You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
postgres/src/pl/plpython/plpy_exec.c

1087 lines
29 KiB

/*
* executing Python code
*
* src/pl/plpython/plpy_exec.c
*/
#include "postgres.h"
#include "access/htup_details.h"
#include "access/xact.h"
#include "catalog/pg_type.h"
#include "commands/trigger.h"
#include "executor/spi.h"
#include "funcapi.h"
#include "plpy_elog.h"
#include "plpy_exec.h"
#include "plpy_main.h"
#include "plpy_procedure.h"
#include "plpy_subxactobject.h"
#include "plpython.h"
#include "utils/builtins.h"
#include "utils/lsyscache.h"
#include "utils/rel.h"
#include "utils/typcache.h"
Fix PL/Python for recursion and interleaved set-returning functions. PL/Python failed if a PL/Python function was invoked recursively via SPI, since arguments are passed to the function in its global dictionary (a horrible decision that's far too ancient to undo) and it would delete those dictionary entries on function exit, leaving the outer recursion level(s) without any arguments. Not deleting them would be little better, since the outer levels would then see the innermost level's arguments. Since PL/Python uses ValuePerCall mode for evaluating set-returning functions, it's possible for multiple executions of the same SRF to be interleaved within a query. PL/Python failed in such a case, because it stored only one iterator per function, directly in the function's PLyProcedure struct. Moreover, one interleaved instance of the SRF would see argument values that should belong to another. Hence, invent code for saving and restoring the argument entries. To fix the recursion case, we only need to save at recursive entry and restore at recursive exit, so the overhead in non-recursive cases is negligible. To fix the SRF case, we have to save when suspending a SRF and restore when resuming it, which is potentially not negligible; but fortunately this is mostly a matter of manipulating Python object refcounts and should not involve much physical data copying. Also, store the Python iterator and saved argument values in a structure associated with the SRF call site rather than the function itself. This requires adding a memory context deletion callback to ensure that the SRF state is cleaned up if the calling query exits before running the SRF to completion. Without that we'd leak a refcount to the iterator object in such a case, resulting in session-lifespan memory leakage. (In the pre-existing code, there was no memory leak because there was only one iterator pointer, but what would happen is that the previous iterator would be resumed by the next query attempting to use the SRF. Hardly the semantics we want.) We can buy back some of whatever overhead we've added by getting rid of PLy_function_delete_args(), which seems a useless activity: there is no need to delete argument entries from the global dictionary on exit, since the next time anyone would see the global dict is on the next fresh call of the PL/Python function, at which time we'd overwrite those entries with new arg values anyway. Also clean up some really ugly coding in the SRF implementation, including such gems as returning directly out of a PG_TRY block. (The only reason that failed to crash hard was that all existing call sites immediately exited their own PG_TRY blocks, popping the dangling longjmp pointer before there was any chance of it being used.) In principle this is a bug fix; but it seems a bit too invasive relative to its value for a back-patch, and besides the fix depends on memory context callbacks so it could not go back further than 9.5 anyway. Alexey Grishchenko and Tom Lane
10 years ago
/* saved state for a set-returning function */
typedef struct PLySRFState
{
PyObject *iter; /* Python iterator producing results */
PLySavedArgs *savedargs; /* function argument values */
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
9 years ago
MemoryContextCallback callback; /* for releasing refcounts when done */
Fix PL/Python for recursion and interleaved set-returning functions. PL/Python failed if a PL/Python function was invoked recursively via SPI, since arguments are passed to the function in its global dictionary (a horrible decision that's far too ancient to undo) and it would delete those dictionary entries on function exit, leaving the outer recursion level(s) without any arguments. Not deleting them would be little better, since the outer levels would then see the innermost level's arguments. Since PL/Python uses ValuePerCall mode for evaluating set-returning functions, it's possible for multiple executions of the same SRF to be interleaved within a query. PL/Python failed in such a case, because it stored only one iterator per function, directly in the function's PLyProcedure struct. Moreover, one interleaved instance of the SRF would see argument values that should belong to another. Hence, invent code for saving and restoring the argument entries. To fix the recursion case, we only need to save at recursive entry and restore at recursive exit, so the overhead in non-recursive cases is negligible. To fix the SRF case, we have to save when suspending a SRF and restore when resuming it, which is potentially not negligible; but fortunately this is mostly a matter of manipulating Python object refcounts and should not involve much physical data copying. Also, store the Python iterator and saved argument values in a structure associated with the SRF call site rather than the function itself. This requires adding a memory context deletion callback to ensure that the SRF state is cleaned up if the calling query exits before running the SRF to completion. Without that we'd leak a refcount to the iterator object in such a case, resulting in session-lifespan memory leakage. (In the pre-existing code, there was no memory leak because there was only one iterator pointer, but what would happen is that the previous iterator would be resumed by the next query attempting to use the SRF. Hardly the semantics we want.) We can buy back some of whatever overhead we've added by getting rid of PLy_function_delete_args(), which seems a useless activity: there is no need to delete argument entries from the global dictionary on exit, since the next time anyone would see the global dict is on the next fresh call of the PL/Python function, at which time we'd overwrite those entries with new arg values anyway. Also clean up some really ugly coding in the SRF implementation, including such gems as returning directly out of a PG_TRY block. (The only reason that failed to crash hard was that all existing call sites immediately exited their own PG_TRY blocks, popping the dangling longjmp pointer before there was any chance of it being used.) In principle this is a bug fix; but it seems a bit too invasive relative to its value for a back-patch, and besides the fix depends on memory context callbacks so it could not go back further than 9.5 anyway. Alexey Grishchenko and Tom Lane
10 years ago
} PLySRFState;
static PyObject *PLy_function_build_args(FunctionCallInfo fcinfo, PLyProcedure *proc);
Fix PL/Python for recursion and interleaved set-returning functions. PL/Python failed if a PL/Python function was invoked recursively via SPI, since arguments are passed to the function in its global dictionary (a horrible decision that's far too ancient to undo) and it would delete those dictionary entries on function exit, leaving the outer recursion level(s) without any arguments. Not deleting them would be little better, since the outer levels would then see the innermost level's arguments. Since PL/Python uses ValuePerCall mode for evaluating set-returning functions, it's possible for multiple executions of the same SRF to be interleaved within a query. PL/Python failed in such a case, because it stored only one iterator per function, directly in the function's PLyProcedure struct. Moreover, one interleaved instance of the SRF would see argument values that should belong to another. Hence, invent code for saving and restoring the argument entries. To fix the recursion case, we only need to save at recursive entry and restore at recursive exit, so the overhead in non-recursive cases is negligible. To fix the SRF case, we have to save when suspending a SRF and restore when resuming it, which is potentially not negligible; but fortunately this is mostly a matter of manipulating Python object refcounts and should not involve much physical data copying. Also, store the Python iterator and saved argument values in a structure associated with the SRF call site rather than the function itself. This requires adding a memory context deletion callback to ensure that the SRF state is cleaned up if the calling query exits before running the SRF to completion. Without that we'd leak a refcount to the iterator object in such a case, resulting in session-lifespan memory leakage. (In the pre-existing code, there was no memory leak because there was only one iterator pointer, but what would happen is that the previous iterator would be resumed by the next query attempting to use the SRF. Hardly the semantics we want.) We can buy back some of whatever overhead we've added by getting rid of PLy_function_delete_args(), which seems a useless activity: there is no need to delete argument entries from the global dictionary on exit, since the next time anyone would see the global dict is on the next fresh call of the PL/Python function, at which time we'd overwrite those entries with new arg values anyway. Also clean up some really ugly coding in the SRF implementation, including such gems as returning directly out of a PG_TRY block. (The only reason that failed to crash hard was that all existing call sites immediately exited their own PG_TRY blocks, popping the dangling longjmp pointer before there was any chance of it being used.) In principle this is a bug fix; but it seems a bit too invasive relative to its value for a back-patch, and besides the fix depends on memory context callbacks so it could not go back further than 9.5 anyway. Alexey Grishchenko and Tom Lane
10 years ago
static PLySavedArgs *PLy_function_save_args(PLyProcedure *proc);
static void PLy_function_restore_args(PLyProcedure *proc, PLySavedArgs *savedargs);
static void PLy_function_drop_args(PLySavedArgs *savedargs);
static void PLy_global_args_push(PLyProcedure *proc);
static void PLy_global_args_pop(PLyProcedure *proc);
static void plpython_srf_cleanup_callback(void *arg);
static void plpython_return_error_callback(void *arg);
static PyObject *PLy_trigger_build_args(FunctionCallInfo fcinfo, PLyProcedure *proc,
HeapTuple *rv);
static HeapTuple PLy_modify_tuple(PLyProcedure *proc, PyObject *pltd,
TriggerData *tdata, HeapTuple otup);
static void plpython_trigger_error_callback(void *arg);
Fix PL/Python for recursion and interleaved set-returning functions. PL/Python failed if a PL/Python function was invoked recursively via SPI, since arguments are passed to the function in its global dictionary (a horrible decision that's far too ancient to undo) and it would delete those dictionary entries on function exit, leaving the outer recursion level(s) without any arguments. Not deleting them would be little better, since the outer levels would then see the innermost level's arguments. Since PL/Python uses ValuePerCall mode for evaluating set-returning functions, it's possible for multiple executions of the same SRF to be interleaved within a query. PL/Python failed in such a case, because it stored only one iterator per function, directly in the function's PLyProcedure struct. Moreover, one interleaved instance of the SRF would see argument values that should belong to another. Hence, invent code for saving and restoring the argument entries. To fix the recursion case, we only need to save at recursive entry and restore at recursive exit, so the overhead in non-recursive cases is negligible. To fix the SRF case, we have to save when suspending a SRF and restore when resuming it, which is potentially not negligible; but fortunately this is mostly a matter of manipulating Python object refcounts and should not involve much physical data copying. Also, store the Python iterator and saved argument values in a structure associated with the SRF call site rather than the function itself. This requires adding a memory context deletion callback to ensure that the SRF state is cleaned up if the calling query exits before running the SRF to completion. Without that we'd leak a refcount to the iterator object in such a case, resulting in session-lifespan memory leakage. (In the pre-existing code, there was no memory leak because there was only one iterator pointer, but what would happen is that the previous iterator would be resumed by the next query attempting to use the SRF. Hardly the semantics we want.) We can buy back some of whatever overhead we've added by getting rid of PLy_function_delete_args(), which seems a useless activity: there is no need to delete argument entries from the global dictionary on exit, since the next time anyone would see the global dict is on the next fresh call of the PL/Python function, at which time we'd overwrite those entries with new arg values anyway. Also clean up some really ugly coding in the SRF implementation, including such gems as returning directly out of a PG_TRY block. (The only reason that failed to crash hard was that all existing call sites immediately exited their own PG_TRY blocks, popping the dangling longjmp pointer before there was any chance of it being used.) In principle this is a bug fix; but it seems a bit too invasive relative to its value for a back-patch, and besides the fix depends on memory context callbacks so it could not go back further than 9.5 anyway. Alexey Grishchenko and Tom Lane
10 years ago
static PyObject *PLy_procedure_call(PLyProcedure *proc, const char *kargs, PyObject *vargs);
static void PLy_abort_open_subtransactions(int save_subxact_level);
/* function subhandler */
Datum
PLy_exec_function(FunctionCallInfo fcinfo, PLyProcedure *proc)
{
bool is_setof = proc->is_setof;
Datum rv;
PyObject *volatile plargs = NULL;
PyObject *volatile plrv = NULL;
Fix PL/Python for recursion and interleaved set-returning functions. PL/Python failed if a PL/Python function was invoked recursively via SPI, since arguments are passed to the function in its global dictionary (a horrible decision that's far too ancient to undo) and it would delete those dictionary entries on function exit, leaving the outer recursion level(s) without any arguments. Not deleting them would be little better, since the outer levels would then see the innermost level's arguments. Since PL/Python uses ValuePerCall mode for evaluating set-returning functions, it's possible for multiple executions of the same SRF to be interleaved within a query. PL/Python failed in such a case, because it stored only one iterator per function, directly in the function's PLyProcedure struct. Moreover, one interleaved instance of the SRF would see argument values that should belong to another. Hence, invent code for saving and restoring the argument entries. To fix the recursion case, we only need to save at recursive entry and restore at recursive exit, so the overhead in non-recursive cases is negligible. To fix the SRF case, we have to save when suspending a SRF and restore when resuming it, which is potentially not negligible; but fortunately this is mostly a matter of manipulating Python object refcounts and should not involve much physical data copying. Also, store the Python iterator and saved argument values in a structure associated with the SRF call site rather than the function itself. This requires adding a memory context deletion callback to ensure that the SRF state is cleaned up if the calling query exits before running the SRF to completion. Without that we'd leak a refcount to the iterator object in such a case, resulting in session-lifespan memory leakage. (In the pre-existing code, there was no memory leak because there was only one iterator pointer, but what would happen is that the previous iterator would be resumed by the next query attempting to use the SRF. Hardly the semantics we want.) We can buy back some of whatever overhead we've added by getting rid of PLy_function_delete_args(), which seems a useless activity: there is no need to delete argument entries from the global dictionary on exit, since the next time anyone would see the global dict is on the next fresh call of the PL/Python function, at which time we'd overwrite those entries with new arg values anyway. Also clean up some really ugly coding in the SRF implementation, including such gems as returning directly out of a PG_TRY block. (The only reason that failed to crash hard was that all existing call sites immediately exited their own PG_TRY blocks, popping the dangling longjmp pointer before there was any chance of it being used.) In principle this is a bug fix; but it seems a bit too invasive relative to its value for a back-patch, and besides the fix depends on memory context callbacks so it could not go back further than 9.5 anyway. Alexey Grishchenko and Tom Lane
10 years ago
FuncCallContext *volatile funcctx = NULL;
PLySRFState *volatile srfstate = NULL;
ErrorContextCallback plerrcontext;
Fix PL/Python for recursion and interleaved set-returning functions. PL/Python failed if a PL/Python function was invoked recursively via SPI, since arguments are passed to the function in its global dictionary (a horrible decision that's far too ancient to undo) and it would delete those dictionary entries on function exit, leaving the outer recursion level(s) without any arguments. Not deleting them would be little better, since the outer levels would then see the innermost level's arguments. Since PL/Python uses ValuePerCall mode for evaluating set-returning functions, it's possible for multiple executions of the same SRF to be interleaved within a query. PL/Python failed in such a case, because it stored only one iterator per function, directly in the function's PLyProcedure struct. Moreover, one interleaved instance of the SRF would see argument values that should belong to another. Hence, invent code for saving and restoring the argument entries. To fix the recursion case, we only need to save at recursive entry and restore at recursive exit, so the overhead in non-recursive cases is negligible. To fix the SRF case, we have to save when suspending a SRF and restore when resuming it, which is potentially not negligible; but fortunately this is mostly a matter of manipulating Python object refcounts and should not involve much physical data copying. Also, store the Python iterator and saved argument values in a structure associated with the SRF call site rather than the function itself. This requires adding a memory context deletion callback to ensure that the SRF state is cleaned up if the calling query exits before running the SRF to completion. Without that we'd leak a refcount to the iterator object in such a case, resulting in session-lifespan memory leakage. (In the pre-existing code, there was no memory leak because there was only one iterator pointer, but what would happen is that the previous iterator would be resumed by the next query attempting to use the SRF. Hardly the semantics we want.) We can buy back some of whatever overhead we've added by getting rid of PLy_function_delete_args(), which seems a useless activity: there is no need to delete argument entries from the global dictionary on exit, since the next time anyone would see the global dict is on the next fresh call of the PL/Python function, at which time we'd overwrite those entries with new arg values anyway. Also clean up some really ugly coding in the SRF implementation, including such gems as returning directly out of a PG_TRY block. (The only reason that failed to crash hard was that all existing call sites immediately exited their own PG_TRY blocks, popping the dangling longjmp pointer before there was any chance of it being used.) In principle this is a bug fix; but it seems a bit too invasive relative to its value for a back-patch, and besides the fix depends on memory context callbacks so it could not go back further than 9.5 anyway. Alexey Grishchenko and Tom Lane
10 years ago
/*
* If the function is called recursively, we must push outer-level
* arguments into the stack. This must be immediately before the PG_TRY
* to ensure that the corresponding pop happens.
*/
PLy_global_args_push(proc);
PG_TRY();
{
if (is_setof)
Fix PL/Python for recursion and interleaved set-returning functions. PL/Python failed if a PL/Python function was invoked recursively via SPI, since arguments are passed to the function in its global dictionary (a horrible decision that's far too ancient to undo) and it would delete those dictionary entries on function exit, leaving the outer recursion level(s) without any arguments. Not deleting them would be little better, since the outer levels would then see the innermost level's arguments. Since PL/Python uses ValuePerCall mode for evaluating set-returning functions, it's possible for multiple executions of the same SRF to be interleaved within a query. PL/Python failed in such a case, because it stored only one iterator per function, directly in the function's PLyProcedure struct. Moreover, one interleaved instance of the SRF would see argument values that should belong to another. Hence, invent code for saving and restoring the argument entries. To fix the recursion case, we only need to save at recursive entry and restore at recursive exit, so the overhead in non-recursive cases is negligible. To fix the SRF case, we have to save when suspending a SRF and restore when resuming it, which is potentially not negligible; but fortunately this is mostly a matter of manipulating Python object refcounts and should not involve much physical data copying. Also, store the Python iterator and saved argument values in a structure associated with the SRF call site rather than the function itself. This requires adding a memory context deletion callback to ensure that the SRF state is cleaned up if the calling query exits before running the SRF to completion. Without that we'd leak a refcount to the iterator object in such a case, resulting in session-lifespan memory leakage. (In the pre-existing code, there was no memory leak because there was only one iterator pointer, but what would happen is that the previous iterator would be resumed by the next query attempting to use the SRF. Hardly the semantics we want.) We can buy back some of whatever overhead we've added by getting rid of PLy_function_delete_args(), which seems a useless activity: there is no need to delete argument entries from the global dictionary on exit, since the next time anyone would see the global dict is on the next fresh call of the PL/Python function, at which time we'd overwrite those entries with new arg values anyway. Also clean up some really ugly coding in the SRF implementation, including such gems as returning directly out of a PG_TRY block. (The only reason that failed to crash hard was that all existing call sites immediately exited their own PG_TRY blocks, popping the dangling longjmp pointer before there was any chance of it being used.) In principle this is a bug fix; but it seems a bit too invasive relative to its value for a back-patch, and besides the fix depends on memory context callbacks so it could not go back further than 9.5 anyway. Alexey Grishchenko and Tom Lane
10 years ago
{
/* First Call setup */
if (SRF_IS_FIRSTCALL())
{
funcctx = SRF_FIRSTCALL_INIT();
srfstate = (PLySRFState *)
MemoryContextAllocZero(funcctx->multi_call_memory_ctx,
sizeof(PLySRFState));
/* Immediately register cleanup callback */
srfstate->callback.func = plpython_srf_cleanup_callback;
srfstate->callback.arg = (void *) srfstate;
MemoryContextRegisterResetCallback(funcctx->multi_call_memory_ctx,
&srfstate->callback);
funcctx->user_fctx = (void *) srfstate;
}
/* Every call setup */
funcctx = SRF_PERCALL_SETUP();
Assert(funcctx != NULL);
srfstate = (PLySRFState *) funcctx->user_fctx;
Assert(srfstate != NULL);
Fix PL/Python for recursion and interleaved set-returning functions. PL/Python failed if a PL/Python function was invoked recursively via SPI, since arguments are passed to the function in its global dictionary (a horrible decision that's far too ancient to undo) and it would delete those dictionary entries on function exit, leaving the outer recursion level(s) without any arguments. Not deleting them would be little better, since the outer levels would then see the innermost level's arguments. Since PL/Python uses ValuePerCall mode for evaluating set-returning functions, it's possible for multiple executions of the same SRF to be interleaved within a query. PL/Python failed in such a case, because it stored only one iterator per function, directly in the function's PLyProcedure struct. Moreover, one interleaved instance of the SRF would see argument values that should belong to another. Hence, invent code for saving and restoring the argument entries. To fix the recursion case, we only need to save at recursive entry and restore at recursive exit, so the overhead in non-recursive cases is negligible. To fix the SRF case, we have to save when suspending a SRF and restore when resuming it, which is potentially not negligible; but fortunately this is mostly a matter of manipulating Python object refcounts and should not involve much physical data copying. Also, store the Python iterator and saved argument values in a structure associated with the SRF call site rather than the function itself. This requires adding a memory context deletion callback to ensure that the SRF state is cleaned up if the calling query exits before running the SRF to completion. Without that we'd leak a refcount to the iterator object in such a case, resulting in session-lifespan memory leakage. (In the pre-existing code, there was no memory leak because there was only one iterator pointer, but what would happen is that the previous iterator would be resumed by the next query attempting to use the SRF. Hardly the semantics we want.) We can buy back some of whatever overhead we've added by getting rid of PLy_function_delete_args(), which seems a useless activity: there is no need to delete argument entries from the global dictionary on exit, since the next time anyone would see the global dict is on the next fresh call of the PL/Python function, at which time we'd overwrite those entries with new arg values anyway. Also clean up some really ugly coding in the SRF implementation, including such gems as returning directly out of a PG_TRY block. (The only reason that failed to crash hard was that all existing call sites immediately exited their own PG_TRY blocks, popping the dangling longjmp pointer before there was any chance of it being used.) In principle this is a bug fix; but it seems a bit too invasive relative to its value for a back-patch, and besides the fix depends on memory context callbacks so it could not go back further than 9.5 anyway. Alexey Grishchenko and Tom Lane
10 years ago
}
if (srfstate == NULL || srfstate->iter == NULL)
{
/*
Fix PL/Python for recursion and interleaved set-returning functions. PL/Python failed if a PL/Python function was invoked recursively via SPI, since arguments are passed to the function in its global dictionary (a horrible decision that's far too ancient to undo) and it would delete those dictionary entries on function exit, leaving the outer recursion level(s) without any arguments. Not deleting them would be little better, since the outer levels would then see the innermost level's arguments. Since PL/Python uses ValuePerCall mode for evaluating set-returning functions, it's possible for multiple executions of the same SRF to be interleaved within a query. PL/Python failed in such a case, because it stored only one iterator per function, directly in the function's PLyProcedure struct. Moreover, one interleaved instance of the SRF would see argument values that should belong to another. Hence, invent code for saving and restoring the argument entries. To fix the recursion case, we only need to save at recursive entry and restore at recursive exit, so the overhead in non-recursive cases is negligible. To fix the SRF case, we have to save when suspending a SRF and restore when resuming it, which is potentially not negligible; but fortunately this is mostly a matter of manipulating Python object refcounts and should not involve much physical data copying. Also, store the Python iterator and saved argument values in a structure associated with the SRF call site rather than the function itself. This requires adding a memory context deletion callback to ensure that the SRF state is cleaned up if the calling query exits before running the SRF to completion. Without that we'd leak a refcount to the iterator object in such a case, resulting in session-lifespan memory leakage. (In the pre-existing code, there was no memory leak because there was only one iterator pointer, but what would happen is that the previous iterator would be resumed by the next query attempting to use the SRF. Hardly the semantics we want.) We can buy back some of whatever overhead we've added by getting rid of PLy_function_delete_args(), which seems a useless activity: there is no need to delete argument entries from the global dictionary on exit, since the next time anyone would see the global dict is on the next fresh call of the PL/Python function, at which time we'd overwrite those entries with new arg values anyway. Also clean up some really ugly coding in the SRF implementation, including such gems as returning directly out of a PG_TRY block. (The only reason that failed to crash hard was that all existing call sites immediately exited their own PG_TRY blocks, popping the dangling longjmp pointer before there was any chance of it being used.) In principle this is a bug fix; but it seems a bit too invasive relative to its value for a back-patch, and besides the fix depends on memory context callbacks so it could not go back further than 9.5 anyway. Alexey Grishchenko and Tom Lane
10 years ago
* Non-SETOF function or first time for SETOF function: build
* args, then actually execute the function.
*/
plargs = PLy_function_build_args(fcinfo, proc);
plrv = PLy_procedure_call(proc, "args", plargs);
Assert(plrv != NULL);
}
Fix PL/Python for recursion and interleaved set-returning functions. PL/Python failed if a PL/Python function was invoked recursively via SPI, since arguments are passed to the function in its global dictionary (a horrible decision that's far too ancient to undo) and it would delete those dictionary entries on function exit, leaving the outer recursion level(s) without any arguments. Not deleting them would be little better, since the outer levels would then see the innermost level's arguments. Since PL/Python uses ValuePerCall mode for evaluating set-returning functions, it's possible for multiple executions of the same SRF to be interleaved within a query. PL/Python failed in such a case, because it stored only one iterator per function, directly in the function's PLyProcedure struct. Moreover, one interleaved instance of the SRF would see argument values that should belong to another. Hence, invent code for saving and restoring the argument entries. To fix the recursion case, we only need to save at recursive entry and restore at recursive exit, so the overhead in non-recursive cases is negligible. To fix the SRF case, we have to save when suspending a SRF and restore when resuming it, which is potentially not negligible; but fortunately this is mostly a matter of manipulating Python object refcounts and should not involve much physical data copying. Also, store the Python iterator and saved argument values in a structure associated with the SRF call site rather than the function itself. This requires adding a memory context deletion callback to ensure that the SRF state is cleaned up if the calling query exits before running the SRF to completion. Without that we'd leak a refcount to the iterator object in such a case, resulting in session-lifespan memory leakage. (In the pre-existing code, there was no memory leak because there was only one iterator pointer, but what would happen is that the previous iterator would be resumed by the next query attempting to use the SRF. Hardly the semantics we want.) We can buy back some of whatever overhead we've added by getting rid of PLy_function_delete_args(), which seems a useless activity: there is no need to delete argument entries from the global dictionary on exit, since the next time anyone would see the global dict is on the next fresh call of the PL/Python function, at which time we'd overwrite those entries with new arg values anyway. Also clean up some really ugly coding in the SRF implementation, including such gems as returning directly out of a PG_TRY block. (The only reason that failed to crash hard was that all existing call sites immediately exited their own PG_TRY blocks, popping the dangling longjmp pointer before there was any chance of it being used.) In principle this is a bug fix; but it seems a bit too invasive relative to its value for a back-patch, and besides the fix depends on memory context callbacks so it could not go back further than 9.5 anyway. Alexey Grishchenko and Tom Lane
10 years ago
else
{
/*
* Second or later call for a SETOF function: restore arguments in
* globals dict to what they were when we left off. We must do
* this in case multiple evaluations of the same SETOF function
* are interleaved. It's a bit annoying, since the iterator may
* not look at the arguments at all, but we have no way to know
* that. Fortunately this isn't terribly expensive.
*/
if (srfstate->savedargs)
PLy_function_restore_args(proc, srfstate->savedargs);
srfstate->savedargs = NULL; /* deleted by restore_args */
}
/*
* If it returns a set, call the iterator to get the next return item.
* We stay in the SPI context while doing this, because PyIter_Next()
* calls back into Python code which might contain SPI calls.
*/
if (is_setof)
{
Fix PL/Python for recursion and interleaved set-returning functions. PL/Python failed if a PL/Python function was invoked recursively via SPI, since arguments are passed to the function in its global dictionary (a horrible decision that's far too ancient to undo) and it would delete those dictionary entries on function exit, leaving the outer recursion level(s) without any arguments. Not deleting them would be little better, since the outer levels would then see the innermost level's arguments. Since PL/Python uses ValuePerCall mode for evaluating set-returning functions, it's possible for multiple executions of the same SRF to be interleaved within a query. PL/Python failed in such a case, because it stored only one iterator per function, directly in the function's PLyProcedure struct. Moreover, one interleaved instance of the SRF would see argument values that should belong to another. Hence, invent code for saving and restoring the argument entries. To fix the recursion case, we only need to save at recursive entry and restore at recursive exit, so the overhead in non-recursive cases is negligible. To fix the SRF case, we have to save when suspending a SRF and restore when resuming it, which is potentially not negligible; but fortunately this is mostly a matter of manipulating Python object refcounts and should not involve much physical data copying. Also, store the Python iterator and saved argument values in a structure associated with the SRF call site rather than the function itself. This requires adding a memory context deletion callback to ensure that the SRF state is cleaned up if the calling query exits before running the SRF to completion. Without that we'd leak a refcount to the iterator object in such a case, resulting in session-lifespan memory leakage. (In the pre-existing code, there was no memory leak because there was only one iterator pointer, but what would happen is that the previous iterator would be resumed by the next query attempting to use the SRF. Hardly the semantics we want.) We can buy back some of whatever overhead we've added by getting rid of PLy_function_delete_args(), which seems a useless activity: there is no need to delete argument entries from the global dictionary on exit, since the next time anyone would see the global dict is on the next fresh call of the PL/Python function, at which time we'd overwrite those entries with new arg values anyway. Also clean up some really ugly coding in the SRF implementation, including such gems as returning directly out of a PG_TRY block. (The only reason that failed to crash hard was that all existing call sites immediately exited their own PG_TRY blocks, popping the dangling longjmp pointer before there was any chance of it being used.) In principle this is a bug fix; but it seems a bit too invasive relative to its value for a back-patch, and besides the fix depends on memory context callbacks so it could not go back further than 9.5 anyway. Alexey Grishchenko and Tom Lane
10 years ago
if (srfstate->iter == NULL)
{
/* first time -- do checks and setup */
Fix PL/Python for recursion and interleaved set-returning functions. PL/Python failed if a PL/Python function was invoked recursively via SPI, since arguments are passed to the function in its global dictionary (a horrible decision that's far too ancient to undo) and it would delete those dictionary entries on function exit, leaving the outer recursion level(s) without any arguments. Not deleting them would be little better, since the outer levels would then see the innermost level's arguments. Since PL/Python uses ValuePerCall mode for evaluating set-returning functions, it's possible for multiple executions of the same SRF to be interleaved within a query. PL/Python failed in such a case, because it stored only one iterator per function, directly in the function's PLyProcedure struct. Moreover, one interleaved instance of the SRF would see argument values that should belong to another. Hence, invent code for saving and restoring the argument entries. To fix the recursion case, we only need to save at recursive entry and restore at recursive exit, so the overhead in non-recursive cases is negligible. To fix the SRF case, we have to save when suspending a SRF and restore when resuming it, which is potentially not negligible; but fortunately this is mostly a matter of manipulating Python object refcounts and should not involve much physical data copying. Also, store the Python iterator and saved argument values in a structure associated with the SRF call site rather than the function itself. This requires adding a memory context deletion callback to ensure that the SRF state is cleaned up if the calling query exits before running the SRF to completion. Without that we'd leak a refcount to the iterator object in such a case, resulting in session-lifespan memory leakage. (In the pre-existing code, there was no memory leak because there was only one iterator pointer, but what would happen is that the previous iterator would be resumed by the next query attempting to use the SRF. Hardly the semantics we want.) We can buy back some of whatever overhead we've added by getting rid of PLy_function_delete_args(), which seems a useless activity: there is no need to delete argument entries from the global dictionary on exit, since the next time anyone would see the global dict is on the next fresh call of the PL/Python function, at which time we'd overwrite those entries with new arg values anyway. Also clean up some really ugly coding in the SRF implementation, including such gems as returning directly out of a PG_TRY block. (The only reason that failed to crash hard was that all existing call sites immediately exited their own PG_TRY blocks, popping the dangling longjmp pointer before there was any chance of it being used.) In principle this is a bug fix; but it seems a bit too invasive relative to its value for a back-patch, and besides the fix depends on memory context callbacks so it could not go back further than 9.5 anyway. Alexey Grishchenko and Tom Lane
10 years ago
ReturnSetInfo *rsi = (ReturnSetInfo *) fcinfo->resultinfo;
if (!rsi || !IsA(rsi, ReturnSetInfo) ||
(rsi->allowedModes & SFRM_ValuePerCall) == 0)
{
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("unsupported set function return mode"),
errdetail("PL/Python set-returning functions only support returning one value per call.")));
}
rsi->returnMode = SFRM_ValuePerCall;
/* Make iterator out of returned object */
Fix PL/Python for recursion and interleaved set-returning functions. PL/Python failed if a PL/Python function was invoked recursively via SPI, since arguments are passed to the function in its global dictionary (a horrible decision that's far too ancient to undo) and it would delete those dictionary entries on function exit, leaving the outer recursion level(s) without any arguments. Not deleting them would be little better, since the outer levels would then see the innermost level's arguments. Since PL/Python uses ValuePerCall mode for evaluating set-returning functions, it's possible for multiple executions of the same SRF to be interleaved within a query. PL/Python failed in such a case, because it stored only one iterator per function, directly in the function's PLyProcedure struct. Moreover, one interleaved instance of the SRF would see argument values that should belong to another. Hence, invent code for saving and restoring the argument entries. To fix the recursion case, we only need to save at recursive entry and restore at recursive exit, so the overhead in non-recursive cases is negligible. To fix the SRF case, we have to save when suspending a SRF and restore when resuming it, which is potentially not negligible; but fortunately this is mostly a matter of manipulating Python object refcounts and should not involve much physical data copying. Also, store the Python iterator and saved argument values in a structure associated with the SRF call site rather than the function itself. This requires adding a memory context deletion callback to ensure that the SRF state is cleaned up if the calling query exits before running the SRF to completion. Without that we'd leak a refcount to the iterator object in such a case, resulting in session-lifespan memory leakage. (In the pre-existing code, there was no memory leak because there was only one iterator pointer, but what would happen is that the previous iterator would be resumed by the next query attempting to use the SRF. Hardly the semantics we want.) We can buy back some of whatever overhead we've added by getting rid of PLy_function_delete_args(), which seems a useless activity: there is no need to delete argument entries from the global dictionary on exit, since the next time anyone would see the global dict is on the next fresh call of the PL/Python function, at which time we'd overwrite those entries with new arg values anyway. Also clean up some really ugly coding in the SRF implementation, including such gems as returning directly out of a PG_TRY block. (The only reason that failed to crash hard was that all existing call sites immediately exited their own PG_TRY blocks, popping the dangling longjmp pointer before there was any chance of it being used.) In principle this is a bug fix; but it seems a bit too invasive relative to its value for a back-patch, and besides the fix depends on memory context callbacks so it could not go back further than 9.5 anyway. Alexey Grishchenko and Tom Lane
10 years ago
srfstate->iter = PyObject_GetIter(plrv);
Py_DECREF(plrv);
plrv = NULL;
Fix PL/Python for recursion and interleaved set-returning functions. PL/Python failed if a PL/Python function was invoked recursively via SPI, since arguments are passed to the function in its global dictionary (a horrible decision that's far too ancient to undo) and it would delete those dictionary entries on function exit, leaving the outer recursion level(s) without any arguments. Not deleting them would be little better, since the outer levels would then see the innermost level's arguments. Since PL/Python uses ValuePerCall mode for evaluating set-returning functions, it's possible for multiple executions of the same SRF to be interleaved within a query. PL/Python failed in such a case, because it stored only one iterator per function, directly in the function's PLyProcedure struct. Moreover, one interleaved instance of the SRF would see argument values that should belong to another. Hence, invent code for saving and restoring the argument entries. To fix the recursion case, we only need to save at recursive entry and restore at recursive exit, so the overhead in non-recursive cases is negligible. To fix the SRF case, we have to save when suspending a SRF and restore when resuming it, which is potentially not negligible; but fortunately this is mostly a matter of manipulating Python object refcounts and should not involve much physical data copying. Also, store the Python iterator and saved argument values in a structure associated with the SRF call site rather than the function itself. This requires adding a memory context deletion callback to ensure that the SRF state is cleaned up if the calling query exits before running the SRF to completion. Without that we'd leak a refcount to the iterator object in such a case, resulting in session-lifespan memory leakage. (In the pre-existing code, there was no memory leak because there was only one iterator pointer, but what would happen is that the previous iterator would be resumed by the next query attempting to use the SRF. Hardly the semantics we want.) We can buy back some of whatever overhead we've added by getting rid of PLy_function_delete_args(), which seems a useless activity: there is no need to delete argument entries from the global dictionary on exit, since the next time anyone would see the global dict is on the next fresh call of the PL/Python function, at which time we'd overwrite those entries with new arg values anyway. Also clean up some really ugly coding in the SRF implementation, including such gems as returning directly out of a PG_TRY block. (The only reason that failed to crash hard was that all existing call sites immediately exited their own PG_TRY blocks, popping the dangling longjmp pointer before there was any chance of it being used.) In principle this is a bug fix; but it seems a bit too invasive relative to its value for a back-patch, and besides the fix depends on memory context callbacks so it could not go back further than 9.5 anyway. Alexey Grishchenko and Tom Lane
10 years ago
if (srfstate->iter == NULL)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("returned object cannot be iterated"),
errdetail("PL/Python set-returning functions must return an iterable object.")));
}
/* Fetch next from iterator */
Fix PL/Python for recursion and interleaved set-returning functions. PL/Python failed if a PL/Python function was invoked recursively via SPI, since arguments are passed to the function in its global dictionary (a horrible decision that's far too ancient to undo) and it would delete those dictionary entries on function exit, leaving the outer recursion level(s) without any arguments. Not deleting them would be little better, since the outer levels would then see the innermost level's arguments. Since PL/Python uses ValuePerCall mode for evaluating set-returning functions, it's possible for multiple executions of the same SRF to be interleaved within a query. PL/Python failed in such a case, because it stored only one iterator per function, directly in the function's PLyProcedure struct. Moreover, one interleaved instance of the SRF would see argument values that should belong to another. Hence, invent code for saving and restoring the argument entries. To fix the recursion case, we only need to save at recursive entry and restore at recursive exit, so the overhead in non-recursive cases is negligible. To fix the SRF case, we have to save when suspending a SRF and restore when resuming it, which is potentially not negligible; but fortunately this is mostly a matter of manipulating Python object refcounts and should not involve much physical data copying. Also, store the Python iterator and saved argument values in a structure associated with the SRF call site rather than the function itself. This requires adding a memory context deletion callback to ensure that the SRF state is cleaned up if the calling query exits before running the SRF to completion. Without that we'd leak a refcount to the iterator object in such a case, resulting in session-lifespan memory leakage. (In the pre-existing code, there was no memory leak because there was only one iterator pointer, but what would happen is that the previous iterator would be resumed by the next query attempting to use the SRF. Hardly the semantics we want.) We can buy back some of whatever overhead we've added by getting rid of PLy_function_delete_args(), which seems a useless activity: there is no need to delete argument entries from the global dictionary on exit, since the next time anyone would see the global dict is on the next fresh call of the PL/Python function, at which time we'd overwrite those entries with new arg values anyway. Also clean up some really ugly coding in the SRF implementation, including such gems as returning directly out of a PG_TRY block. (The only reason that failed to crash hard was that all existing call sites immediately exited their own PG_TRY blocks, popping the dangling longjmp pointer before there was any chance of it being used.) In principle this is a bug fix; but it seems a bit too invasive relative to its value for a back-patch, and besides the fix depends on memory context callbacks so it could not go back further than 9.5 anyway. Alexey Grishchenko and Tom Lane
10 years ago
plrv = PyIter_Next(srfstate->iter);
if (plrv == NULL)
{
/* Iterator is exhausted or error happened */
Fix PL/Python for recursion and interleaved set-returning functions. PL/Python failed if a PL/Python function was invoked recursively via SPI, since arguments are passed to the function in its global dictionary (a horrible decision that's far too ancient to undo) and it would delete those dictionary entries on function exit, leaving the outer recursion level(s) without any arguments. Not deleting them would be little better, since the outer levels would then see the innermost level's arguments. Since PL/Python uses ValuePerCall mode for evaluating set-returning functions, it's possible for multiple executions of the same SRF to be interleaved within a query. PL/Python failed in such a case, because it stored only one iterator per function, directly in the function's PLyProcedure struct. Moreover, one interleaved instance of the SRF would see argument values that should belong to another. Hence, invent code for saving and restoring the argument entries. To fix the recursion case, we only need to save at recursive entry and restore at recursive exit, so the overhead in non-recursive cases is negligible. To fix the SRF case, we have to save when suspending a SRF and restore when resuming it, which is potentially not negligible; but fortunately this is mostly a matter of manipulating Python object refcounts and should not involve much physical data copying. Also, store the Python iterator and saved argument values in a structure associated with the SRF call site rather than the function itself. This requires adding a memory context deletion callback to ensure that the SRF state is cleaned up if the calling query exits before running the SRF to completion. Without that we'd leak a refcount to the iterator object in such a case, resulting in session-lifespan memory leakage. (In the pre-existing code, there was no memory leak because there was only one iterator pointer, but what would happen is that the previous iterator would be resumed by the next query attempting to use the SRF. Hardly the semantics we want.) We can buy back some of whatever overhead we've added by getting rid of PLy_function_delete_args(), which seems a useless activity: there is no need to delete argument entries from the global dictionary on exit, since the next time anyone would see the global dict is on the next fresh call of the PL/Python function, at which time we'd overwrite those entries with new arg values anyway. Also clean up some really ugly coding in the SRF implementation, including such gems as returning directly out of a PG_TRY block. (The only reason that failed to crash hard was that all existing call sites immediately exited their own PG_TRY blocks, popping the dangling longjmp pointer before there was any chance of it being used.) In principle this is a bug fix; but it seems a bit too invasive relative to its value for a back-patch, and besides the fix depends on memory context callbacks so it could not go back further than 9.5 anyway. Alexey Grishchenko and Tom Lane
10 years ago
bool has_error = (PyErr_Occurred() != NULL);
Fix PL/Python for recursion and interleaved set-returning functions. PL/Python failed if a PL/Python function was invoked recursively via SPI, since arguments are passed to the function in its global dictionary (a horrible decision that's far too ancient to undo) and it would delete those dictionary entries on function exit, leaving the outer recursion level(s) without any arguments. Not deleting them would be little better, since the outer levels would then see the innermost level's arguments. Since PL/Python uses ValuePerCall mode for evaluating set-returning functions, it's possible for multiple executions of the same SRF to be interleaved within a query. PL/Python failed in such a case, because it stored only one iterator per function, directly in the function's PLyProcedure struct. Moreover, one interleaved instance of the SRF would see argument values that should belong to another. Hence, invent code for saving and restoring the argument entries. To fix the recursion case, we only need to save at recursive entry and restore at recursive exit, so the overhead in non-recursive cases is negligible. To fix the SRF case, we have to save when suspending a SRF and restore when resuming it, which is potentially not negligible; but fortunately this is mostly a matter of manipulating Python object refcounts and should not involve much physical data copying. Also, store the Python iterator and saved argument values in a structure associated with the SRF call site rather than the function itself. This requires adding a memory context deletion callback to ensure that the SRF state is cleaned up if the calling query exits before running the SRF to completion. Without that we'd leak a refcount to the iterator object in such a case, resulting in session-lifespan memory leakage. (In the pre-existing code, there was no memory leak because there was only one iterator pointer, but what would happen is that the previous iterator would be resumed by the next query attempting to use the SRF. Hardly the semantics we want.) We can buy back some of whatever overhead we've added by getting rid of PLy_function_delete_args(), which seems a useless activity: there is no need to delete argument entries from the global dictionary on exit, since the next time anyone would see the global dict is on the next fresh call of the PL/Python function, at which time we'd overwrite those entries with new arg values anyway. Also clean up some really ugly coding in the SRF implementation, including such gems as returning directly out of a PG_TRY block. (The only reason that failed to crash hard was that all existing call sites immediately exited their own PG_TRY blocks, popping the dangling longjmp pointer before there was any chance of it being used.) In principle this is a bug fix; but it seems a bit too invasive relative to its value for a back-patch, and besides the fix depends on memory context callbacks so it could not go back further than 9.5 anyway. Alexey Grishchenko and Tom Lane
10 years ago
Py_DECREF(srfstate->iter);
srfstate->iter = NULL;
if (has_error)
PLy_elog(ERROR, "error fetching next item from iterator");
Fix PL/Python for recursion and interleaved set-returning functions. PL/Python failed if a PL/Python function was invoked recursively via SPI, since arguments are passed to the function in its global dictionary (a horrible decision that's far too ancient to undo) and it would delete those dictionary entries on function exit, leaving the outer recursion level(s) without any arguments. Not deleting them would be little better, since the outer levels would then see the innermost level's arguments. Since PL/Python uses ValuePerCall mode for evaluating set-returning functions, it's possible for multiple executions of the same SRF to be interleaved within a query. PL/Python failed in such a case, because it stored only one iterator per function, directly in the function's PLyProcedure struct. Moreover, one interleaved instance of the SRF would see argument values that should belong to another. Hence, invent code for saving and restoring the argument entries. To fix the recursion case, we only need to save at recursive entry and restore at recursive exit, so the overhead in non-recursive cases is negligible. To fix the SRF case, we have to save when suspending a SRF and restore when resuming it, which is potentially not negligible; but fortunately this is mostly a matter of manipulating Python object refcounts and should not involve much physical data copying. Also, store the Python iterator and saved argument values in a structure associated with the SRF call site rather than the function itself. This requires adding a memory context deletion callback to ensure that the SRF state is cleaned up if the calling query exits before running the SRF to completion. Without that we'd leak a refcount to the iterator object in such a case, resulting in session-lifespan memory leakage. (In the pre-existing code, there was no memory leak because there was only one iterator pointer, but what would happen is that the previous iterator would be resumed by the next query attempting to use the SRF. Hardly the semantics we want.) We can buy back some of whatever overhead we've added by getting rid of PLy_function_delete_args(), which seems a useless activity: there is no need to delete argument entries from the global dictionary on exit, since the next time anyone would see the global dict is on the next fresh call of the PL/Python function, at which time we'd overwrite those entries with new arg values anyway. Also clean up some really ugly coding in the SRF implementation, including such gems as returning directly out of a PG_TRY block. (The only reason that failed to crash hard was that all existing call sites immediately exited their own PG_TRY blocks, popping the dangling longjmp pointer before there was any chance of it being used.) In principle this is a bug fix; but it seems a bit too invasive relative to its value for a back-patch, and besides the fix depends on memory context callbacks so it could not go back further than 9.5 anyway. Alexey Grishchenko and Tom Lane
10 years ago
/* Pass a null through the data-returning steps below */
Py_INCREF(Py_None);
plrv = Py_None;
}
else
{
/*
* This won't be last call, so save argument values. We do
* this again each time in case the iterator is changing those
* values.
*/
srfstate->savedargs = PLy_function_save_args(proc);
}
}
/*
* Disconnect from SPI manager and then create the return values datum
* (if the input function does a palloc for it this must not be
* allocated in the SPI memory context because SPI_finish would free
* it).
*/
if (SPI_finish() != SPI_OK_FINISH)
elog(ERROR, "SPI_finish failed");
plerrcontext.callback = plpython_return_error_callback;
plerrcontext.previous = error_context_stack;
error_context_stack = &plerrcontext;
/*
* For a procedure or function declared to return void, the Python
* return value must be None. For void-returning functions, we also
* treat a None return value as a special "void datum" rather than
* NULL (as is the case for non-void-returning functions).
*/
if (proc->result.typoid == VOIDOID)
{
if (plrv != Py_None)
{
if (proc->is_procedure)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("PL/Python procedure did not return None")));
else
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("PL/Python function with return type \"void\" did not return None")));
}
fcinfo->isnull = false;
rv = (Datum) 0;
}
Make PL/Python handle domain-type conversions correctly. Fix PL/Python so that it can handle domains over composite, and so that it enforces domain constraints correctly in other cases that were not always done properly before. Notably, it didn't do arrays of domains right (oversight in commit c12d570fa), and it failed to enforce domain constraints when returning a composite type containing a domain field, and if a transform function is being used for a domain's base type then it failed to enforce domain constraints on the result. Also, in many places it missed checking domain constraints on null values, because the plpy_typeio code simply wasn't called for Py_None. Rather than try to band-aid these problems, I made a significant refactoring of the plpy_typeio logic. The existing design of recursing for array and composite members is extended to also treat domains as containers requiring recursion, and the APIs for the module are cleaned up and simplified. The patch also modifies plpy_typeio to rely on the typcache more than it did before (which was pretty much not at all). This reduces the need for repetitive lookups, and lets us get rid of an ad-hoc scheme for detecting changes in composite types. I added a couple of small features to typcache to help with that. Although some of this is fixing bugs that long predate v11, I don't think we should risk a back-patch: it's a significant amount of code churn, and there've been no complaints from the field about the bugs. Tom Lane, reviewed by Anthony Bykov Discussion: https://postgr.es/m/24449.1509393613@sss.pgh.pa.us
8 years ago
else if (plrv == Py_None &&
srfstate && srfstate->iter == NULL)
{
Fix PL/Python for recursion and interleaved set-returning functions. PL/Python failed if a PL/Python function was invoked recursively via SPI, since arguments are passed to the function in its global dictionary (a horrible decision that's far too ancient to undo) and it would delete those dictionary entries on function exit, leaving the outer recursion level(s) without any arguments. Not deleting them would be little better, since the outer levels would then see the innermost level's arguments. Since PL/Python uses ValuePerCall mode for evaluating set-returning functions, it's possible for multiple executions of the same SRF to be interleaved within a query. PL/Python failed in such a case, because it stored only one iterator per function, directly in the function's PLyProcedure struct. Moreover, one interleaved instance of the SRF would see argument values that should belong to another. Hence, invent code for saving and restoring the argument entries. To fix the recursion case, we only need to save at recursive entry and restore at recursive exit, so the overhead in non-recursive cases is negligible. To fix the SRF case, we have to save when suspending a SRF and restore when resuming it, which is potentially not negligible; but fortunately this is mostly a matter of manipulating Python object refcounts and should not involve much physical data copying. Also, store the Python iterator and saved argument values in a structure associated with the SRF call site rather than the function itself. This requires adding a memory context deletion callback to ensure that the SRF state is cleaned up if the calling query exits before running the SRF to completion. Without that we'd leak a refcount to the iterator object in such a case, resulting in session-lifespan memory leakage. (In the pre-existing code, there was no memory leak because there was only one iterator pointer, but what would happen is that the previous iterator would be resumed by the next query attempting to use the SRF. Hardly the semantics we want.) We can buy back some of whatever overhead we've added by getting rid of PLy_function_delete_args(), which seems a useless activity: there is no need to delete argument entries from the global dictionary on exit, since the next time anyone would see the global dict is on the next fresh call of the PL/Python function, at which time we'd overwrite those entries with new arg values anyway. Also clean up some really ugly coding in the SRF implementation, including such gems as returning directly out of a PG_TRY block. (The only reason that failed to crash hard was that all existing call sites immediately exited their own PG_TRY blocks, popping the dangling longjmp pointer before there was any chance of it being used.) In principle this is a bug fix; but it seems a bit too invasive relative to its value for a back-patch, and besides the fix depends on memory context callbacks so it could not go back further than 9.5 anyway. Alexey Grishchenko and Tom Lane
10 years ago
/*
* In a SETOF function, the iteration-ending null isn't a real
* value; don't pass it through the input function, which might
* complain.
*/
Make PL/Python handle domain-type conversions correctly. Fix PL/Python so that it can handle domains over composite, and so that it enforces domain constraints correctly in other cases that were not always done properly before. Notably, it didn't do arrays of domains right (oversight in commit c12d570fa), and it failed to enforce domain constraints when returning a composite type containing a domain field, and if a transform function is being used for a domain's base type then it failed to enforce domain constraints on the result. Also, in many places it missed checking domain constraints on null values, because the plpy_typeio code simply wasn't called for Py_None. Rather than try to band-aid these problems, I made a significant refactoring of the plpy_typeio logic. The existing design of recursing for array and composite members is extended to also treat domains as containers requiring recursion, and the APIs for the module are cleaned up and simplified. The patch also modifies plpy_typeio to rely on the typcache more than it did before (which was pretty much not at all). This reduces the need for repetitive lookups, and lets us get rid of an ad-hoc scheme for detecting changes in composite types. I added a couple of small features to typcache to help with that. Although some of this is fixing bugs that long predate v11, I don't think we should risk a back-patch: it's a significant amount of code churn, and there've been no complaints from the field about the bugs. Tom Lane, reviewed by Anthony Bykov Discussion: https://postgr.es/m/24449.1509393613@sss.pgh.pa.us
8 years ago
fcinfo->isnull = true;
rv = (Datum) 0;
}
else
{
Make PL/Python handle domain-type conversions correctly. Fix PL/Python so that it can handle domains over composite, and so that it enforces domain constraints correctly in other cases that were not always done properly before. Notably, it didn't do arrays of domains right (oversight in commit c12d570fa), and it failed to enforce domain constraints when returning a composite type containing a domain field, and if a transform function is being used for a domain's base type then it failed to enforce domain constraints on the result. Also, in many places it missed checking domain constraints on null values, because the plpy_typeio code simply wasn't called for Py_None. Rather than try to band-aid these problems, I made a significant refactoring of the plpy_typeio logic. The existing design of recursing for array and composite members is extended to also treat domains as containers requiring recursion, and the APIs for the module are cleaned up and simplified. The patch also modifies plpy_typeio to rely on the typcache more than it did before (which was pretty much not at all). This reduces the need for repetitive lookups, and lets us get rid of an ad-hoc scheme for detecting changes in composite types. I added a couple of small features to typcache to help with that. Although some of this is fixing bugs that long predate v11, I don't think we should risk a back-patch: it's a significant amount of code churn, and there've been no complaints from the field about the bugs. Tom Lane, reviewed by Anthony Bykov Discussion: https://postgr.es/m/24449.1509393613@sss.pgh.pa.us
8 years ago
/* Normal conversion of result */
rv = PLy_output_convert(&proc->result, plrv,
&fcinfo->isnull);
}
}
PG_CATCH();
{
Fix PL/Python for recursion and interleaved set-returning functions. PL/Python failed if a PL/Python function was invoked recursively via SPI, since arguments are passed to the function in its global dictionary (a horrible decision that's far too ancient to undo) and it would delete those dictionary entries on function exit, leaving the outer recursion level(s) without any arguments. Not deleting them would be little better, since the outer levels would then see the innermost level's arguments. Since PL/Python uses ValuePerCall mode for evaluating set-returning functions, it's possible for multiple executions of the same SRF to be interleaved within a query. PL/Python failed in such a case, because it stored only one iterator per function, directly in the function's PLyProcedure struct. Moreover, one interleaved instance of the SRF would see argument values that should belong to another. Hence, invent code for saving and restoring the argument entries. To fix the recursion case, we only need to save at recursive entry and restore at recursive exit, so the overhead in non-recursive cases is negligible. To fix the SRF case, we have to save when suspending a SRF and restore when resuming it, which is potentially not negligible; but fortunately this is mostly a matter of manipulating Python object refcounts and should not involve much physical data copying. Also, store the Python iterator and saved argument values in a structure associated with the SRF call site rather than the function itself. This requires adding a memory context deletion callback to ensure that the SRF state is cleaned up if the calling query exits before running the SRF to completion. Without that we'd leak a refcount to the iterator object in such a case, resulting in session-lifespan memory leakage. (In the pre-existing code, there was no memory leak because there was only one iterator pointer, but what would happen is that the previous iterator would be resumed by the next query attempting to use the SRF. Hardly the semantics we want.) We can buy back some of whatever overhead we've added by getting rid of PLy_function_delete_args(), which seems a useless activity: there is no need to delete argument entries from the global dictionary on exit, since the next time anyone would see the global dict is on the next fresh call of the PL/Python function, at which time we'd overwrite those entries with new arg values anyway. Also clean up some really ugly coding in the SRF implementation, including such gems as returning directly out of a PG_TRY block. (The only reason that failed to crash hard was that all existing call sites immediately exited their own PG_TRY blocks, popping the dangling longjmp pointer before there was any chance of it being used.) In principle this is a bug fix; but it seems a bit too invasive relative to its value for a back-patch, and besides the fix depends on memory context callbacks so it could not go back further than 9.5 anyway. Alexey Grishchenko and Tom Lane
10 years ago
/* Pop old arguments from the stack if they were pushed above */
PLy_global_args_pop(proc);
Py_XDECREF(plargs);
Py_XDECREF(plrv);
/*
Fix PL/Python for recursion and interleaved set-returning functions. PL/Python failed if a PL/Python function was invoked recursively via SPI, since arguments are passed to the function in its global dictionary (a horrible decision that's far too ancient to undo) and it would delete those dictionary entries on function exit, leaving the outer recursion level(s) without any arguments. Not deleting them would be little better, since the outer levels would then see the innermost level's arguments. Since PL/Python uses ValuePerCall mode for evaluating set-returning functions, it's possible for multiple executions of the same SRF to be interleaved within a query. PL/Python failed in such a case, because it stored only one iterator per function, directly in the function's PLyProcedure struct. Moreover, one interleaved instance of the SRF would see argument values that should belong to another. Hence, invent code for saving and restoring the argument entries. To fix the recursion case, we only need to save at recursive entry and restore at recursive exit, so the overhead in non-recursive cases is negligible. To fix the SRF case, we have to save when suspending a SRF and restore when resuming it, which is potentially not negligible; but fortunately this is mostly a matter of manipulating Python object refcounts and should not involve much physical data copying. Also, store the Python iterator and saved argument values in a structure associated with the SRF call site rather than the function itself. This requires adding a memory context deletion callback to ensure that the SRF state is cleaned up if the calling query exits before running the SRF to completion. Without that we'd leak a refcount to the iterator object in such a case, resulting in session-lifespan memory leakage. (In the pre-existing code, there was no memory leak because there was only one iterator pointer, but what would happen is that the previous iterator would be resumed by the next query attempting to use the SRF. Hardly the semantics we want.) We can buy back some of whatever overhead we've added by getting rid of PLy_function_delete_args(), which seems a useless activity: there is no need to delete argument entries from the global dictionary on exit, since the next time anyone would see the global dict is on the next fresh call of the PL/Python function, at which time we'd overwrite those entries with new arg values anyway. Also clean up some really ugly coding in the SRF implementation, including such gems as returning directly out of a PG_TRY block. (The only reason that failed to crash hard was that all existing call sites immediately exited their own PG_TRY blocks, popping the dangling longjmp pointer before there was any chance of it being used.) In principle this is a bug fix; but it seems a bit too invasive relative to its value for a back-patch, and besides the fix depends on memory context callbacks so it could not go back further than 9.5 anyway. Alexey Grishchenko and Tom Lane
10 years ago
* If there was an error within a SRF, the iterator might not have
* been exhausted yet. Clear it so the next invocation of the
* function will start the iteration again. (This code is probably
* unnecessary now; plpython_srf_cleanup_callback should take care of
* cleanup. But it doesn't hurt anything to do it here.)
*/
Fix PL/Python for recursion and interleaved set-returning functions. PL/Python failed if a PL/Python function was invoked recursively via SPI, since arguments are passed to the function in its global dictionary (a horrible decision that's far too ancient to undo) and it would delete those dictionary entries on function exit, leaving the outer recursion level(s) without any arguments. Not deleting them would be little better, since the outer levels would then see the innermost level's arguments. Since PL/Python uses ValuePerCall mode for evaluating set-returning functions, it's possible for multiple executions of the same SRF to be interleaved within a query. PL/Python failed in such a case, because it stored only one iterator per function, directly in the function's PLyProcedure struct. Moreover, one interleaved instance of the SRF would see argument values that should belong to another. Hence, invent code for saving and restoring the argument entries. To fix the recursion case, we only need to save at recursive entry and restore at recursive exit, so the overhead in non-recursive cases is negligible. To fix the SRF case, we have to save when suspending a SRF and restore when resuming it, which is potentially not negligible; but fortunately this is mostly a matter of manipulating Python object refcounts and should not involve much physical data copying. Also, store the Python iterator and saved argument values in a structure associated with the SRF call site rather than the function itself. This requires adding a memory context deletion callback to ensure that the SRF state is cleaned up if the calling query exits before running the SRF to completion. Without that we'd leak a refcount to the iterator object in such a case, resulting in session-lifespan memory leakage. (In the pre-existing code, there was no memory leak because there was only one iterator pointer, but what would happen is that the previous iterator would be resumed by the next query attempting to use the SRF. Hardly the semantics we want.) We can buy back some of whatever overhead we've added by getting rid of PLy_function_delete_args(), which seems a useless activity: there is no need to delete argument entries from the global dictionary on exit, since the next time anyone would see the global dict is on the next fresh call of the PL/Python function, at which time we'd overwrite those entries with new arg values anyway. Also clean up some really ugly coding in the SRF implementation, including such gems as returning directly out of a PG_TRY block. (The only reason that failed to crash hard was that all existing call sites immediately exited their own PG_TRY blocks, popping the dangling longjmp pointer before there was any chance of it being used.) In principle this is a bug fix; but it seems a bit too invasive relative to its value for a back-patch, and besides the fix depends on memory context callbacks so it could not go back further than 9.5 anyway. Alexey Grishchenko and Tom Lane
10 years ago
if (srfstate)
{
Py_XDECREF(srfstate->iter);
srfstate->iter = NULL;
/* And drop any saved args; we won't need them */
if (srfstate->savedargs)
PLy_function_drop_args(srfstate->savedargs);
srfstate->savedargs = NULL;
}
PG_RE_THROW();
}
PG_END_TRY();
error_context_stack = plerrcontext.previous;
Fix PL/Python for recursion and interleaved set-returning functions. PL/Python failed if a PL/Python function was invoked recursively via SPI, since arguments are passed to the function in its global dictionary (a horrible decision that's far too ancient to undo) and it would delete those dictionary entries on function exit, leaving the outer recursion level(s) without any arguments. Not deleting them would be little better, since the outer levels would then see the innermost level's arguments. Since PL/Python uses ValuePerCall mode for evaluating set-returning functions, it's possible for multiple executions of the same SRF to be interleaved within a query. PL/Python failed in such a case, because it stored only one iterator per function, directly in the function's PLyProcedure struct. Moreover, one interleaved instance of the SRF would see argument values that should belong to another. Hence, invent code for saving and restoring the argument entries. To fix the recursion case, we only need to save at recursive entry and restore at recursive exit, so the overhead in non-recursive cases is negligible. To fix the SRF case, we have to save when suspending a SRF and restore when resuming it, which is potentially not negligible; but fortunately this is mostly a matter of manipulating Python object refcounts and should not involve much physical data copying. Also, store the Python iterator and saved argument values in a structure associated with the SRF call site rather than the function itself. This requires adding a memory context deletion callback to ensure that the SRF state is cleaned up if the calling query exits before running the SRF to completion. Without that we'd leak a refcount to the iterator object in such a case, resulting in session-lifespan memory leakage. (In the pre-existing code, there was no memory leak because there was only one iterator pointer, but what would happen is that the previous iterator would be resumed by the next query attempting to use the SRF. Hardly the semantics we want.) We can buy back some of whatever overhead we've added by getting rid of PLy_function_delete_args(), which seems a useless activity: there is no need to delete argument entries from the global dictionary on exit, since the next time anyone would see the global dict is on the next fresh call of the PL/Python function, at which time we'd overwrite those entries with new arg values anyway. Also clean up some really ugly coding in the SRF implementation, including such gems as returning directly out of a PG_TRY block. (The only reason that failed to crash hard was that all existing call sites immediately exited their own PG_TRY blocks, popping the dangling longjmp pointer before there was any chance of it being used.) In principle this is a bug fix; but it seems a bit too invasive relative to its value for a back-patch, and besides the fix depends on memory context callbacks so it could not go back further than 9.5 anyway. Alexey Grishchenko and Tom Lane
10 years ago
/* Pop old arguments from the stack if they were pushed above */
PLy_global_args_pop(proc);
Py_XDECREF(plargs);
Py_DECREF(plrv);
Fix PL/Python for recursion and interleaved set-returning functions. PL/Python failed if a PL/Python function was invoked recursively via SPI, since arguments are passed to the function in its global dictionary (a horrible decision that's far too ancient to undo) and it would delete those dictionary entries on function exit, leaving the outer recursion level(s) without any arguments. Not deleting them would be little better, since the outer levels would then see the innermost level's arguments. Since PL/Python uses ValuePerCall mode for evaluating set-returning functions, it's possible for multiple executions of the same SRF to be interleaved within a query. PL/Python failed in such a case, because it stored only one iterator per function, directly in the function's PLyProcedure struct. Moreover, one interleaved instance of the SRF would see argument values that should belong to another. Hence, invent code for saving and restoring the argument entries. To fix the recursion case, we only need to save at recursive entry and restore at recursive exit, so the overhead in non-recursive cases is negligible. To fix the SRF case, we have to save when suspending a SRF and restore when resuming it, which is potentially not negligible; but fortunately this is mostly a matter of manipulating Python object refcounts and should not involve much physical data copying. Also, store the Python iterator and saved argument values in a structure associated with the SRF call site rather than the function itself. This requires adding a memory context deletion callback to ensure that the SRF state is cleaned up if the calling query exits before running the SRF to completion. Without that we'd leak a refcount to the iterator object in such a case, resulting in session-lifespan memory leakage. (In the pre-existing code, there was no memory leak because there was only one iterator pointer, but what would happen is that the previous iterator would be resumed by the next query attempting to use the SRF. Hardly the semantics we want.) We can buy back some of whatever overhead we've added by getting rid of PLy_function_delete_args(), which seems a useless activity: there is no need to delete argument entries from the global dictionary on exit, since the next time anyone would see the global dict is on the next fresh call of the PL/Python function, at which time we'd overwrite those entries with new arg values anyway. Also clean up some really ugly coding in the SRF implementation, including such gems as returning directly out of a PG_TRY block. (The only reason that failed to crash hard was that all existing call sites immediately exited their own PG_TRY blocks, popping the dangling longjmp pointer before there was any chance of it being used.) In principle this is a bug fix; but it seems a bit too invasive relative to its value for a back-patch, and besides the fix depends on memory context callbacks so it could not go back further than 9.5 anyway. Alexey Grishchenko and Tom Lane
10 years ago
if (srfstate)
{
/* We're in a SRF, exit appropriately */
if (srfstate->iter == NULL)
{
/* Iterator exhausted, so we're done */
SRF_RETURN_DONE(funcctx);
}
else if (fcinfo->isnull)
SRF_RETURN_NEXT_NULL(funcctx);
else
SRF_RETURN_NEXT(funcctx, rv);
}
/* Plain function, just return the Datum value (possibly null) */
return rv;
}
/* trigger subhandler
*
* the python function is expected to return Py_None if the tuple is
* acceptable and unmodified. Otherwise it should return a PyString
* object who's value is SKIP, or MODIFY. SKIP means don't perform
* this action. MODIFY means the tuple has been modified, so update
* tuple and perform action. SKIP and MODIFY assume the trigger fires
* BEFORE the event and is ROW level. postgres expects the function
* to take no arguments and return an argument of type trigger.
*/
HeapTuple
PLy_exec_trigger(FunctionCallInfo fcinfo, PLyProcedure *proc)
{
HeapTuple rv = NULL;
PyObject *volatile plargs = NULL;
PyObject *volatile plrv = NULL;
TriggerData *tdata;
Make PL/Python handle domain-type conversions correctly. Fix PL/Python so that it can handle domains over composite, and so that it enforces domain constraints correctly in other cases that were not always done properly before. Notably, it didn't do arrays of domains right (oversight in commit c12d570fa), and it failed to enforce domain constraints when returning a composite type containing a domain field, and if a transform function is being used for a domain's base type then it failed to enforce domain constraints on the result. Also, in many places it missed checking domain constraints on null values, because the plpy_typeio code simply wasn't called for Py_None. Rather than try to band-aid these problems, I made a significant refactoring of the plpy_typeio logic. The existing design of recursing for array and composite members is extended to also treat domains as containers requiring recursion, and the APIs for the module are cleaned up and simplified. The patch also modifies plpy_typeio to rely on the typcache more than it did before (which was pretty much not at all). This reduces the need for repetitive lookups, and lets us get rid of an ad-hoc scheme for detecting changes in composite types. I added a couple of small features to typcache to help with that. Although some of this is fixing bugs that long predate v11, I don't think we should risk a back-patch: it's a significant amount of code churn, and there've been no complaints from the field about the bugs. Tom Lane, reviewed by Anthony Bykov Discussion: https://postgr.es/m/24449.1509393613@sss.pgh.pa.us
8 years ago
TupleDesc rel_descr;
Assert(CALLED_AS_TRIGGER(fcinfo));
Make PL/Python handle domain-type conversions correctly. Fix PL/Python so that it can handle domains over composite, and so that it enforces domain constraints correctly in other cases that were not always done properly before. Notably, it didn't do arrays of domains right (oversight in commit c12d570fa), and it failed to enforce domain constraints when returning a composite type containing a domain field, and if a transform function is being used for a domain's base type then it failed to enforce domain constraints on the result. Also, in many places it missed checking domain constraints on null values, because the plpy_typeio code simply wasn't called for Py_None. Rather than try to band-aid these problems, I made a significant refactoring of the plpy_typeio logic. The existing design of recursing for array and composite members is extended to also treat domains as containers requiring recursion, and the APIs for the module are cleaned up and simplified. The patch also modifies plpy_typeio to rely on the typcache more than it did before (which was pretty much not at all). This reduces the need for repetitive lookups, and lets us get rid of an ad-hoc scheme for detecting changes in composite types. I added a couple of small features to typcache to help with that. Although some of this is fixing bugs that long predate v11, I don't think we should risk a back-patch: it's a significant amount of code churn, and there've been no complaints from the field about the bugs. Tom Lane, reviewed by Anthony Bykov Discussion: https://postgr.es/m/24449.1509393613@sss.pgh.pa.us
8 years ago
tdata = (TriggerData *) fcinfo->context;
/*
Make PL/Python handle domain-type conversions correctly. Fix PL/Python so that it can handle domains over composite, and so that it enforces domain constraints correctly in other cases that were not always done properly before. Notably, it didn't do arrays of domains right (oversight in commit c12d570fa), and it failed to enforce domain constraints when returning a composite type containing a domain field, and if a transform function is being used for a domain's base type then it failed to enforce domain constraints on the result. Also, in many places it missed checking domain constraints on null values, because the plpy_typeio code simply wasn't called for Py_None. Rather than try to band-aid these problems, I made a significant refactoring of the plpy_typeio logic. The existing design of recursing for array and composite members is extended to also treat domains as containers requiring recursion, and the APIs for the module are cleaned up and simplified. The patch also modifies plpy_typeio to rely on the typcache more than it did before (which was pretty much not at all). This reduces the need for repetitive lookups, and lets us get rid of an ad-hoc scheme for detecting changes in composite types. I added a couple of small features to typcache to help with that. Although some of this is fixing bugs that long predate v11, I don't think we should risk a back-patch: it's a significant amount of code churn, and there've been no complaints from the field about the bugs. Tom Lane, reviewed by Anthony Bykov Discussion: https://postgr.es/m/24449.1509393613@sss.pgh.pa.us
8 years ago
* Input/output conversion for trigger tuples. We use the result and
* result_in fields to store the tuple conversion info. We do this over
* again on each call to cover the possibility that the relation's tupdesc
* changed since the trigger was last called. The PLy_xxx_setup_func
* calls should only happen once, but PLy_input_setup_tuple and
* PLy_output_setup_tuple are responsible for not doing repetitive work.
*/
Make PL/Python handle domain-type conversions correctly. Fix PL/Python so that it can handle domains over composite, and so that it enforces domain constraints correctly in other cases that were not always done properly before. Notably, it didn't do arrays of domains right (oversight in commit c12d570fa), and it failed to enforce domain constraints when returning a composite type containing a domain field, and if a transform function is being used for a domain's base type then it failed to enforce domain constraints on the result. Also, in many places it missed checking domain constraints on null values, because the plpy_typeio code simply wasn't called for Py_None. Rather than try to band-aid these problems, I made a significant refactoring of the plpy_typeio logic. The existing design of recursing for array and composite members is extended to also treat domains as containers requiring recursion, and the APIs for the module are cleaned up and simplified. The patch also modifies plpy_typeio to rely on the typcache more than it did before (which was pretty much not at all). This reduces the need for repetitive lookups, and lets us get rid of an ad-hoc scheme for detecting changes in composite types. I added a couple of small features to typcache to help with that. Although some of this is fixing bugs that long predate v11, I don't think we should risk a back-patch: it's a significant amount of code churn, and there've been no complaints from the field about the bugs. Tom Lane, reviewed by Anthony Bykov Discussion: https://postgr.es/m/24449.1509393613@sss.pgh.pa.us
8 years ago
rel_descr = RelationGetDescr(tdata->tg_relation);
if (proc->result.typoid != rel_descr->tdtypeid)
PLy_output_setup_func(&proc->result, proc->mcxt,
rel_descr->tdtypeid,
rel_descr->tdtypmod,
proc);
if (proc->result_in.typoid != rel_descr->tdtypeid)
PLy_input_setup_func(&proc->result_in, proc->mcxt,
rel_descr->tdtypeid,
rel_descr->tdtypmod,
proc);
PLy_output_setup_tuple(&proc->result, rel_descr, proc);
PLy_input_setup_tuple(&proc->result_in, rel_descr, proc);
PG_TRY();
{
9 years ago
int rc PG_USED_FOR_ASSERTS_ONLY;
rc = SPI_register_trigger_data(tdata);
Assert(rc >= 0);
plargs = PLy_trigger_build_args(fcinfo, proc, &rv);
plrv = PLy_procedure_call(proc, "TD", plargs);
Assert(plrv != NULL);
/*
* Disconnect from SPI manager
*/
if (SPI_finish() != SPI_OK_FINISH)
elog(ERROR, "SPI_finish failed");
/*
* return of None means we're happy with the tuple
*/
if (plrv != Py_None)
{
char *srv;
if (PyString_Check(plrv))
srv = PyString_AsString(plrv);
else if (PyUnicode_Check(plrv))
srv = PLyUnicode_AsString(plrv);
else
{
ereport(ERROR,
(errcode(ERRCODE_DATA_EXCEPTION),
errmsg("unexpected return value from trigger procedure"),
errdetail("Expected None or a string.")));
srv = NULL; /* keep compiler quiet */
}
if (pg_strcasecmp(srv, "SKIP") == 0)
rv = NULL;
else if (pg_strcasecmp(srv, "MODIFY") == 0)
{
TriggerData *tdata = (TriggerData *) fcinfo->context;
if (TRIGGER_FIRED_BY_INSERT(tdata->tg_event) ||
TRIGGER_FIRED_BY_UPDATE(tdata->tg_event))
rv = PLy_modify_tuple(proc, plargs, tdata, rv);
else
ereport(WARNING,
(errmsg("PL/Python trigger function returned \"MODIFY\" in a DELETE trigger -- ignored")));
}
else if (pg_strcasecmp(srv, "OK") != 0)
{
/*
* accept "OK" as an alternative to None; otherwise, raise an
* error
*/
ereport(ERROR,
(errcode(ERRCODE_DATA_EXCEPTION),
errmsg("unexpected return value from trigger procedure"),
errdetail("Expected None, \"OK\", \"SKIP\", or \"MODIFY\".")));
}
}
}
PG_FINALLY();
{
Py_XDECREF(plargs);
Py_XDECREF(plrv);
}
PG_END_TRY();
return rv;
}
/* helper functions for Python code execution */
static PyObject *
PLy_function_build_args(FunctionCallInfo fcinfo, PLyProcedure *proc)
{
PyObject *volatile arg = NULL;
PyObject *volatile args = NULL;
int i;
PG_TRY();
{
args = PyList_New(proc->nargs);
if (!args)
return NULL;
for (i = 0; i < proc->nargs; i++)
{
Make PL/Python handle domain-type conversions correctly. Fix PL/Python so that it can handle domains over composite, and so that it enforces domain constraints correctly in other cases that were not always done properly before. Notably, it didn't do arrays of domains right (oversight in commit c12d570fa), and it failed to enforce domain constraints when returning a composite type containing a domain field, and if a transform function is being used for a domain's base type then it failed to enforce domain constraints on the result. Also, in many places it missed checking domain constraints on null values, because the plpy_typeio code simply wasn't called for Py_None. Rather than try to band-aid these problems, I made a significant refactoring of the plpy_typeio logic. The existing design of recursing for array and composite members is extended to also treat domains as containers requiring recursion, and the APIs for the module are cleaned up and simplified. The patch also modifies plpy_typeio to rely on the typcache more than it did before (which was pretty much not at all). This reduces the need for repetitive lookups, and lets us get rid of an ad-hoc scheme for detecting changes in composite types. I added a couple of small features to typcache to help with that. Although some of this is fixing bugs that long predate v11, I don't think we should risk a back-patch: it's a significant amount of code churn, and there've been no complaints from the field about the bugs. Tom Lane, reviewed by Anthony Bykov Discussion: https://postgr.es/m/24449.1509393613@sss.pgh.pa.us
8 years ago
PLyDatumToOb *arginfo = &proc->args[i];
Change function call information to be variable length. Before this change FunctionCallInfoData, the struct arguments etc for V1 function calls are stored in, always had space for FUNC_MAX_ARGS/100 arguments, storing datums and their nullness in two arrays. For nearly every function call 100 arguments is far more than needed, therefore wasting memory. Arg and argnull being two separate arrays also guarantees that to access a single argument, two cachelines have to be touched. Change the layout so there's a single variable-length array with pairs of value / isnull. That drastically reduces memory consumption for most function calls (on x86-64 a two argument function now uses 64bytes, previously 936 bytes), and makes it very likely that argument value and its nullness are on the same cacheline. Arguments are stored in a new NullableDatum struct, which, due to padding, needs more memory per argument than before. But as usually far fewer arguments are stored, and individual arguments are cheaper to access, that's still a clear win. It's likely that there's other places where conversion to NullableDatum arrays would make sense, e.g. TupleTableSlots, but that's for another commit. Because the function call information is now variable-length allocations have to take the number of arguments into account. For heap allocations that can be done with SizeForFunctionCallInfoData(), for on-stack allocations there's a new LOCAL_FCINFO(name, nargs) macro that helps to allocate an appropriately sized and aligned variable. Some places with stack allocation function call information don't know the number of arguments at compile time, and currently variably sized stack allocations aren't allowed in postgres. Therefore allow for FUNC_MAX_ARGS space in these cases. They're not that common, so for now that seems acceptable. Because of the need to allocate FunctionCallInfo of the appropriate size, older extensions may need to update their code. To avoid subtle breakages, the FunctionCallInfoData struct has been renamed to FunctionCallInfoBaseData. Most code only references FunctionCallInfo, so that shouldn't cause much collateral damage. This change is also a prerequisite for more efficient expression JIT compilation (by allocating the function call information on the stack, allowing LLVM to optimize it away); previously the size of the call information caused problems inside LLVM's optimizer. Author: Andres Freund Reviewed-By: Tom Lane Discussion: https://postgr.es/m/20180605172952.x34m5uz6ju6enaem@alap3.anarazel.de
7 years ago
if (fcinfo->args[i].isnull)
Make PL/Python handle domain-type conversions correctly. Fix PL/Python so that it can handle domains over composite, and so that it enforces domain constraints correctly in other cases that were not always done properly before. Notably, it didn't do arrays of domains right (oversight in commit c12d570fa), and it failed to enforce domain constraints when returning a composite type containing a domain field, and if a transform function is being used for a domain's base type then it failed to enforce domain constraints on the result. Also, in many places it missed checking domain constraints on null values, because the plpy_typeio code simply wasn't called for Py_None. Rather than try to band-aid these problems, I made a significant refactoring of the plpy_typeio logic. The existing design of recursing for array and composite members is extended to also treat domains as containers requiring recursion, and the APIs for the module are cleaned up and simplified. The patch also modifies plpy_typeio to rely on the typcache more than it did before (which was pretty much not at all). This reduces the need for repetitive lookups, and lets us get rid of an ad-hoc scheme for detecting changes in composite types. I added a couple of small features to typcache to help with that. Although some of this is fixing bugs that long predate v11, I don't think we should risk a back-patch: it's a significant amount of code churn, and there've been no complaints from the field about the bugs. Tom Lane, reviewed by Anthony Bykov Discussion: https://postgr.es/m/24449.1509393613@sss.pgh.pa.us
8 years ago
arg = NULL;
else
Change function call information to be variable length. Before this change FunctionCallInfoData, the struct arguments etc for V1 function calls are stored in, always had space for FUNC_MAX_ARGS/100 arguments, storing datums and their nullness in two arrays. For nearly every function call 100 arguments is far more than needed, therefore wasting memory. Arg and argnull being two separate arrays also guarantees that to access a single argument, two cachelines have to be touched. Change the layout so there's a single variable-length array with pairs of value / isnull. That drastically reduces memory consumption for most function calls (on x86-64 a two argument function now uses 64bytes, previously 936 bytes), and makes it very likely that argument value and its nullness are on the same cacheline. Arguments are stored in a new NullableDatum struct, which, due to padding, needs more memory per argument than before. But as usually far fewer arguments are stored, and individual arguments are cheaper to access, that's still a clear win. It's likely that there's other places where conversion to NullableDatum arrays would make sense, e.g. TupleTableSlots, but that's for another commit. Because the function call information is now variable-length allocations have to take the number of arguments into account. For heap allocations that can be done with SizeForFunctionCallInfoData(), for on-stack allocations there's a new LOCAL_FCINFO(name, nargs) macro that helps to allocate an appropriately sized and aligned variable. Some places with stack allocation function call information don't know the number of arguments at compile time, and currently variably sized stack allocations aren't allowed in postgres. Therefore allow for FUNC_MAX_ARGS space in these cases. They're not that common, so for now that seems acceptable. Because of the need to allocate FunctionCallInfo of the appropriate size, older extensions may need to update their code. To avoid subtle breakages, the FunctionCallInfoData struct has been renamed to FunctionCallInfoBaseData. Most code only references FunctionCallInfo, so that shouldn't cause much collateral damage. This change is also a prerequisite for more efficient expression JIT compilation (by allocating the function call information on the stack, allowing LLVM to optimize it away); previously the size of the call information caused problems inside LLVM's optimizer. Author: Andres Freund Reviewed-By: Tom Lane Discussion: https://postgr.es/m/20180605172952.x34m5uz6ju6enaem@alap3.anarazel.de
7 years ago
arg = PLy_input_convert(arginfo, fcinfo->args[i].value);
if (arg == NULL)
{
Py_INCREF(Py_None);
arg = Py_None;
}
if (PyList_SetItem(args, i, arg) == -1)
PLy_elog(ERROR, "PyList_SetItem() failed, while setting up arguments");
if (proc->argnames && proc->argnames[i] &&
PyDict_SetItemString(proc->globals, proc->argnames[i], arg) == -1)
PLy_elog(ERROR, "PyDict_SetItemString() failed, while setting up arguments");
arg = NULL;
}
/* Set up output conversion for functions returning RECORD */
Make PL/Python handle domain-type conversions correctly. Fix PL/Python so that it can handle domains over composite, and so that it enforces domain constraints correctly in other cases that were not always done properly before. Notably, it didn't do arrays of domains right (oversight in commit c12d570fa), and it failed to enforce domain constraints when returning a composite type containing a domain field, and if a transform function is being used for a domain's base type then it failed to enforce domain constraints on the result. Also, in many places it missed checking domain constraints on null values, because the plpy_typeio code simply wasn't called for Py_None. Rather than try to band-aid these problems, I made a significant refactoring of the plpy_typeio logic. The existing design of recursing for array and composite members is extended to also treat domains as containers requiring recursion, and the APIs for the module are cleaned up and simplified. The patch also modifies plpy_typeio to rely on the typcache more than it did before (which was pretty much not at all). This reduces the need for repetitive lookups, and lets us get rid of an ad-hoc scheme for detecting changes in composite types. I added a couple of small features to typcache to help with that. Although some of this is fixing bugs that long predate v11, I don't think we should risk a back-patch: it's a significant amount of code churn, and there've been no complaints from the field about the bugs. Tom Lane, reviewed by Anthony Bykov Discussion: https://postgr.es/m/24449.1509393613@sss.pgh.pa.us
8 years ago
if (proc->result.typoid == RECORDOID)
{
TupleDesc desc;
if (get_call_result_type(fcinfo, NULL, &desc) != TYPEFUNC_COMPOSITE)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("function returning record called in context "
"that cannot accept type record")));
/* cache the output conversion functions */
Make PL/Python handle domain-type conversions correctly. Fix PL/Python so that it can handle domains over composite, and so that it enforces domain constraints correctly in other cases that were not always done properly before. Notably, it didn't do arrays of domains right (oversight in commit c12d570fa), and it failed to enforce domain constraints when returning a composite type containing a domain field, and if a transform function is being used for a domain's base type then it failed to enforce domain constraints on the result. Also, in many places it missed checking domain constraints on null values, because the plpy_typeio code simply wasn't called for Py_None. Rather than try to band-aid these problems, I made a significant refactoring of the plpy_typeio logic. The existing design of recursing for array and composite members is extended to also treat domains as containers requiring recursion, and the APIs for the module are cleaned up and simplified. The patch also modifies plpy_typeio to rely on the typcache more than it did before (which was pretty much not at all). This reduces the need for repetitive lookups, and lets us get rid of an ad-hoc scheme for detecting changes in composite types. I added a couple of small features to typcache to help with that. Although some of this is fixing bugs that long predate v11, I don't think we should risk a back-patch: it's a significant amount of code churn, and there've been no complaints from the field about the bugs. Tom Lane, reviewed by Anthony Bykov Discussion: https://postgr.es/m/24449.1509393613@sss.pgh.pa.us
8 years ago
PLy_output_setup_record(&proc->result, desc, proc);
}
}
PG_CATCH();
{
Py_XDECREF(arg);
Py_XDECREF(args);
PG_RE_THROW();
}
PG_END_TRY();
return args;
}
Fix PL/Python for recursion and interleaved set-returning functions. PL/Python failed if a PL/Python function was invoked recursively via SPI, since arguments are passed to the function in its global dictionary (a horrible decision that's far too ancient to undo) and it would delete those dictionary entries on function exit, leaving the outer recursion level(s) without any arguments. Not deleting them would be little better, since the outer levels would then see the innermost level's arguments. Since PL/Python uses ValuePerCall mode for evaluating set-returning functions, it's possible for multiple executions of the same SRF to be interleaved within a query. PL/Python failed in such a case, because it stored only one iterator per function, directly in the function's PLyProcedure struct. Moreover, one interleaved instance of the SRF would see argument values that should belong to another. Hence, invent code for saving and restoring the argument entries. To fix the recursion case, we only need to save at recursive entry and restore at recursive exit, so the overhead in non-recursive cases is negligible. To fix the SRF case, we have to save when suspending a SRF and restore when resuming it, which is potentially not negligible; but fortunately this is mostly a matter of manipulating Python object refcounts and should not involve much physical data copying. Also, store the Python iterator and saved argument values in a structure associated with the SRF call site rather than the function itself. This requires adding a memory context deletion callback to ensure that the SRF state is cleaned up if the calling query exits before running the SRF to completion. Without that we'd leak a refcount to the iterator object in such a case, resulting in session-lifespan memory leakage. (In the pre-existing code, there was no memory leak because there was only one iterator pointer, but what would happen is that the previous iterator would be resumed by the next query attempting to use the SRF. Hardly the semantics we want.) We can buy back some of whatever overhead we've added by getting rid of PLy_function_delete_args(), which seems a useless activity: there is no need to delete argument entries from the global dictionary on exit, since the next time anyone would see the global dict is on the next fresh call of the PL/Python function, at which time we'd overwrite those entries with new arg values anyway. Also clean up some really ugly coding in the SRF implementation, including such gems as returning directly out of a PG_TRY block. (The only reason that failed to crash hard was that all existing call sites immediately exited their own PG_TRY blocks, popping the dangling longjmp pointer before there was any chance of it being used.) In principle this is a bug fix; but it seems a bit too invasive relative to its value for a back-patch, and besides the fix depends on memory context callbacks so it could not go back further than 9.5 anyway. Alexey Grishchenko and Tom Lane
10 years ago
/*
* Construct a PLySavedArgs struct representing the current values of the
* procedure's arguments in its globals dict. This can be used to restore
* those values when exiting a recursive call level or returning control to a
* set-returning function.
*
* This would not be necessary except for an ancient decision to make args
* available via the proc's globals :-( ... but we're stuck with that now.
*/
static PLySavedArgs *
PLy_function_save_args(PLyProcedure *proc)
{
PLySavedArgs *result;
/* saved args are always allocated in procedure's context */
result = (PLySavedArgs *)
MemoryContextAllocZero(proc->mcxt,
offsetof(PLySavedArgs, namedargs) +
proc->nargs * sizeof(PyObject *));
result->nargs = proc->nargs;
/* Fetch the "args" list */
result->args = PyDict_GetItemString(proc->globals, "args");
Py_XINCREF(result->args);
/* Fetch all the named arguments */
if (proc->argnames)
{
int i;
for (i = 0; i < result->nargs; i++)
{
if (proc->argnames[i])
{
result->namedargs[i] = PyDict_GetItemString(proc->globals,
proc->argnames[i]);
Fix PL/Python for recursion and interleaved set-returning functions. PL/Python failed if a PL/Python function was invoked recursively via SPI, since arguments are passed to the function in its global dictionary (a horrible decision that's far too ancient to undo) and it would delete those dictionary entries on function exit, leaving the outer recursion level(s) without any arguments. Not deleting them would be little better, since the outer levels would then see the innermost level's arguments. Since PL/Python uses ValuePerCall mode for evaluating set-returning functions, it's possible for multiple executions of the same SRF to be interleaved within a query. PL/Python failed in such a case, because it stored only one iterator per function, directly in the function's PLyProcedure struct. Moreover, one interleaved instance of the SRF would see argument values that should belong to another. Hence, invent code for saving and restoring the argument entries. To fix the recursion case, we only need to save at recursive entry and restore at recursive exit, so the overhead in non-recursive cases is negligible. To fix the SRF case, we have to save when suspending a SRF and restore when resuming it, which is potentially not negligible; but fortunately this is mostly a matter of manipulating Python object refcounts and should not involve much physical data copying. Also, store the Python iterator and saved argument values in a structure associated with the SRF call site rather than the function itself. This requires adding a memory context deletion callback to ensure that the SRF state is cleaned up if the calling query exits before running the SRF to completion. Without that we'd leak a refcount to the iterator object in such a case, resulting in session-lifespan memory leakage. (In the pre-existing code, there was no memory leak because there was only one iterator pointer, but what would happen is that the previous iterator would be resumed by the next query attempting to use the SRF. Hardly the semantics we want.) We can buy back some of whatever overhead we've added by getting rid of PLy_function_delete_args(), which seems a useless activity: there is no need to delete argument entries from the global dictionary on exit, since the next time anyone would see the global dict is on the next fresh call of the PL/Python function, at which time we'd overwrite those entries with new arg values anyway. Also clean up some really ugly coding in the SRF implementation, including such gems as returning directly out of a PG_TRY block. (The only reason that failed to crash hard was that all existing call sites immediately exited their own PG_TRY blocks, popping the dangling longjmp pointer before there was any chance of it being used.) In principle this is a bug fix; but it seems a bit too invasive relative to its value for a back-patch, and besides the fix depends on memory context callbacks so it could not go back further than 9.5 anyway. Alexey Grishchenko and Tom Lane
10 years ago
Py_XINCREF(result->namedargs[i]);
}
}
}
return result;
}
/*
* Restore procedure's arguments from a PLySavedArgs struct,
* then free the struct.
*/
static void
Fix PL/Python for recursion and interleaved set-returning functions. PL/Python failed if a PL/Python function was invoked recursively via SPI, since arguments are passed to the function in its global dictionary (a horrible decision that's far too ancient to undo) and it would delete those dictionary entries on function exit, leaving the outer recursion level(s) without any arguments. Not deleting them would be little better, since the outer levels would then see the innermost level's arguments. Since PL/Python uses ValuePerCall mode for evaluating set-returning functions, it's possible for multiple executions of the same SRF to be interleaved within a query. PL/Python failed in such a case, because it stored only one iterator per function, directly in the function's PLyProcedure struct. Moreover, one interleaved instance of the SRF would see argument values that should belong to another. Hence, invent code for saving and restoring the argument entries. To fix the recursion case, we only need to save at recursive entry and restore at recursive exit, so the overhead in non-recursive cases is negligible. To fix the SRF case, we have to save when suspending a SRF and restore when resuming it, which is potentially not negligible; but fortunately this is mostly a matter of manipulating Python object refcounts and should not involve much physical data copying. Also, store the Python iterator and saved argument values in a structure associated with the SRF call site rather than the function itself. This requires adding a memory context deletion callback to ensure that the SRF state is cleaned up if the calling query exits before running the SRF to completion. Without that we'd leak a refcount to the iterator object in such a case, resulting in session-lifespan memory leakage. (In the pre-existing code, there was no memory leak because there was only one iterator pointer, but what would happen is that the previous iterator would be resumed by the next query attempting to use the SRF. Hardly the semantics we want.) We can buy back some of whatever overhead we've added by getting rid of PLy_function_delete_args(), which seems a useless activity: there is no need to delete argument entries from the global dictionary on exit, since the next time anyone would see the global dict is on the next fresh call of the PL/Python function, at which time we'd overwrite those entries with new arg values anyway. Also clean up some really ugly coding in the SRF implementation, including such gems as returning directly out of a PG_TRY block. (The only reason that failed to crash hard was that all existing call sites immediately exited their own PG_TRY blocks, popping the dangling longjmp pointer before there was any chance of it being used.) In principle this is a bug fix; but it seems a bit too invasive relative to its value for a back-patch, and besides the fix depends on memory context callbacks so it could not go back further than 9.5 anyway. Alexey Grishchenko and Tom Lane
10 years ago
PLy_function_restore_args(PLyProcedure *proc, PLySavedArgs *savedargs)
{
/* Restore named arguments into their slots in the globals dict */
if (proc->argnames)
{
int i;
for (i = 0; i < savedargs->nargs; i++)
{
if (proc->argnames[i] && savedargs->namedargs[i])
{
PyDict_SetItemString(proc->globals, proc->argnames[i],
savedargs->namedargs[i]);
Py_DECREF(savedargs->namedargs[i]);
}
}
}
/* Restore the "args" object, too */
if (savedargs->args)
{
PyDict_SetItemString(proc->globals, "args", savedargs->args);
Py_DECREF(savedargs->args);
}
/* And free the PLySavedArgs struct */
pfree(savedargs);
}
/*
* Free a PLySavedArgs struct without restoring the values.
*/
static void
PLy_function_drop_args(PLySavedArgs *savedargs)
{
int i;
Fix PL/Python for recursion and interleaved set-returning functions. PL/Python failed if a PL/Python function was invoked recursively via SPI, since arguments are passed to the function in its global dictionary (a horrible decision that's far too ancient to undo) and it would delete those dictionary entries on function exit, leaving the outer recursion level(s) without any arguments. Not deleting them would be little better, since the outer levels would then see the innermost level's arguments. Since PL/Python uses ValuePerCall mode for evaluating set-returning functions, it's possible for multiple executions of the same SRF to be interleaved within a query. PL/Python failed in such a case, because it stored only one iterator per function, directly in the function's PLyProcedure struct. Moreover, one interleaved instance of the SRF would see argument values that should belong to another. Hence, invent code for saving and restoring the argument entries. To fix the recursion case, we only need to save at recursive entry and restore at recursive exit, so the overhead in non-recursive cases is negligible. To fix the SRF case, we have to save when suspending a SRF and restore when resuming it, which is potentially not negligible; but fortunately this is mostly a matter of manipulating Python object refcounts and should not involve much physical data copying. Also, store the Python iterator and saved argument values in a structure associated with the SRF call site rather than the function itself. This requires adding a memory context deletion callback to ensure that the SRF state is cleaned up if the calling query exits before running the SRF to completion. Without that we'd leak a refcount to the iterator object in such a case, resulting in session-lifespan memory leakage. (In the pre-existing code, there was no memory leak because there was only one iterator pointer, but what would happen is that the previous iterator would be resumed by the next query attempting to use the SRF. Hardly the semantics we want.) We can buy back some of whatever overhead we've added by getting rid of PLy_function_delete_args(), which seems a useless activity: there is no need to delete argument entries from the global dictionary on exit, since the next time anyone would see the global dict is on the next fresh call of the PL/Python function, at which time we'd overwrite those entries with new arg values anyway. Also clean up some really ugly coding in the SRF implementation, including such gems as returning directly out of a PG_TRY block. (The only reason that failed to crash hard was that all existing call sites immediately exited their own PG_TRY blocks, popping the dangling longjmp pointer before there was any chance of it being used.) In principle this is a bug fix; but it seems a bit too invasive relative to its value for a back-patch, and besides the fix depends on memory context callbacks so it could not go back further than 9.5 anyway. Alexey Grishchenko and Tom Lane
10 years ago
/* Drop references for named args */
for (i = 0; i < savedargs->nargs; i++)
{
Py_XDECREF(savedargs->namedargs[i]);
}
/* Drop ref to the "args" object, too */
Py_XDECREF(savedargs->args);
/* And free the PLySavedArgs struct */
pfree(savedargs);
}
Fix PL/Python for recursion and interleaved set-returning functions. PL/Python failed if a PL/Python function was invoked recursively via SPI, since arguments are passed to the function in its global dictionary (a horrible decision that's far too ancient to undo) and it would delete those dictionary entries on function exit, leaving the outer recursion level(s) without any arguments. Not deleting them would be little better, since the outer levels would then see the innermost level's arguments. Since PL/Python uses ValuePerCall mode for evaluating set-returning functions, it's possible for multiple executions of the same SRF to be interleaved within a query. PL/Python failed in such a case, because it stored only one iterator per function, directly in the function's PLyProcedure struct. Moreover, one interleaved instance of the SRF would see argument values that should belong to another. Hence, invent code for saving and restoring the argument entries. To fix the recursion case, we only need to save at recursive entry and restore at recursive exit, so the overhead in non-recursive cases is negligible. To fix the SRF case, we have to save when suspending a SRF and restore when resuming it, which is potentially not negligible; but fortunately this is mostly a matter of manipulating Python object refcounts and should not involve much physical data copying. Also, store the Python iterator and saved argument values in a structure associated with the SRF call site rather than the function itself. This requires adding a memory context deletion callback to ensure that the SRF state is cleaned up if the calling query exits before running the SRF to completion. Without that we'd leak a refcount to the iterator object in such a case, resulting in session-lifespan memory leakage. (In the pre-existing code, there was no memory leak because there was only one iterator pointer, but what would happen is that the previous iterator would be resumed by the next query attempting to use the SRF. Hardly the semantics we want.) We can buy back some of whatever overhead we've added by getting rid of PLy_function_delete_args(), which seems a useless activity: there is no need to delete argument entries from the global dictionary on exit, since the next time anyone would see the global dict is on the next fresh call of the PL/Python function, at which time we'd overwrite those entries with new arg values anyway. Also clean up some really ugly coding in the SRF implementation, including such gems as returning directly out of a PG_TRY block. (The only reason that failed to crash hard was that all existing call sites immediately exited their own PG_TRY blocks, popping the dangling longjmp pointer before there was any chance of it being used.) In principle this is a bug fix; but it seems a bit too invasive relative to its value for a back-patch, and besides the fix depends on memory context callbacks so it could not go back further than 9.5 anyway. Alexey Grishchenko and Tom Lane
10 years ago
/*
* Save away any existing arguments for the given procedure, so that we can
* install new values for a recursive call. This should be invoked before
* doing PLy_function_build_args().
*
* NB: caller must ensure that PLy_global_args_pop gets invoked once, and
* only once, per successful completion of PLy_global_args_push. Otherwise
* we'll end up out-of-sync between the actual call stack and the contents
* of proc->argstack.
*/
static void
PLy_global_args_push(PLyProcedure *proc)
{
/* We only need to push if we are already inside some active call */
if (proc->calldepth > 0)
{
PLySavedArgs *node;
/* Build a struct containing current argument values */
node = PLy_function_save_args(proc);
/*
* Push the saved argument values into the procedure's stack. Once we
* modify either proc->argstack or proc->calldepth, we had better
* return without the possibility of error.
*/
node->next = proc->argstack;
proc->argstack = node;
}
proc->calldepth++;
}
/*
* Pop old arguments when exiting a recursive call.
*
* Note: the idea here is to adjust the proc's callstack state before doing
* anything that could possibly fail. In event of any error, we want the
* callstack to look like we've done the pop. Leaking a bit of memory is
* tolerable.
*/
static void
PLy_global_args_pop(PLyProcedure *proc)
{
Assert(proc->calldepth > 0);
/* We only need to pop if we were already inside some active call */
if (proc->calldepth > 1)
{
PLySavedArgs *ptr = proc->argstack;
/* Pop the callstack */
Assert(ptr != NULL);
proc->argstack = ptr->next;
proc->calldepth--;
/* Restore argument values, then free ptr */
PLy_function_restore_args(proc, ptr);
}
else
{
/* Exiting call depth 1 */
Assert(proc->argstack == NULL);
proc->calldepth--;
/*
* We used to delete the named arguments (but not "args") from the
* proc's globals dict when exiting the outermost call level for a
* function. This seems rather pointless though: nothing can see the
* dict until the function is called again, at which time we'll
* overwrite those dict entries. So don't bother with that.
*/
}
}
/*
* Memory context deletion callback for cleaning up a PLySRFState.
* We need this in case execution of the SRF is terminated early,
* due to error or the caller simply not running it to completion.
*/
static void
plpython_srf_cleanup_callback(void *arg)
{
PLySRFState *srfstate = (PLySRFState *) arg;
/* Release refcount on the iter, if we still have one */
Py_XDECREF(srfstate->iter);
srfstate->iter = NULL;
/* And drop any saved args; we won't need them */
if (srfstate->savedargs)
PLy_function_drop_args(srfstate->savedargs);
srfstate->savedargs = NULL;
}
static void
plpython_return_error_callback(void *arg)
{
PLyExecutionContext *exec_ctx = PLy_current_execution_context();
if (exec_ctx->curr_proc &&
!exec_ctx->curr_proc->is_procedure)
errcontext("while creating return value");
}
static PyObject *
PLy_trigger_build_args(FunctionCallInfo fcinfo, PLyProcedure *proc, HeapTuple *rv)
{
TriggerData *tdata = (TriggerData *) fcinfo->context;
Make PL/Python handle domain-type conversions correctly. Fix PL/Python so that it can handle domains over composite, and so that it enforces domain constraints correctly in other cases that were not always done properly before. Notably, it didn't do arrays of domains right (oversight in commit c12d570fa), and it failed to enforce domain constraints when returning a composite type containing a domain field, and if a transform function is being used for a domain's base type then it failed to enforce domain constraints on the result. Also, in many places it missed checking domain constraints on null values, because the plpy_typeio code simply wasn't called for Py_None. Rather than try to band-aid these problems, I made a significant refactoring of the plpy_typeio logic. The existing design of recursing for array and composite members is extended to also treat domains as containers requiring recursion, and the APIs for the module are cleaned up and simplified. The patch also modifies plpy_typeio to rely on the typcache more than it did before (which was pretty much not at all). This reduces the need for repetitive lookups, and lets us get rid of an ad-hoc scheme for detecting changes in composite types. I added a couple of small features to typcache to help with that. Although some of this is fixing bugs that long predate v11, I don't think we should risk a back-patch: it's a significant amount of code churn, and there've been no complaints from the field about the bugs. Tom Lane, reviewed by Anthony Bykov Discussion: https://postgr.es/m/24449.1509393613@sss.pgh.pa.us
8 years ago
TupleDesc rel_descr = RelationGetDescr(tdata->tg_relation);
PyObject *pltname,
*pltevent,
*pltwhen,
*pltlevel,
*pltrelid,
*plttablename,
*plttableschema;
PyObject *pltargs,
*pytnew,
*pytold;
PyObject *volatile pltdata = NULL;
char *stroid;
PG_TRY();
{
pltdata = PyDict_New();
if (!pltdata)
return NULL;
pltname = PyString_FromString(tdata->tg_trigger->tgname);
PyDict_SetItemString(pltdata, "name", pltname);
Py_DECREF(pltname);
stroid = DatumGetCString(DirectFunctionCall1(oidout,
ObjectIdGetDatum(tdata->tg_relation->rd_id)));
pltrelid = PyString_FromString(stroid);
PyDict_SetItemString(pltdata, "relid", pltrelid);
Py_DECREF(pltrelid);
pfree(stroid);
stroid = SPI_getrelname(tdata->tg_relation);
plttablename = PyString_FromString(stroid);
PyDict_SetItemString(pltdata, "table_name", plttablename);
Py_DECREF(plttablename);
pfree(stroid);
stroid = SPI_getnspname(tdata->tg_relation);
plttableschema = PyString_FromString(stroid);
PyDict_SetItemString(pltdata, "table_schema", plttableschema);
Py_DECREF(plttableschema);
pfree(stroid);
if (TRIGGER_FIRED_BEFORE(tdata->tg_event))
pltwhen = PyString_FromString("BEFORE");
else if (TRIGGER_FIRED_AFTER(tdata->tg_event))
pltwhen = PyString_FromString("AFTER");
else if (TRIGGER_FIRED_INSTEAD(tdata->tg_event))
pltwhen = PyString_FromString("INSTEAD OF");
else
{
elog(ERROR, "unrecognized WHEN tg_event: %u", tdata->tg_event);
pltwhen = NULL; /* keep compiler quiet */
}
PyDict_SetItemString(pltdata, "when", pltwhen);
Py_DECREF(pltwhen);
if (TRIGGER_FIRED_FOR_ROW(tdata->tg_event))
{
pltlevel = PyString_FromString("ROW");
PyDict_SetItemString(pltdata, "level", pltlevel);
Py_DECREF(pltlevel);
/*
* Note: In BEFORE trigger, stored generated columns are not
* computed yet, so don't make them accessible in NEW row.
*/
if (TRIGGER_FIRED_BY_INSERT(tdata->tg_event))
{
pltevent = PyString_FromString("INSERT");
PyDict_SetItemString(pltdata, "old", Py_None);
Make PL/Python handle domain-type conversions correctly. Fix PL/Python so that it can handle domains over composite, and so that it enforces domain constraints correctly in other cases that were not always done properly before. Notably, it didn't do arrays of domains right (oversight in commit c12d570fa), and it failed to enforce domain constraints when returning a composite type containing a domain field, and if a transform function is being used for a domain's base type then it failed to enforce domain constraints on the result. Also, in many places it missed checking domain constraints on null values, because the plpy_typeio code simply wasn't called for Py_None. Rather than try to band-aid these problems, I made a significant refactoring of the plpy_typeio logic. The existing design of recursing for array and composite members is extended to also treat domains as containers requiring recursion, and the APIs for the module are cleaned up and simplified. The patch also modifies plpy_typeio to rely on the typcache more than it did before (which was pretty much not at all). This reduces the need for repetitive lookups, and lets us get rid of an ad-hoc scheme for detecting changes in composite types. I added a couple of small features to typcache to help with that. Although some of this is fixing bugs that long predate v11, I don't think we should risk a back-patch: it's a significant amount of code churn, and there've been no complaints from the field about the bugs. Tom Lane, reviewed by Anthony Bykov Discussion: https://postgr.es/m/24449.1509393613@sss.pgh.pa.us
8 years ago
pytnew = PLy_input_from_tuple(&proc->result_in,
tdata->tg_trigtuple,
rel_descr,
!TRIGGER_FIRED_BEFORE(tdata->tg_event));
PyDict_SetItemString(pltdata, "new", pytnew);
Py_DECREF(pytnew);
*rv = tdata->tg_trigtuple;
}
else if (TRIGGER_FIRED_BY_DELETE(tdata->tg_event))
{
pltevent = PyString_FromString("DELETE");
PyDict_SetItemString(pltdata, "new", Py_None);
Make PL/Python handle domain-type conversions correctly. Fix PL/Python so that it can handle domains over composite, and so that it enforces domain constraints correctly in other cases that were not always done properly before. Notably, it didn't do arrays of domains right (oversight in commit c12d570fa), and it failed to enforce domain constraints when returning a composite type containing a domain field, and if a transform function is being used for a domain's base type then it failed to enforce domain constraints on the result. Also, in many places it missed checking domain constraints on null values, because the plpy_typeio code simply wasn't called for Py_None. Rather than try to band-aid these problems, I made a significant refactoring of the plpy_typeio logic. The existing design of recursing for array and composite members is extended to also treat domains as containers requiring recursion, and the APIs for the module are cleaned up and simplified. The patch also modifies plpy_typeio to rely on the typcache more than it did before (which was pretty much not at all). This reduces the need for repetitive lookups, and lets us get rid of an ad-hoc scheme for detecting changes in composite types. I added a couple of small features to typcache to help with that. Although some of this is fixing bugs that long predate v11, I don't think we should risk a back-patch: it's a significant amount of code churn, and there've been no complaints from the field about the bugs. Tom Lane, reviewed by Anthony Bykov Discussion: https://postgr.es/m/24449.1509393613@sss.pgh.pa.us
8 years ago
pytold = PLy_input_from_tuple(&proc->result_in,
tdata->tg_trigtuple,
rel_descr,
true);
PyDict_SetItemString(pltdata, "old", pytold);
Py_DECREF(pytold);
*rv = tdata->tg_trigtuple;
}
else if (TRIGGER_FIRED_BY_UPDATE(tdata->tg_event))
{
pltevent = PyString_FromString("UPDATE");
Make PL/Python handle domain-type conversions correctly. Fix PL/Python so that it can handle domains over composite, and so that it enforces domain constraints correctly in other cases that were not always done properly before. Notably, it didn't do arrays of domains right (oversight in commit c12d570fa), and it failed to enforce domain constraints when returning a composite type containing a domain field, and if a transform function is being used for a domain's base type then it failed to enforce domain constraints on the result. Also, in many places it missed checking domain constraints on null values, because the plpy_typeio code simply wasn't called for Py_None. Rather than try to band-aid these problems, I made a significant refactoring of the plpy_typeio logic. The existing design of recursing for array and composite members is extended to also treat domains as containers requiring recursion, and the APIs for the module are cleaned up and simplified. The patch also modifies plpy_typeio to rely on the typcache more than it did before (which was pretty much not at all). This reduces the need for repetitive lookups, and lets us get rid of an ad-hoc scheme for detecting changes in composite types. I added a couple of small features to typcache to help with that. Although some of this is fixing bugs that long predate v11, I don't think we should risk a back-patch: it's a significant amount of code churn, and there've been no complaints from the field about the bugs. Tom Lane, reviewed by Anthony Bykov Discussion: https://postgr.es/m/24449.1509393613@sss.pgh.pa.us
8 years ago
pytnew = PLy_input_from_tuple(&proc->result_in,
tdata->tg_newtuple,
rel_descr,
!TRIGGER_FIRED_BEFORE(tdata->tg_event));
PyDict_SetItemString(pltdata, "new", pytnew);
Py_DECREF(pytnew);
Make PL/Python handle domain-type conversions correctly. Fix PL/Python so that it can handle domains over composite, and so that it enforces domain constraints correctly in other cases that were not always done properly before. Notably, it didn't do arrays of domains right (oversight in commit c12d570fa), and it failed to enforce domain constraints when returning a composite type containing a domain field, and if a transform function is being used for a domain's base type then it failed to enforce domain constraints on the result. Also, in many places it missed checking domain constraints on null values, because the plpy_typeio code simply wasn't called for Py_None. Rather than try to band-aid these problems, I made a significant refactoring of the plpy_typeio logic. The existing design of recursing for array and composite members is extended to also treat domains as containers requiring recursion, and the APIs for the module are cleaned up and simplified. The patch also modifies plpy_typeio to rely on the typcache more than it did before (which was pretty much not at all). This reduces the need for repetitive lookups, and lets us get rid of an ad-hoc scheme for detecting changes in composite types. I added a couple of small features to typcache to help with that. Although some of this is fixing bugs that long predate v11, I don't think we should risk a back-patch: it's a significant amount of code churn, and there've been no complaints from the field about the bugs. Tom Lane, reviewed by Anthony Bykov Discussion: https://postgr.es/m/24449.1509393613@sss.pgh.pa.us
8 years ago
pytold = PLy_input_from_tuple(&proc->result_in,
tdata->tg_trigtuple,
rel_descr,
true);
PyDict_SetItemString(pltdata, "old", pytold);
Py_DECREF(pytold);
*rv = tdata->tg_newtuple;
}
else
{
elog(ERROR, "unrecognized OP tg_event: %u", tdata->tg_event);
pltevent = NULL; /* keep compiler quiet */
}
PyDict_SetItemString(pltdata, "event", pltevent);
Py_DECREF(pltevent);
}
else if (TRIGGER_FIRED_FOR_STATEMENT(tdata->tg_event))
{
pltlevel = PyString_FromString("STATEMENT");
PyDict_SetItemString(pltdata, "level", pltlevel);
Py_DECREF(pltlevel);
PyDict_SetItemString(pltdata, "old", Py_None);
PyDict_SetItemString(pltdata, "new", Py_None);
*rv = NULL;
if (TRIGGER_FIRED_BY_INSERT(tdata->tg_event))
pltevent = PyString_FromString("INSERT");
else if (TRIGGER_FIRED_BY_DELETE(tdata->tg_event))
pltevent = PyString_FromString("DELETE");
else if (TRIGGER_FIRED_BY_UPDATE(tdata->tg_event))
pltevent = PyString_FromString("UPDATE");
else if (TRIGGER_FIRED_BY_TRUNCATE(tdata->tg_event))
pltevent = PyString_FromString("TRUNCATE");
else
{
elog(ERROR, "unrecognized OP tg_event: %u", tdata->tg_event);
pltevent = NULL; /* keep compiler quiet */
}
PyDict_SetItemString(pltdata, "event", pltevent);
Py_DECREF(pltevent);
}
else
elog(ERROR, "unrecognized LEVEL tg_event: %u", tdata->tg_event);
if (tdata->tg_trigger->tgnargs)
{
/*
* all strings...
*/
int i;
PyObject *pltarg;
pltargs = PyList_New(tdata->tg_trigger->tgnargs);
if (!pltargs)
{
Py_DECREF(pltdata);
return NULL;
}
for (i = 0; i < tdata->tg_trigger->tgnargs; i++)
{
pltarg = PyString_FromString(tdata->tg_trigger->tgargs[i]);
/*
* stolen, don't Py_DECREF
*/
PyList_SetItem(pltargs, i, pltarg);
}
}
else
{
Py_INCREF(Py_None);
pltargs = Py_None;
}
PyDict_SetItemString(pltdata, "args", pltargs);
Py_DECREF(pltargs);
}
PG_CATCH();
{
Py_XDECREF(pltdata);
PG_RE_THROW();
}
PG_END_TRY();
return pltdata;
}
Make PL/Python handle domain-type conversions correctly. Fix PL/Python so that it can handle domains over composite, and so that it enforces domain constraints correctly in other cases that were not always done properly before. Notably, it didn't do arrays of domains right (oversight in commit c12d570fa), and it failed to enforce domain constraints when returning a composite type containing a domain field, and if a transform function is being used for a domain's base type then it failed to enforce domain constraints on the result. Also, in many places it missed checking domain constraints on null values, because the plpy_typeio code simply wasn't called for Py_None. Rather than try to band-aid these problems, I made a significant refactoring of the plpy_typeio logic. The existing design of recursing for array and composite members is extended to also treat domains as containers requiring recursion, and the APIs for the module are cleaned up and simplified. The patch also modifies plpy_typeio to rely on the typcache more than it did before (which was pretty much not at all). This reduces the need for repetitive lookups, and lets us get rid of an ad-hoc scheme for detecting changes in composite types. I added a couple of small features to typcache to help with that. Although some of this is fixing bugs that long predate v11, I don't think we should risk a back-patch: it's a significant amount of code churn, and there've been no complaints from the field about the bugs. Tom Lane, reviewed by Anthony Bykov Discussion: https://postgr.es/m/24449.1509393613@sss.pgh.pa.us
8 years ago
/*
* Apply changes requested by a MODIFY return from a trigger function.
*/
static HeapTuple
PLy_modify_tuple(PLyProcedure *proc, PyObject *pltd, TriggerData *tdata,
HeapTuple otup)
{
HeapTuple rtup;
PyObject *volatile plntup;
PyObject *volatile plkeys;
PyObject *volatile plval;
Datum *volatile modvalues;
bool *volatile modnulls;
bool *volatile modrepls;
ErrorContextCallback plerrcontext;
plerrcontext.callback = plpython_trigger_error_callback;
plerrcontext.previous = error_context_stack;
error_context_stack = &plerrcontext;
plntup = plkeys = plval = NULL;
modvalues = NULL;
modnulls = NULL;
modrepls = NULL;
PG_TRY();
{
TupleDesc tupdesc;
int nkeys,
i;
if ((plntup = PyDict_GetItemString(pltd, "new")) == NULL)
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("TD[\"new\"] deleted, cannot modify row")));
Py_INCREF(plntup);
if (!PyDict_Check(plntup))
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("TD[\"new\"] is not a dictionary")));
plkeys = PyDict_Keys(plntup);
nkeys = PyList_Size(plkeys);
Make PL/Python handle domain-type conversions correctly. Fix PL/Python so that it can handle domains over composite, and so that it enforces domain constraints correctly in other cases that were not always done properly before. Notably, it didn't do arrays of domains right (oversight in commit c12d570fa), and it failed to enforce domain constraints when returning a composite type containing a domain field, and if a transform function is being used for a domain's base type then it failed to enforce domain constraints on the result. Also, in many places it missed checking domain constraints on null values, because the plpy_typeio code simply wasn't called for Py_None. Rather than try to band-aid these problems, I made a significant refactoring of the plpy_typeio logic. The existing design of recursing for array and composite members is extended to also treat domains as containers requiring recursion, and the APIs for the module are cleaned up and simplified. The patch also modifies plpy_typeio to rely on the typcache more than it did before (which was pretty much not at all). This reduces the need for repetitive lookups, and lets us get rid of an ad-hoc scheme for detecting changes in composite types. I added a couple of small features to typcache to help with that. Although some of this is fixing bugs that long predate v11, I don't think we should risk a back-patch: it's a significant amount of code churn, and there've been no complaints from the field about the bugs. Tom Lane, reviewed by Anthony Bykov Discussion: https://postgr.es/m/24449.1509393613@sss.pgh.pa.us
8 years ago
tupdesc = RelationGetDescr(tdata->tg_relation);
modvalues = (Datum *) palloc0(tupdesc->natts * sizeof(Datum));
modnulls = (bool *) palloc0(tupdesc->natts * sizeof(bool));
modrepls = (bool *) palloc0(tupdesc->natts * sizeof(bool));
for (i = 0; i < nkeys; i++)
{
PyObject *platt;
char *plattstr;
int attn;
PLyObToDatum *att;
platt = PyList_GetItem(plkeys, i);
if (PyString_Check(platt))
plattstr = PyString_AsString(platt);
else if (PyUnicode_Check(platt))
plattstr = PLyUnicode_AsString(platt);
else
{
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("TD[\"new\"] dictionary key at ordinal position %d is not a string", i)));
plattstr = NULL; /* keep compiler quiet */
}
attn = SPI_fnumber(tupdesc, plattstr);
if (attn == SPI_ERROR_NOATTRIBUTE)
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_COLUMN),
errmsg("key \"%s\" found in TD[\"new\"] does not exist as a column in the triggering row",
plattstr)));
if (attn <= 0)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot set system attribute \"%s\"",
plattstr)));
if (TupleDescAttr(tupdesc, attn - 1)->attgenerated)
ereport(ERROR,
(errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED),
errmsg("cannot set generated column \"%s\"",
plattstr)));
plval = PyDict_GetItem(plntup, platt);
if (plval == NULL)
elog(FATAL, "Python interpreter is probably corrupted");
Py_INCREF(plval);
Make PL/Python handle domain-type conversions correctly. Fix PL/Python so that it can handle domains over composite, and so that it enforces domain constraints correctly in other cases that were not always done properly before. Notably, it didn't do arrays of domains right (oversight in commit c12d570fa), and it failed to enforce domain constraints when returning a composite type containing a domain field, and if a transform function is being used for a domain's base type then it failed to enforce domain constraints on the result. Also, in many places it missed checking domain constraints on null values, because the plpy_typeio code simply wasn't called for Py_None. Rather than try to band-aid these problems, I made a significant refactoring of the plpy_typeio logic. The existing design of recursing for array and composite members is extended to also treat domains as containers requiring recursion, and the APIs for the module are cleaned up and simplified. The patch also modifies plpy_typeio to rely on the typcache more than it did before (which was pretty much not at all). This reduces the need for repetitive lookups, and lets us get rid of an ad-hoc scheme for detecting changes in composite types. I added a couple of small features to typcache to help with that. Although some of this is fixing bugs that long predate v11, I don't think we should risk a back-patch: it's a significant amount of code churn, and there've been no complaints from the field about the bugs. Tom Lane, reviewed by Anthony Bykov Discussion: https://postgr.es/m/24449.1509393613@sss.pgh.pa.us
8 years ago
/* We assume proc->result is set up to convert tuples properly */
att = &proc->result.u.tuple.atts[attn - 1];
modvalues[attn - 1] = PLy_output_convert(att,
plval,
&modnulls[attn - 1]);
modrepls[attn - 1] = true;
Py_DECREF(plval);
plval = NULL;
}
rtup = heap_modify_tuple(otup, tupdesc, modvalues, modnulls, modrepls);
}
PG_CATCH();
{
Py_XDECREF(plntup);
Py_XDECREF(plkeys);
Py_XDECREF(plval);
if (modvalues)
pfree(modvalues);
if (modnulls)
pfree(modnulls);
if (modrepls)
pfree(modrepls);
PG_RE_THROW();
}
PG_END_TRY();
Py_DECREF(plntup);
Py_DECREF(plkeys);
pfree(modvalues);
pfree(modnulls);
pfree(modrepls);
error_context_stack = plerrcontext.previous;
return rtup;
}
static void
plpython_trigger_error_callback(void *arg)
{
PLyExecutionContext *exec_ctx = PLy_current_execution_context();
if (exec_ctx->curr_proc)
errcontext("while modifying trigger row");
}
/* execute Python code, propagate Python errors to the backend */
static PyObject *
Fix PL/Python for recursion and interleaved set-returning functions. PL/Python failed if a PL/Python function was invoked recursively via SPI, since arguments are passed to the function in its global dictionary (a horrible decision that's far too ancient to undo) and it would delete those dictionary entries on function exit, leaving the outer recursion level(s) without any arguments. Not deleting them would be little better, since the outer levels would then see the innermost level's arguments. Since PL/Python uses ValuePerCall mode for evaluating set-returning functions, it's possible for multiple executions of the same SRF to be interleaved within a query. PL/Python failed in such a case, because it stored only one iterator per function, directly in the function's PLyProcedure struct. Moreover, one interleaved instance of the SRF would see argument values that should belong to another. Hence, invent code for saving and restoring the argument entries. To fix the recursion case, we only need to save at recursive entry and restore at recursive exit, so the overhead in non-recursive cases is negligible. To fix the SRF case, we have to save when suspending a SRF and restore when resuming it, which is potentially not negligible; but fortunately this is mostly a matter of manipulating Python object refcounts and should not involve much physical data copying. Also, store the Python iterator and saved argument values in a structure associated with the SRF call site rather than the function itself. This requires adding a memory context deletion callback to ensure that the SRF state is cleaned up if the calling query exits before running the SRF to completion. Without that we'd leak a refcount to the iterator object in such a case, resulting in session-lifespan memory leakage. (In the pre-existing code, there was no memory leak because there was only one iterator pointer, but what would happen is that the previous iterator would be resumed by the next query attempting to use the SRF. Hardly the semantics we want.) We can buy back some of whatever overhead we've added by getting rid of PLy_function_delete_args(), which seems a useless activity: there is no need to delete argument entries from the global dictionary on exit, since the next time anyone would see the global dict is on the next fresh call of the PL/Python function, at which time we'd overwrite those entries with new arg values anyway. Also clean up some really ugly coding in the SRF implementation, including such gems as returning directly out of a PG_TRY block. (The only reason that failed to crash hard was that all existing call sites immediately exited their own PG_TRY blocks, popping the dangling longjmp pointer before there was any chance of it being used.) In principle this is a bug fix; but it seems a bit too invasive relative to its value for a back-patch, and besides the fix depends on memory context callbacks so it could not go back further than 9.5 anyway. Alexey Grishchenko and Tom Lane
10 years ago
PLy_procedure_call(PLyProcedure *proc, const char *kargs, PyObject *vargs)
{
PyObject *rv = NULL;
int volatile save_subxact_level = list_length(explicit_subtransactions);
PyDict_SetItemString(proc->globals, kargs, vargs);
PG_TRY();
{
#if PY_VERSION_HEX >= 0x03020000
rv = PyEval_EvalCode(proc->code,
proc->globals, proc->globals);
#else
rv = PyEval_EvalCode((PyCodeObject *) proc->code,
proc->globals, proc->globals);
#endif
/*
* Since plpy will only let you close subtransactions that you
* started, you cannot *unnest* subtransactions, only *nest* them
* without closing.
*/
Assert(list_length(explicit_subtransactions) >= save_subxact_level);
}
PG_FINALLY();
{
PLy_abort_open_subtransactions(save_subxact_level);
}
PG_END_TRY();
/* If the Python code returned an error, propagate it */
if (rv == NULL)
PLy_elog(ERROR, NULL);
return rv;
}
/*
* Abort lingering subtransactions that have been explicitly started
* by plpy.subtransaction().start() and not properly closed.
*/
static void
PLy_abort_open_subtransactions(int save_subxact_level)
{
Assert(save_subxact_level >= 0);
while (list_length(explicit_subtransactions) > save_subxact_level)
{
PLySubtransactionData *subtransactiondata;
Assert(explicit_subtransactions != NIL);
ereport(WARNING,
(errmsg("forcibly aborting a subtransaction that has not been exited")));
RollbackAndReleaseCurrentSubTransaction();
subtransactiondata = (PLySubtransactionData *) linitial(explicit_subtransactions);
explicit_subtransactions = list_delete_first(explicit_subtransactions);
MemoryContextSwitchTo(subtransactiondata->oldcontext);
CurrentResourceOwner = subtransactiondata->oldowner;
pfree(subtransactiondata);
}
}