added in the future. Therefore
* it's recommended that the handler initialize the struct with
* makeNode(FdwRoutine) so that all fields are set to NULL. This will
* ensure that no fields are accidentally left undefined.
*/
typedef struct FdwRoutine
{
NodeTag type;
/* Functions for scanning foreign tables */
Revise FDW planning API, again. Further reflection shows that a single callback isn't very workable if we desire to let FDWs generate multiple Paths, because that forces the FDW to do all work necessary to generate a valid Plan node for each Path. Instead split the former PlanForeignScan API into three steps: GetForeignRelSize, GetForeignPaths, GetForeignPlan. We had already bit the bullet of breaking the 9.1 FDW API for 9.2, so this shouldn't cause very much additional pain, and it's substantially more flexible for complex FDWs. Add an fdw_private field to RelOptInfo so that the new functions can save state there rather than possibly having to recalculate information two or three times. In addition, we'd not thought through what would be needed to allow an FDW to set up subexpressions of its choice for runtime execution. We could treat ForeignScan.fdw_private as an executable expression but that seems likely to break existing FDWs unnecessarily (in particular, it would restrict the set of node types allowable in fdw_private to those supported by expression_tree_walker). Instead, invent a separate field fdw_exprs which will receive the postprocessing appropriate for expression trees. (One field is enough since it can be a list of expressions; also, we assume the corresponding expression state tree(s) will be held within fdw_state, so we don't need to add anything to ForeignScanState.) Per review of Hanada Shigeru's pgsql_fdw patch. We may need to tweak this further as we continue to work on that patch, but to me it feels a lot closer to being right now.
14 years ago
GetForeignRelSize_function GetForeignRelSize;
GetForeignPaths_function GetForeignPaths;
GetForeignPlan_function GetForeignPlan;
BeginForeignScan_function BeginForeignScan;
IterateForeignScan_function IterateForeignScan;
ReScanForeignScan_function ReScanForeignScan;
EndForeignScan_function EndForeignScan;
/*
* Remaining functions are optional. Set the pointer to NULL for any that
* are not provided.
*/
Code review for foreign/custom join pushdown patch. Commit e7cb7ee14555cc9c5773e2c102efd6371f6f2005 included some design decisions that seem pretty questionable to me, and there was quite a lot of stuff not to like about the documentation and comments. Clean up as follows: * Consider foreign joins only between foreign tables on the same server, rather than between any two foreign tables with the same underlying FDW handler function. In most if not all cases, the FDW would simply have had to apply the same-server restriction itself (far more expensively, both for lack of caching and because it would be repeated for each combination of input sub-joins), or else risk nasty bugs. Anyone who's really intent on doing something outside this restriction can always use the set_join_pathlist_hook. * Rename fdw_ps_tlist/custom_ps_tlist to fdw_scan_tlist/custom_scan_tlist to better reflect what they're for, and allow these custom scan tlists to be used even for base relations. * Change make_foreignscan() API to include passing the fdw_scan_tlist value, since the FDW is required to set that. Backwards compatibility doesn't seem like an adequate reason to expect FDWs to set it in some ad-hoc extra step, and anyway existing FDWs can just pass NIL. * Change the API of path-generating subroutines of add_paths_to_joinrel, and in particular that of GetForeignJoinPaths and set_join_pathlist_hook, so that various less-used parameters are passed in a struct rather than as separate parameter-list entries. The objective here is to reduce the probability that future additions to those parameter lists will result in source-level API breaks for users of these hooks. It's possible that this is even a small win for the core code, since most CPU architectures can't pass more than half a dozen parameters efficiently anyway. I kept root, joinrel, outerrel, innerrel, and jointype as separate parameters to reduce code churn in joinpath.c --- in particular, putting jointype into the struct would have been problematic because of the subroutines' habit of changing their local copies of that variable. * Avoid ad-hocery in ExecAssignScanProjectionInfo. It was probably all right for it to know about IndexOnlyScan, but if the list is to grow we should refactor the knowledge out to the callers. * Restore nodeForeignscan.c's previous use of the relcache to avoid extra GetFdwRoutine lookups for base-relation scans. * Lots of cleanup of documentation and missed comments. Re-order some code additions into more logical places.
11 years ago
/* Functions for remote-join planning */
GetForeignJoinPaths_function GetForeignJoinPaths;
/* Functions for remote upper-relation (post scan/join) planning */
GetForeignUpperPaths_function GetForeignUpperPaths;
/* Functions for updating foreign tables */
AddForeignUpdateTargets_function AddForeignUpdateTargets;
PlanForeignModify_function PlanForeignModify;
BeginForeignModify_function BeginForeignModify;
ExecForeignInsert_function ExecForeignInsert;
ExecForeignBatchInsert_function ExecForeignBatchInsert;
GetForeignModifyBatchSize_function GetForeignModifyBatchSize;
ExecForeignUpdate_function ExecForeignUpdate;
ExecForeignDelete_function ExecForeignDelete;
EndForeignModify_function EndForeignModify;
BeginForeignInsert_function BeginForeignInsert;
EndForeignInsert_function EndForeignInsert;
IsForeignRelUpdatable_function IsForeignRelUpdatable;
PlanDirectModify_function PlanDirectModify;
BeginDirectModify_function BeginDirectModify;
IterateDirectModify_function IterateDirectModify;
EndDirectModify_function EndDirectModify;
/* Functions for SELECT FOR UPDATE/SHARE row locking */
GetForeignRowMarkType_function GetForeignRowMarkType;
RefetchForeignRow_function RefetchForeignRow;
RecheckForeignScan_function RecheckForeignScan;
/* Support functions for EXPLAIN */
ExplainForeignScan_function ExplainForeignScan;
ExplainForeignModify_function ExplainForeignModify;
ExplainDirectModify_function ExplainDirectModify;
/* Support functions for ANALYZE */
AnalyzeForeignTable_function AnalyzeForeignTable;
/* Support functions for IMPORT FOREIGN SCHEMA */
ImportForeignSchema_function ImportForeignSchema;
/* Support functions for TRUNCATE */
ExecForeignTruncate_function ExecForeignTruncate;
/* Support functions for parallelism under Gather node */
IsForeignScanParallelSafe_function IsForeignScanParallelSafe;
EstimateDSMForeignScan_function EstimateDSMForeignScan;
InitializeDSMForeignScan_function InitializeDSMForeignScan;
ReInitializeDSMForeignScan_function ReInitializeDSMForeignScan;
InitializeWorkerForeignScan_function InitializeWorkerForeignScan;
ShutdownForeignScan_function ShutdownForeignScan;
Basic partition-wise join functionality. Instead of joining two partitioned tables in their entirety we can, if it is an equi-join on the partition keys, join the matching partitions individually. This involves teaching the planner about "other join" rels, which are related to regular join rels in the same way that other member rels are related to baserels. This can use significantly more CPU time and memory than regular join planning, because there may now be a set of "other" rels not only for every base relation but also for every join relation. In most practical cases, this probably shouldn't be a problem, because (1) it's probably unusual to join many tables each with many partitions using the partition keys for all joins and (2) if you do that scenario then you probably have a big enough machine to handle the increased memory cost of planning and (3) the resulting plan is highly likely to be better, so what you spend in planning you'll make up on the execution side. All the same, for now, turn this feature off by default. Currently, we can only perform joins between two tables whose partitioning schemes are absolutely identical. It would be nice to cope with other scenarios, such as extra partitions on one side or the other with no match on the other side, but that will have to wait for a future patch. Ashutosh Bapat, reviewed and tested by Rajkumar Raghuwanshi, Amit Langote, Rafia Sabih, Thomas Munro, Dilip Kumar, Antonin Houska, Amit Khandekar, and by me. A few final adjustments by me. Discussion: http://postgr.es/m/CAFjFpRfQ8GrQvzp3jA2wnLqrHmaXna-urjm_UY9BqXj=EaDTSA@mail.gmail.com Discussion: http://postgr.es/m/CAFjFpRcitjfrULr5jfuKWRPsGUX0LQ0k8-yG0Qw2+1LBGNpMdw@mail.gmail.com
8 years ago
/* Support functions for path reparameterization. */
ReparameterizeForeignPathByChild_function ReparameterizeForeignPathByChild;
Add support for asynchronous execution. This implements asynchronous execution, which runs multiple parts of a non-parallel-aware Append concurrently rather than serially to improve performance when possible. Currently, the only node type that can be run concurrently is a ForeignScan that is an immediate child of such an Append. In the case where such ForeignScans access data on different remote servers, this would run those ForeignScans concurrently, and overlap the remote operations to be performed simultaneously, so it'll improve the performance especially when the operations involve time-consuming ones such as remote join and remote aggregation. We may extend this to other node types such as joins or aggregates over ForeignScans in the future. This also adds the support for postgres_fdw, which is enabled by the table-level/server-level option "async_capable". The default is false. Robert Haas, Kyotaro Horiguchi, Thomas Munro, and myself. This commit is mostly based on the patch proposed by Robert Haas, but also uses stuff from the patch proposed by Kyotaro Horiguchi and from the patch proposed by Thomas Munro. Reviewed by Kyotaro Horiguchi, Konstantin Knizhnik, Andrey Lepikhov, Movead Li, Thomas Munro, Justin Pryzby, and others. Discussion: https://postgr.es/m/CA%2BTgmoaXQEt4tZ03FtQhnzeDEMzBck%2BLrni0UWHVVgOTnA6C1w%40mail.gmail.com Discussion: https://postgr.es/m/CA%2BhUKGLBRyu0rHrDCMC4%3DRn3252gogyp1SjOgG8SEKKZv%3DFwfQ%40mail.gmail.com Discussion: https://postgr.es/m/20200228.170650.667613673625155850.horikyota.ntt%40gmail.com
5 years ago
/* Support functions for asynchronous execution */
IsForeignPathAsyncCapable_function IsForeignPathAsyncCapable;
ForeignAsyncRequest_function ForeignAsyncRequest;
ForeignAsyncConfigureWait_function ForeignAsyncConfigureWait;
ForeignAsyncNotify_function ForeignAsyncNotify;
} FdwRoutine;
/* Functions in foreign/foreign.c */
extern FdwRoutine *GetFdwRoutine(Oid fdwhandler);
Code review for foreign/custom join pushdown patch. Commit e7cb7ee14555cc9c5773e2c102efd6371f6f2005 included some design decisions that seem pretty questionable to me, and there was quite a lot of stuff not to like about the documentation and comments. Clean up as follows: * Consider foreign joins only between foreign tables on the same server, rather than between any two foreign tables with the same underlying FDW handler function. In most if not all cases, the FDW would simply have had to apply the same-server restriction itself (far more expensively, both for lack of caching and because it would be repeated for each combination of input sub-joins), or else risk nasty bugs. Anyone who's really intent on doing something outside this restriction can always use the set_join_pathlist_hook. * Rename fdw_ps_tlist/custom_ps_tlist to fdw_scan_tlist/custom_scan_tlist to better reflect what they're for, and allow these custom scan tlists to be used even for base relations. * Change make_foreignscan() API to include passing the fdw_scan_tlist value, since the FDW is required to set that. Backwards compatibility doesn't seem like an adequate reason to expect FDWs to set it in some ad-hoc extra step, and anyway existing FDWs can just pass NIL. * Change the API of path-generating subroutines of add_paths_to_joinrel, and in particular that of GetForeignJoinPaths and set_join_pathlist_hook, so that various less-used parameters are passed in a struct rather than as separate parameter-list entries. The objective here is to reduce the probability that future additions to those parameter lists will result in source-level API breaks for users of these hooks. It's possible that this is even a small win for the core code, since most CPU architectures can't pass more than half a dozen parameters efficiently anyway. I kept root, joinrel, outerrel, innerrel, and jointype as separate parameters to reduce code churn in joinpath.c --- in particular, putting jointype into the struct would have been problematic because of the subroutines' habit of changing their local copies of that variable. * Avoid ad-hocery in ExecAssignScanProjectionInfo. It was probably all right for it to know about IndexOnlyScan, but if the list is to grow we should refactor the knowledge out to the callers. * Restore nodeForeignscan.c's previous use of the relcache to avoid extra GetFdwRoutine lookups for base-relation scans. * Lots of cleanup of documentation and missed comments. Re-order some code additions into more logical places.
11 years ago
extern Oid GetForeignServerIdByRelId(Oid relid);
extern FdwRoutine *GetFdwRoutineByServerId(Oid serverid);
extern FdwRoutine *GetFdwRoutineByRelId(Oid relid);
extern FdwRoutine *GetFdwRoutineForRelation(Relation relation, bool makecopy);
extern bool IsImportableForeignTable(const char *tablename,
ImportForeignSchemaStmt *stmt);
extern Path *GetExistingLocalJoinPath(RelOptInfo *joinrel);
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
9 years ago
#endif /* FDWAPI_H */