You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
postgres/src/interfaces/libpq/fe-secure-gssapi.c

743 lines
22 KiB

GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
/*-------------------------------------------------------------------------
*
* fe-secure-gssapi.c
* The front-end (client) encryption support for GSSAPI
*
* Portions Copyright (c) 2016-2023, PostgreSQL Global Development Group
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
*
* IDENTIFICATION
* src/interfaces/libpq/fe-secure-gssapi.c
*
*-------------------------------------------------------------------------
*/
#include "postgres_fe.h"
#include "fe-gssapi-common.h"
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
#include "libpq-fe.h"
#include "libpq-int.h"
#include "port/pg_bswap.h"
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
/*
* Require encryption support, as well as mutual authentication and
* tamperproofing measures.
*/
#define GSS_REQUIRED_FLAGS GSS_C_MUTUAL_FLAG | GSS_C_REPLAY_FLAG | \
GSS_C_SEQUENCE_FLAG | GSS_C_CONF_FLAG | GSS_C_INTEG_FLAG
/*
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
* Handle the encryption/decryption of data using GSSAPI.
*
* In the encrypted data stream on the wire, we break up the data
* into packets where each packet starts with a uint32-size length
* word (in network byte order), then encrypted data of that length
* immediately following. Decryption yields the same data stream
* that would appear when not using encryption.
*
* Encrypted data typically ends up being larger than the same data
* unencrypted, so we use fixed-size buffers for handling the
* encryption/decryption which are larger than PQComm's buffer will
* typically be to minimize the times where we have to make multiple
* packets (and therefore multiple recv/send calls for a single
* read/write call to us).
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
*
* NOTE: The client and server have to agree on the max packet size,
* because we have to pass an entire packet to GSSAPI at a time and we
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
* don't want the other side to send arbitrarily huge packets as we
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
* would have to allocate memory for them to then pass them to GSSAPI.
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
*
* Therefore, these two #define's are effectively part of the protocol
* spec and can't ever be changed.
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
*/
#define PQ_GSS_SEND_BUFFER_SIZE 16384
#define PQ_GSS_RECV_BUFFER_SIZE 16384
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
/*
* We need these state variables per-connection. To allow the functions
* in this file to look mostly like those in be-secure-gssapi.c, set up
* these macros.
*/
#define PqGSSSendBuffer (conn->gss_SendBuffer)
#define PqGSSSendLength (conn->gss_SendLength)
#define PqGSSSendNext (conn->gss_SendNext)
#define PqGSSSendConsumed (conn->gss_SendConsumed)
#define PqGSSRecvBuffer (conn->gss_RecvBuffer)
#define PqGSSRecvLength (conn->gss_RecvLength)
#define PqGSSResultBuffer (conn->gss_ResultBuffer)
#define PqGSSResultLength (conn->gss_ResultLength)
#define PqGSSResultNext (conn->gss_ResultNext)
#define PqGSSMaxPktSize (conn->gss_MaxPktSize)
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
/*
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
* Attempt to write len bytes of data from ptr to a GSSAPI-encrypted connection.
*
* The connection must be already set up for GSSAPI encryption (i.e., GSSAPI
* transport negotiation is complete).
*
* On success, returns the number of data bytes consumed (possibly less than
* len). On failure, returns -1 with errno set appropriately. If the errno
In libpq, always append new error messages to conn->errorMessage. Previously, we had an undisciplined mish-mash of printfPQExpBuffer and appendPQExpBuffer calls to report errors within libpq. This commit establishes a uniform rule that appendPQExpBuffer[Str] should be used. conn->errorMessage is reset only at the start of an application request, and then accumulates messages till we're done. We can remove no less than three different ad-hoc mechanisms that were used to get the effect of concatenation of error messages within a sequence of operations. Although this makes things quite a bit cleaner conceptually, the main reason to do it is to make the world safer for the multiple-target-host feature that was added awhile back. Previously, there were many cases in which an error occurring during an individual host connection attempt would wipe out the record of what had happened during previous attempts. (The reporting is still inadequate, in that it can be hard to tell which host got the failure, but that seems like a matter for a separate commit.) Currently, lo_import and lo_export contain exceptions to the "never use printfPQExpBuffer" rule. If we changed them, we'd risk reporting an incidental lo_close failure before the actual read or write failure, which would be confusing, not least because lo_close happened after the main failure. We could improve this by inventing an internal version of lo_close that doesn't reset the errorMessage; but we'd also need a version of PQfn() that does that, and it didn't quite seem worth the trouble for now. Discussion: https://postgr.es/m/BN6PR05MB3492948E4FD76C156E747E8BC9160@BN6PR05MB3492.namprd05.prod.outlook.com
5 years ago
* indicates a non-retryable error, a message is added to conn->errorMessage.
Fix timing-dependent failure in GSSAPI data transmission. When using GSSAPI encryption in non-blocking mode, libpq sometimes failed with "GSSAPI caller failed to retransmit all data needing to be retried". The cause is that pqPutMsgEnd rounds its transmit request down to an even multiple of 8K, and sometimes that can lead to not requesting a write of data that was requested to be written (but reported as not written) earlier. That can upset pg_GSS_write's logic for dealing with not-yet-written data, since it's possible the data in question had already been incorporated into an encrypted packet that we weren't able to send during the previous call. We could fix this with a one-or-two-line hack to disable pqPutMsgEnd's round-down behavior, but that seems like making the caller work around a behavior that pg_GSS_write shouldn't expose in this way. Instead, adjust pg_GSS_write to never report a partial write: it either reports a complete write, or reflects the failure of the lower-level pqsecure_raw_write call. The requirement still exists for the caller to present at least as much data as on the previous call, but with the caller-visible write start point not moving there is no temptation for it to present less. We lose some ability to reclaim buffer space early, but I doubt that that will make much difference in practice. This also gets rid of a rather dubious assumption that "any interesting failure condition (from pqsecure_raw_write) will recur on the next try". We've not seen failure reports traceable to that, but I've never trusted it particularly and am glad to remove it. Make the same adjustments to the equivalent backend routine be_gssapi_write(). It is probable that there's no bug on the backend side, since we don't have a notion of nonblock mode there; but we should keep the logic the same to ease future maintenance. Per bug #18210 from Lars Kanis. Back-patch to all supported branches. Discussion: https://postgr.es/m/18210-4c6d0b14627f2eb8@postgresql.org
2 years ago
* For retryable errors, caller should call again (passing the same or more
* data) once the socket is ready.
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
*/
ssize_t
pg_GSS_write(PGconn *conn, const void *ptr, size_t len)
{
OM_uint32 major,
minor;
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
gss_buffer_desc input,
output = GSS_C_EMPTY_BUFFER;
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
ssize_t ret = -1;
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
size_t bytes_to_encrypt;
size_t bytes_encrypted;
gss_ctx_id_t gctx = conn->gctx;
/*
Fix timing-dependent failure in GSSAPI data transmission. When using GSSAPI encryption in non-blocking mode, libpq sometimes failed with "GSSAPI caller failed to retransmit all data needing to be retried". The cause is that pqPutMsgEnd rounds its transmit request down to an even multiple of 8K, and sometimes that can lead to not requesting a write of data that was requested to be written (but reported as not written) earlier. That can upset pg_GSS_write's logic for dealing with not-yet-written data, since it's possible the data in question had already been incorporated into an encrypted packet that we weren't able to send during the previous call. We could fix this with a one-or-two-line hack to disable pqPutMsgEnd's round-down behavior, but that seems like making the caller work around a behavior that pg_GSS_write shouldn't expose in this way. Instead, adjust pg_GSS_write to never report a partial write: it either reports a complete write, or reflects the failure of the lower-level pqsecure_raw_write call. The requirement still exists for the caller to present at least as much data as on the previous call, but with the caller-visible write start point not moving there is no temptation for it to present less. We lose some ability to reclaim buffer space early, but I doubt that that will make much difference in practice. This also gets rid of a rather dubious assumption that "any interesting failure condition (from pqsecure_raw_write) will recur on the next try". We've not seen failure reports traceable to that, but I've never trusted it particularly and am glad to remove it. Make the same adjustments to the equivalent backend routine be_gssapi_write(). It is probable that there's no bug on the backend side, since we don't have a notion of nonblock mode there; but we should keep the logic the same to ease future maintenance. Per bug #18210 from Lars Kanis. Back-patch to all supported branches. Discussion: https://postgr.es/m/18210-4c6d0b14627f2eb8@postgresql.org
2 years ago
* When we get a retryable failure, we must not tell the caller we have
* successfully transmitted everything, else it won't retry. For
* simplicity, we claim we haven't transmitted anything until we have
* successfully transmitted all "len" bytes. Between calls, the amount of
* the current input data that's already been encrypted and placed into
* PqGSSSendBuffer (and perhaps transmitted) is remembered in
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
* PqGSSSendConsumed. On a retry, the caller *must* be sending that data
* again, so if it offers a len less than that, something is wrong.
Fix timing-dependent failure in GSSAPI data transmission. When using GSSAPI encryption in non-blocking mode, libpq sometimes failed with "GSSAPI caller failed to retransmit all data needing to be retried". The cause is that pqPutMsgEnd rounds its transmit request down to an even multiple of 8K, and sometimes that can lead to not requesting a write of data that was requested to be written (but reported as not written) earlier. That can upset pg_GSS_write's logic for dealing with not-yet-written data, since it's possible the data in question had already been incorporated into an encrypted packet that we weren't able to send during the previous call. We could fix this with a one-or-two-line hack to disable pqPutMsgEnd's round-down behavior, but that seems like making the caller work around a behavior that pg_GSS_write shouldn't expose in this way. Instead, adjust pg_GSS_write to never report a partial write: it either reports a complete write, or reflects the failure of the lower-level pqsecure_raw_write call. The requirement still exists for the caller to present at least as much data as on the previous call, but with the caller-visible write start point not moving there is no temptation for it to present less. We lose some ability to reclaim buffer space early, but I doubt that that will make much difference in practice. This also gets rid of a rather dubious assumption that "any interesting failure condition (from pqsecure_raw_write) will recur on the next try". We've not seen failure reports traceable to that, but I've never trusted it particularly and am glad to remove it. Make the same adjustments to the equivalent backend routine be_gssapi_write(). It is probable that there's no bug on the backend side, since we don't have a notion of nonblock mode there; but we should keep the logic the same to ease future maintenance. Per bug #18210 from Lars Kanis. Back-patch to all supported branches. Discussion: https://postgr.es/m/18210-4c6d0b14627f2eb8@postgresql.org
2 years ago
*
* Note: it may seem attractive to report partial write completion once
* we've successfully sent any encrypted packets. However, that can cause
* problems for callers; notably, pqPutMsgEnd's heuristic to send only
* full 8K blocks interacts badly with such a hack. We won't save much,
* typically, by letting callers discard data early, so don't risk it.
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
*/
if (len < PqGSSSendConsumed)
{
In libpq, always append new error messages to conn->errorMessage. Previously, we had an undisciplined mish-mash of printfPQExpBuffer and appendPQExpBuffer calls to report errors within libpq. This commit establishes a uniform rule that appendPQExpBuffer[Str] should be used. conn->errorMessage is reset only at the start of an application request, and then accumulates messages till we're done. We can remove no less than three different ad-hoc mechanisms that were used to get the effect of concatenation of error messages within a sequence of operations. Although this makes things quite a bit cleaner conceptually, the main reason to do it is to make the world safer for the multiple-target-host feature that was added awhile back. Previously, there were many cases in which an error occurring during an individual host connection attempt would wipe out the record of what had happened during previous attempts. (The reporting is still inadequate, in that it can be hard to tell which host got the failure, but that seems like a matter for a separate commit.) Currently, lo_import and lo_export contain exceptions to the "never use printfPQExpBuffer" rule. If we changed them, we'd risk reporting an incidental lo_close failure before the actual read or write failure, which would be confusing, not least because lo_close happened after the main failure. We could improve this by inventing an internal version of lo_close that doesn't reset the errorMessage; but we'd also need a version of PQfn() that does that, and it didn't quite seem worth the trouble for now. Discussion: https://postgr.es/m/BN6PR05MB3492948E4FD76C156E747E8BC9160@BN6PR05MB3492.namprd05.prod.outlook.com
5 years ago
appendPQExpBufferStr(&conn->errorMessage,
"GSSAPI caller failed to retransmit all data needing to be retried\n");
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
errno = EINVAL;
return -1;
}
/* Discount whatever source data we already encrypted. */
bytes_to_encrypt = len - PqGSSSendConsumed;
bytes_encrypted = PqGSSSendConsumed;
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
/*
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
* Loop through encrypting data and sending it out until it's all done or
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
* pqsecure_raw_write() complains (which would likely mean that the socket
* is non-blocking and the requested send() would block, or there was some
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
* kind of actual error).
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
*/
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
while (bytes_to_encrypt || PqGSSSendLength)
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
{
int conf_state = 0;
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
uint32 netlen;
/*
* Check if we have data in the encrypted output buffer that needs to
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
* be sent (possibly left over from a previous call), and if so, try
* to send it. If we aren't able to, return that fact back up to the
* caller.
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
*/
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
if (PqGSSSendLength)
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
{
ssize_t retval;
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
ssize_t amount = PqGSSSendLength - PqGSSSendNext;
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
retval = pqsecure_raw_write(conn, PqGSSSendBuffer + PqGSSSendNext, amount);
if (retval <= 0)
return retval;
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
/*
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
* Check if this was a partial write, and if so, move forward that
* far in our buffer and try again.
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
*/
Fix timing-dependent failure in GSSAPI data transmission. When using GSSAPI encryption in non-blocking mode, libpq sometimes failed with "GSSAPI caller failed to retransmit all data needing to be retried". The cause is that pqPutMsgEnd rounds its transmit request down to an even multiple of 8K, and sometimes that can lead to not requesting a write of data that was requested to be written (but reported as not written) earlier. That can upset pg_GSS_write's logic for dealing with not-yet-written data, since it's possible the data in question had already been incorporated into an encrypted packet that we weren't able to send during the previous call. We could fix this with a one-or-two-line hack to disable pqPutMsgEnd's round-down behavior, but that seems like making the caller work around a behavior that pg_GSS_write shouldn't expose in this way. Instead, adjust pg_GSS_write to never report a partial write: it either reports a complete write, or reflects the failure of the lower-level pqsecure_raw_write call. The requirement still exists for the caller to present at least as much data as on the previous call, but with the caller-visible write start point not moving there is no temptation for it to present less. We lose some ability to reclaim buffer space early, but I doubt that that will make much difference in practice. This also gets rid of a rather dubious assumption that "any interesting failure condition (from pqsecure_raw_write) will recur on the next try". We've not seen failure reports traceable to that, but I've never trusted it particularly and am glad to remove it. Make the same adjustments to the equivalent backend routine be_gssapi_write(). It is probable that there's no bug on the backend side, since we don't have a notion of nonblock mode there; but we should keep the logic the same to ease future maintenance. Per bug #18210 from Lars Kanis. Back-patch to all supported branches. Discussion: https://postgr.es/m/18210-4c6d0b14627f2eb8@postgresql.org
2 years ago
if (retval < amount)
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
{
PqGSSSendNext += retval;
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
continue;
}
Fix timing-dependent failure in GSSAPI data transmission. When using GSSAPI encryption in non-blocking mode, libpq sometimes failed with "GSSAPI caller failed to retransmit all data needing to be retried". The cause is that pqPutMsgEnd rounds its transmit request down to an even multiple of 8K, and sometimes that can lead to not requesting a write of data that was requested to be written (but reported as not written) earlier. That can upset pg_GSS_write's logic for dealing with not-yet-written data, since it's possible the data in question had already been incorporated into an encrypted packet that we weren't able to send during the previous call. We could fix this with a one-or-two-line hack to disable pqPutMsgEnd's round-down behavior, but that seems like making the caller work around a behavior that pg_GSS_write shouldn't expose in this way. Instead, adjust pg_GSS_write to never report a partial write: it either reports a complete write, or reflects the failure of the lower-level pqsecure_raw_write call. The requirement still exists for the caller to present at least as much data as on the previous call, but with the caller-visible write start point not moving there is no temptation for it to present less. We lose some ability to reclaim buffer space early, but I doubt that that will make much difference in practice. This also gets rid of a rather dubious assumption that "any interesting failure condition (from pqsecure_raw_write) will recur on the next try". We've not seen failure reports traceable to that, but I've never trusted it particularly and am glad to remove it. Make the same adjustments to the equivalent backend routine be_gssapi_write(). It is probable that there's no bug on the backend side, since we don't have a notion of nonblock mode there; but we should keep the logic the same to ease future maintenance. Per bug #18210 from Lars Kanis. Back-patch to all supported branches. Discussion: https://postgr.es/m/18210-4c6d0b14627f2eb8@postgresql.org
2 years ago
/* We've successfully sent whatever data was in the buffer. */
PqGSSSendLength = PqGSSSendNext = 0;
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
}
/*
* Check if there are any bytes left to encrypt. If not, we're done.
*/
if (!bytes_to_encrypt)
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
break;
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
/*
* Check how much we are being asked to send, if it's too much, then
* we will have to loop and possibly be called multiple times to get
* through all the data.
*/
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
if (bytes_to_encrypt > PqGSSMaxPktSize)
input.length = PqGSSMaxPktSize;
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
else
input.length = bytes_to_encrypt;
input.value = (char *) ptr + bytes_encrypted;
output.value = NULL;
output.length = 0;
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
/*
* Create the next encrypted packet. Any failure here is considered a
Fix timing-dependent failure in GSSAPI data transmission. When using GSSAPI encryption in non-blocking mode, libpq sometimes failed with "GSSAPI caller failed to retransmit all data needing to be retried". The cause is that pqPutMsgEnd rounds its transmit request down to an even multiple of 8K, and sometimes that can lead to not requesting a write of data that was requested to be written (but reported as not written) earlier. That can upset pg_GSS_write's logic for dealing with not-yet-written data, since it's possible the data in question had already been incorporated into an encrypted packet that we weren't able to send during the previous call. We could fix this with a one-or-two-line hack to disable pqPutMsgEnd's round-down behavior, but that seems like making the caller work around a behavior that pg_GSS_write shouldn't expose in this way. Instead, adjust pg_GSS_write to never report a partial write: it either reports a complete write, or reflects the failure of the lower-level pqsecure_raw_write call. The requirement still exists for the caller to present at least as much data as on the previous call, but with the caller-visible write start point not moving there is no temptation for it to present less. We lose some ability to reclaim buffer space early, but I doubt that that will make much difference in practice. This also gets rid of a rather dubious assumption that "any interesting failure condition (from pqsecure_raw_write) will recur on the next try". We've not seen failure reports traceable to that, but I've never trusted it particularly and am glad to remove it. Make the same adjustments to the equivalent backend routine be_gssapi_write(). It is probable that there's no bug on the backend side, since we don't have a notion of nonblock mode there; but we should keep the logic the same to ease future maintenance. Per bug #18210 from Lars Kanis. Back-patch to all supported branches. Discussion: https://postgr.es/m/18210-4c6d0b14627f2eb8@postgresql.org
2 years ago
* hard failure, so we return -1 even if some data has been sent.
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
*/
major = gss_wrap(&minor, gctx, 1, GSS_C_QOP_DEFAULT,
&input, &conf_state, &output);
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
if (major != GSS_S_COMPLETE)
{
pg_GSS_error(libpq_gettext("GSSAPI wrap error"), conn, major, minor);
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
errno = EIO; /* for lack of a better idea */
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
goto cleanup;
}
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
if (conf_state == 0)
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
{
libpq_append_conn_error(conn, "outgoing GSSAPI message would not use confidentiality");
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
errno = EIO; /* for lack of a better idea */
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
goto cleanup;
}
if (output.length > PQ_GSS_SEND_BUFFER_SIZE - sizeof(uint32))
{
libpq_append_conn_error(conn, "client tried to send oversize GSSAPI packet (%zu > %zu)",
(size_t) output.length,
PQ_GSS_SEND_BUFFER_SIZE - sizeof(uint32));
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
errno = EIO; /* for lack of a better idea */
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
goto cleanup;
}
bytes_encrypted += input.length;
bytes_to_encrypt -= input.length;
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
PqGSSSendConsumed += input.length;
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
/* 4 network-order bytes of length, then payload */
netlen = pg_hton32(output.length);
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
memcpy(PqGSSSendBuffer + PqGSSSendLength, &netlen, sizeof(uint32));
PqGSSSendLength += sizeof(uint32);
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
memcpy(PqGSSSendBuffer + PqGSSSendLength, output.value, output.length);
PqGSSSendLength += output.length;
/* Release buffer storage allocated by GSSAPI */
gss_release_buffer(&minor, &output);
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
}
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
/* If we get here, our counters should all match up. */
Fix timing-dependent failure in GSSAPI data transmission. When using GSSAPI encryption in non-blocking mode, libpq sometimes failed with "GSSAPI caller failed to retransmit all data needing to be retried". The cause is that pqPutMsgEnd rounds its transmit request down to an even multiple of 8K, and sometimes that can lead to not requesting a write of data that was requested to be written (but reported as not written) earlier. That can upset pg_GSS_write's logic for dealing with not-yet-written data, since it's possible the data in question had already been incorporated into an encrypted packet that we weren't able to send during the previous call. We could fix this with a one-or-two-line hack to disable pqPutMsgEnd's round-down behavior, but that seems like making the caller work around a behavior that pg_GSS_write shouldn't expose in this way. Instead, adjust pg_GSS_write to never report a partial write: it either reports a complete write, or reflects the failure of the lower-level pqsecure_raw_write call. The requirement still exists for the caller to present at least as much data as on the previous call, but with the caller-visible write start point not moving there is no temptation for it to present less. We lose some ability to reclaim buffer space early, but I doubt that that will make much difference in practice. This also gets rid of a rather dubious assumption that "any interesting failure condition (from pqsecure_raw_write) will recur on the next try". We've not seen failure reports traceable to that, but I've never trusted it particularly and am glad to remove it. Make the same adjustments to the equivalent backend routine be_gssapi_write(). It is probable that there's no bug on the backend side, since we don't have a notion of nonblock mode there; but we should keep the logic the same to ease future maintenance. Per bug #18210 from Lars Kanis. Back-patch to all supported branches. Discussion: https://postgr.es/m/18210-4c6d0b14627f2eb8@postgresql.org
2 years ago
Assert(len == PqGSSSendConsumed);
Assert(len == bytes_encrypted);
/* We're reporting all the data as sent, so reset PqGSSSendConsumed. */
PqGSSSendConsumed = 0;
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
Fix timing-dependent failure in GSSAPI data transmission. When using GSSAPI encryption in non-blocking mode, libpq sometimes failed with "GSSAPI caller failed to retransmit all data needing to be retried". The cause is that pqPutMsgEnd rounds its transmit request down to an even multiple of 8K, and sometimes that can lead to not requesting a write of data that was requested to be written (but reported as not written) earlier. That can upset pg_GSS_write's logic for dealing with not-yet-written data, since it's possible the data in question had already been incorporated into an encrypted packet that we weren't able to send during the previous call. We could fix this with a one-or-two-line hack to disable pqPutMsgEnd's round-down behavior, but that seems like making the caller work around a behavior that pg_GSS_write shouldn't expose in this way. Instead, adjust pg_GSS_write to never report a partial write: it either reports a complete write, or reflects the failure of the lower-level pqsecure_raw_write call. The requirement still exists for the caller to present at least as much data as on the previous call, but with the caller-visible write start point not moving there is no temptation for it to present less. We lose some ability to reclaim buffer space early, but I doubt that that will make much difference in practice. This also gets rid of a rather dubious assumption that "any interesting failure condition (from pqsecure_raw_write) will recur on the next try". We've not seen failure reports traceable to that, but I've never trusted it particularly and am glad to remove it. Make the same adjustments to the equivalent backend routine be_gssapi_write(). It is probable that there's no bug on the backend side, since we don't have a notion of nonblock mode there; but we should keep the logic the same to ease future maintenance. Per bug #18210 from Lars Kanis. Back-patch to all supported branches. Discussion: https://postgr.es/m/18210-4c6d0b14627f2eb8@postgresql.org
2 years ago
ret = bytes_encrypted;
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
cleanup:
/* Release GSSAPI buffer storage, if we didn't already */
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
if (output.value != NULL)
gss_release_buffer(&minor, &output);
return ret;
}
/*
* Read up to len bytes of data into ptr from a GSSAPI-encrypted connection.
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
*
* The connection must be already set up for GSSAPI encryption (i.e., GSSAPI
* transport negotiation is complete).
*
* Returns the number of data bytes read, or on failure, returns -1
* with errno set appropriately. If the errno indicates a non-retryable
In libpq, always append new error messages to conn->errorMessage. Previously, we had an undisciplined mish-mash of printfPQExpBuffer and appendPQExpBuffer calls to report errors within libpq. This commit establishes a uniform rule that appendPQExpBuffer[Str] should be used. conn->errorMessage is reset only at the start of an application request, and then accumulates messages till we're done. We can remove no less than three different ad-hoc mechanisms that were used to get the effect of concatenation of error messages within a sequence of operations. Although this makes things quite a bit cleaner conceptually, the main reason to do it is to make the world safer for the multiple-target-host feature that was added awhile back. Previously, there were many cases in which an error occurring during an individual host connection attempt would wipe out the record of what had happened during previous attempts. (The reporting is still inadequate, in that it can be hard to tell which host got the failure, but that seems like a matter for a separate commit.) Currently, lo_import and lo_export contain exceptions to the "never use printfPQExpBuffer" rule. If we changed them, we'd risk reporting an incidental lo_close failure before the actual read or write failure, which would be confusing, not least because lo_close happened after the main failure. We could improve this by inventing an internal version of lo_close that doesn't reset the errorMessage; but we'd also need a version of PQfn() that does that, and it didn't quite seem worth the trouble for now. Discussion: https://postgr.es/m/BN6PR05MB3492948E4FD76C156E747E8BC9160@BN6PR05MB3492.namprd05.prod.outlook.com
5 years ago
* error, a message is added to conn->errorMessage. For retryable errors,
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
* caller should call again once the socket is ready.
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
*/
ssize_t
pg_GSS_read(PGconn *conn, void *ptr, size_t len)
{
OM_uint32 major,
minor;
gss_buffer_desc input = GSS_C_EMPTY_BUFFER,
output = GSS_C_EMPTY_BUFFER;
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
ssize_t ret;
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
size_t bytes_returned = 0;
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
gss_ctx_id_t gctx = conn->gctx;
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
/*
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
* The plan here is to read one incoming encrypted packet into
* PqGSSRecvBuffer, decrypt it into PqGSSResultBuffer, and then dole out
* data from there to the caller. When we exhaust the current input
* packet, read another.
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
*/
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
while (bytes_returned < len)
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
{
int conf_state = 0;
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
/* Check if we have data in our buffer that we can return immediately */
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
if (PqGSSResultNext < PqGSSResultLength)
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
{
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
size_t bytes_in_buffer = PqGSSResultLength - PqGSSResultNext;
size_t bytes_to_copy = Min(bytes_in_buffer, len - bytes_returned);
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
/*
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
* Copy the data from our result buffer into the caller's buffer,
* at the point where we last left off filling their buffer.
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
*/
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
memcpy((char *) ptr + bytes_returned, PqGSSResultBuffer + PqGSSResultNext, bytes_to_copy);
PqGSSResultNext += bytes_to_copy;
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
bytes_returned += bytes_to_copy;
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
/*
* At this point, we've either filled the caller's buffer or
* emptied our result buffer. Either way, return to caller. In
* the second case, we could try to read another encrypted packet,
* but the odds are good that there isn't one available. (If this
* isn't true, we chose too small a max packet size.) In any
* case, there's no harm letting the caller process the data we've
* already returned.
*/
break;
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
}
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
/* Result buffer is empty, so reset buffer pointers */
PqGSSResultLength = PqGSSResultNext = 0;
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
/*
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
* Because we chose above to return immediately as soon as we emit
* some data, bytes_returned must be zero at this point. Therefore
* the failure exits below can just return -1 without worrying about
* whether we already emitted some data.
*/
Assert(bytes_returned == 0);
/*
* At this point, our result buffer is empty with more bytes being
* requested to be read. We are now ready to load the next packet and
* decrypt it (entirely) into our result buffer.
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
*/
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
/* Collect the length if we haven't already */
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
if (PqGSSRecvLength < sizeof(uint32))
{
ret = pqsecure_raw_read(conn, PqGSSRecvBuffer + PqGSSRecvLength,
sizeof(uint32) - PqGSSRecvLength);
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
/* If ret <= 0, pqsecure_raw_read already set the correct errno */
if (ret <= 0)
return ret;
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
PqGSSRecvLength += ret;
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
/* If we still haven't got the length, return to the caller */
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
if (PqGSSRecvLength < sizeof(uint32))
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
{
errno = EWOULDBLOCK;
return -1;
}
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
}
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
/* Decode the packet length and check for overlength packet */
input.length = pg_ntoh32(*(uint32 *) PqGSSRecvBuffer);
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
if (input.length > PQ_GSS_RECV_BUFFER_SIZE - sizeof(uint32))
{
libpq_append_conn_error(conn, "oversize GSSAPI packet sent by the server (%zu > %zu)",
(size_t) input.length,
PQ_GSS_RECV_BUFFER_SIZE - sizeof(uint32));
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
errno = EIO; /* for lack of a better idea */
return -1;
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
}
/*
* Read as much of the packet as we are able to on this call into
* wherever we left off from the last time we were called.
*/
ret = pqsecure_raw_read(conn, PqGSSRecvBuffer + PqGSSRecvLength,
input.length - (PqGSSRecvLength - sizeof(uint32)));
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
/* If ret <= 0, pqsecure_raw_read already set the correct errno */
if (ret <= 0)
return ret;
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
PqGSSRecvLength += ret;
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
/* If we don't yet have the whole packet, return to the caller */
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
if (PqGSSRecvLength - sizeof(uint32) < input.length)
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
{
errno = EWOULDBLOCK;
return -1;
}
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
/*
* We now have the full packet and we can perform the decryption and
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
* refill our result buffer, then loop back up to pass data back to
* the caller. Note that error exits below here must take care of
* releasing the gss output buffer.
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
*/
output.value = NULL;
output.length = 0;
input.value = PqGSSRecvBuffer + sizeof(uint32);
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
major = gss_unwrap(&minor, gctx, &input, &output, &conf_state, NULL);
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
if (major != GSS_S_COMPLETE)
{
pg_GSS_error(libpq_gettext("GSSAPI unwrap error"), conn,
major, minor);
ret = -1;
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
errno = EIO; /* for lack of a better idea */
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
goto cleanup;
}
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
if (conf_state == 0)
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
{
libpq_append_conn_error(conn, "incoming GSSAPI message did not use confidentiality");
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
ret = -1;
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
errno = EIO; /* for lack of a better idea */
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
goto cleanup;
}
memcpy(PqGSSResultBuffer, output.value, output.length);
PqGSSResultLength = output.length;
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
/* Our receive buffer is now empty, reset it */
PqGSSRecvLength = 0;
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
/* Release buffer storage allocated by GSSAPI */
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
gss_release_buffer(&minor, &output);
}
ret = bytes_returned;
cleanup:
/* Release GSSAPI buffer storage, if we didn't already */
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
if (output.value != NULL)
gss_release_buffer(&minor, &output);
return ret;
}
/*
* Simple wrapper for reading from pqsecure_raw_read.
*
* This takes the same arguments as pqsecure_raw_read, plus an output parameter
* to return the number of bytes read. This handles if blocking would occur and
* if we detect EOF on the connection.
*/
static PostgresPollingStatusType
gss_read(PGconn *conn, void *recv_buffer, size_t length, ssize_t *ret)
{
*ret = pqsecure_raw_read(conn, recv_buffer, length);
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
if (*ret < 0)
{
if (errno == EAGAIN || errno == EWOULDBLOCK || errno == EINTR)
return PGRES_POLLING_READING;
else
return PGRES_POLLING_FAILED;
}
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
/* Check for EOF */
if (*ret == 0)
{
int result = pqReadReady(conn);
if (result < 0)
return PGRES_POLLING_FAILED;
if (!result)
return PGRES_POLLING_READING;
*ret = pqsecure_raw_read(conn, recv_buffer, length);
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
if (*ret < 0)
{
if (errno == EAGAIN || errno == EWOULDBLOCK || errno == EINTR)
return PGRES_POLLING_READING;
else
return PGRES_POLLING_FAILED;
}
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
if (*ret == 0)
return PGRES_POLLING_FAILED;
}
return PGRES_POLLING_OK;
}
/*
* Negotiate GSSAPI transport for a connection. When complete, returns
* PGRES_POLLING_OK. Will return PGRES_POLLING_READING or
* PGRES_POLLING_WRITING as appropriate whenever it would block, and
* PGRES_POLLING_FAILED if transport could not be negotiated.
*/
PostgresPollingStatusType
pqsecure_open_gss(PGconn *conn)
{
ssize_t ret;
OM_uint32 major,
minor,
gss_flags = GSS_REQUIRED_FLAGS;
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
uint32 netlen;
PostgresPollingStatusType result;
gss_buffer_desc input = GSS_C_EMPTY_BUFFER,
output = GSS_C_EMPTY_BUFFER;
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
/*
* If first time through for this connection, allocate buffers and
* initialize state variables. By malloc'ing the buffers separately, we
* ensure that they are sufficiently aligned for the length-word accesses
* that we do in some places in this file.
*/
if (PqGSSSendBuffer == NULL)
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
{
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
PqGSSSendBuffer = malloc(PQ_GSS_SEND_BUFFER_SIZE);
PqGSSRecvBuffer = malloc(PQ_GSS_RECV_BUFFER_SIZE);
PqGSSResultBuffer = malloc(PQ_GSS_RECV_BUFFER_SIZE);
if (!PqGSSSendBuffer || !PqGSSRecvBuffer || !PqGSSResultBuffer)
{
libpq_append_conn_error(conn, "out of memory");
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
return PGRES_POLLING_FAILED;
}
PqGSSSendLength = PqGSSSendNext = PqGSSSendConsumed = 0;
PqGSSRecvLength = PqGSSResultLength = PqGSSResultNext = 0;
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
}
/*
* Check if we have anything to send from a prior call and if so, send it.
*/
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
if (PqGSSSendLength)
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
{
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
ssize_t amount = PqGSSSendLength - PqGSSSendNext;
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
ret = pqsecure_raw_write(conn, PqGSSSendBuffer + PqGSSSendNext, amount);
if (ret < 0)
{
if (errno == EAGAIN || errno == EWOULDBLOCK || errno == EINTR)
return PGRES_POLLING_WRITING;
else
return PGRES_POLLING_FAILED;
}
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
if (ret < amount)
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
{
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
PqGSSSendNext += ret;
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
return PGRES_POLLING_WRITING;
}
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
PqGSSSendLength = PqGSSSendNext = 0;
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
}
/*
* Client sends first, and sending creates a context, therefore this will
* be false the first time through, and then when we get called again we
* will check for incoming data.
*/
if (conn->gctx)
{
/* Process any incoming data we might have */
/* See if we are still trying to get the length */
if (PqGSSRecvLength < sizeof(uint32))
{
/* Attempt to get the length first */
result = gss_read(conn, PqGSSRecvBuffer + PqGSSRecvLength, sizeof(uint32) - PqGSSRecvLength, &ret);
if (result != PGRES_POLLING_OK)
return result;
PqGSSRecvLength += ret;
if (PqGSSRecvLength < sizeof(uint32))
return PGRES_POLLING_READING;
}
/*
* Check if we got an error packet
*
* This is safe to do because we shouldn't ever get a packet over 8192
* and therefore the actual length bytes, being that they are in
* network byte order, for any real packet will start with two zero
* bytes.
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
*/
if (PqGSSRecvBuffer[0] == 'E')
{
/*
* For an error packet during startup, we don't get a length, so
* simply read as much as we can fit into our buffer (as a string,
* so leave a spot at the end for a NULL byte too) and report that
* back to the caller.
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
*/
result = gss_read(conn, PqGSSRecvBuffer + PqGSSRecvLength, PQ_GSS_RECV_BUFFER_SIZE - PqGSSRecvLength - 1, &ret);
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
if (result != PGRES_POLLING_OK)
return result;
PqGSSRecvLength += ret;
Assert(PqGSSRecvLength < PQ_GSS_RECV_BUFFER_SIZE);
PqGSSRecvBuffer[PqGSSRecvLength] = '\0';
In libpq, always append new error messages to conn->errorMessage. Previously, we had an undisciplined mish-mash of printfPQExpBuffer and appendPQExpBuffer calls to report errors within libpq. This commit establishes a uniform rule that appendPQExpBuffer[Str] should be used. conn->errorMessage is reset only at the start of an application request, and then accumulates messages till we're done. We can remove no less than three different ad-hoc mechanisms that were used to get the effect of concatenation of error messages within a sequence of operations. Although this makes things quite a bit cleaner conceptually, the main reason to do it is to make the world safer for the multiple-target-host feature that was added awhile back. Previously, there were many cases in which an error occurring during an individual host connection attempt would wipe out the record of what had happened during previous attempts. (The reporting is still inadequate, in that it can be hard to tell which host got the failure, but that seems like a matter for a separate commit.) Currently, lo_import and lo_export contain exceptions to the "never use printfPQExpBuffer" rule. If we changed them, we'd risk reporting an incidental lo_close failure before the actual read or write failure, which would be confusing, not least because lo_close happened after the main failure. We could improve this by inventing an internal version of lo_close that doesn't reset the errorMessage; but we'd also need a version of PQfn() that does that, and it didn't quite seem worth the trouble for now. Discussion: https://postgr.es/m/BN6PR05MB3492948E4FD76C156E747E8BC9160@BN6PR05MB3492.namprd05.prod.outlook.com
5 years ago
appendPQExpBuffer(&conn->errorMessage, "%s\n", PqGSSRecvBuffer + 1);
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
return PGRES_POLLING_FAILED;
}
/*
* We should have the whole length at this point, so pull it out and
* then read whatever we have left of the packet
*/
/* Get the length and check for over-length packet */
input.length = pg_ntoh32(*(uint32 *) PqGSSRecvBuffer);
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
if (input.length > PQ_GSS_RECV_BUFFER_SIZE - sizeof(uint32))
{
libpq_append_conn_error(conn, "oversize GSSAPI packet sent by the server (%zu > %zu)",
(size_t) input.length,
PQ_GSS_RECV_BUFFER_SIZE - sizeof(uint32));
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
return PGRES_POLLING_FAILED;
}
/*
* Read as much of the packet as we are able to on this call into
* wherever we left off from the last time we were called.
*/
result = gss_read(conn, PqGSSRecvBuffer + PqGSSRecvLength,
input.length - (PqGSSRecvLength - sizeof(uint32)), &ret);
if (result != PGRES_POLLING_OK)
return result;
PqGSSRecvLength += ret;
/*
* If we got less than the rest of the packet then we need to return
* and be called again.
*/
if (PqGSSRecvLength - sizeof(uint32) < input.length)
return PGRES_POLLING_READING;
input.value = PqGSSRecvBuffer + sizeof(uint32);
}
/* Load the service name (no-op if already done */
ret = pg_GSS_load_servicename(conn);
if (ret != STATUS_OK)
return PGRES_POLLING_FAILED;
if (conn->gssdelegation && conn->gssdelegation[0] == '1')
{
/* Acquire credentials if possible */
if (conn->gcred == GSS_C_NO_CREDENTIAL)
(void) pg_GSS_have_cred_cache(&conn->gcred);
/*
* We have credentials and gssdelegation is enabled, so request
* credential delegation. This may or may not actually result in
* credentials being delegated- it depends on if the forwardable flag
* has been set in the credential and if the server is configured to
* accept delegated credentials.
*/
if (conn->gcred != GSS_C_NO_CREDENTIAL)
gss_flags |= GSS_C_DELEG_FLAG;
}
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
/*
* Call GSS init context, either with an empty input, or with a complete
* packet from the server.
*/
major = gss_init_sec_context(&minor, conn->gcred, &conn->gctx,
conn->gtarg_nam, GSS_C_NO_OID,
gss_flags, 0, 0, &input, NULL,
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
&output, NULL, NULL);
/* GSS Init Sec Context uses the whole packet, so clear it */
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
PqGSSRecvLength = 0;
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
if (GSS_ERROR(major))
{
pg_GSS_error(libpq_gettext("could not initiate GSSAPI security context"),
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
conn, major, minor);
return PGRES_POLLING_FAILED;
}
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
if (output.length == 0)
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
{
/*
Fix bugs in libpq's GSSAPI encryption support. The critical issue fixed here is that if a GSSAPI-encrypted connection is successfully made, pqsecure_open_gss() cleared conn->allow_ssl_try, as an admittedly-hacky way of preventing us from then trying to tunnel SSL encryption over the already-encrypted connection. The problem with that is that if we abandon the GSSAPI connection because of a failure during authentication, we would not attempt SSL encryption in the next try with the same server. This can lead to unexpected connection failure, or silently getting a non-encrypted connection where an encrypted one is expected. Fortunately, we'd only manage to make a GSSAPI-encrypted connection if both client and server hold valid tickets in the same Kerberos infrastructure, which is a relatively uncommon environment. Nonetheless this is a very nasty bug with potential security consequences. To fix, don't reset the flag, instead adding a check for conn->gssenc being already true when deciding whether to try to initiate SSL. While here, fix some lesser issues in libpq's GSSAPI code: * Use the need_new_connection stanza when dropping an attempted GSSAPI connection, instead of partially duplicating that code. The consequences of this are pretty minor: AFAICS it could only lead to auth_req_received or password_needed remaining set when they shouldn't, which is not too harmful. * Fix pg_GSS_error() to not repeat the "mprefix" it's given multiple times, and to notice any failure return from gss_display_status(). * Avoid gratuitous dependency on NI_MAXHOST in pg_GSS_load_servicename(). Per report from Mikael Gustavsson. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/e5b0b6ed05764324a2f3fe7acfc766d5@smhi.se
5 years ago
* We're done - hooray! Set flag to tell the low-level I/O routines
* to do GSS wrapping/unwrapping.
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
*/
Fix bugs in libpq's GSSAPI encryption support. The critical issue fixed here is that if a GSSAPI-encrypted connection is successfully made, pqsecure_open_gss() cleared conn->allow_ssl_try, as an admittedly-hacky way of preventing us from then trying to tunnel SSL encryption over the already-encrypted connection. The problem with that is that if we abandon the GSSAPI connection because of a failure during authentication, we would not attempt SSL encryption in the next try with the same server. This can lead to unexpected connection failure, or silently getting a non-encrypted connection where an encrypted one is expected. Fortunately, we'd only manage to make a GSSAPI-encrypted connection if both client and server hold valid tickets in the same Kerberos infrastructure, which is a relatively uncommon environment. Nonetheless this is a very nasty bug with potential security consequences. To fix, don't reset the flag, instead adding a check for conn->gssenc being already true when deciding whether to try to initiate SSL. While here, fix some lesser issues in libpq's GSSAPI code: * Use the need_new_connection stanza when dropping an attempted GSSAPI connection, instead of partially duplicating that code. The consequences of this are pretty minor: AFAICS it could only lead to auth_req_received or password_needed remaining set when they shouldn't, which is not too harmful. * Fix pg_GSS_error() to not repeat the "mprefix" it's given multiple times, and to notice any failure return from gss_display_status(). * Avoid gratuitous dependency on NI_MAXHOST in pg_GSS_load_servicename(). Per report from Mikael Gustavsson. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/e5b0b6ed05764324a2f3fe7acfc766d5@smhi.se
5 years ago
conn->gssenc = true;
conn->gssapi_used = true;
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
/* Clean up */
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
gss_release_cred(&minor, &conn->gcred);
conn->gcred = GSS_C_NO_CREDENTIAL;
gss_release_buffer(&minor, &output);
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
/*
* Determine the max packet size which will fit in our buffer, after
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
* accounting for the length. pg_GSS_write will need this.
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
*/
major = gss_wrap_size_limit(&minor, conn->gctx, 1, GSS_C_QOP_DEFAULT,
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
PQ_GSS_SEND_BUFFER_SIZE - sizeof(uint32),
&PqGSSMaxPktSize);
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
if (GSS_ERROR(major))
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
{
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
pg_GSS_error(libpq_gettext("GSSAPI size check error"), conn,
major, minor);
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
return PGRES_POLLING_FAILED;
}
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
return PGRES_POLLING_OK;
}
/* Must have output.length > 0 */
if (output.length > PQ_GSS_SEND_BUFFER_SIZE - sizeof(uint32))
{
pg_GSS_error(libpq_gettext("GSSAPI context establishment error"),
conn, major, minor);
gss_release_buffer(&minor, &output);
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
return PGRES_POLLING_FAILED;
}
/* Queue the token for writing */
netlen = pg_hton32(output.length);
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
memcpy(PqGSSSendBuffer, (char *) &netlen, sizeof(uint32));
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
PqGSSSendLength += sizeof(uint32);
memcpy(PqGSSSendBuffer + PqGSSSendLength, output.value, output.length);
PqGSSSendLength += output.length;
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
/* We don't bother with PqGSSSendConsumed here */
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
/* Release buffer storage allocated by GSSAPI */
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
gss_release_buffer(&minor, &output);
Extensive code review for GSSAPI encryption mechanism. Fix assorted bugs in handling of non-blocking I/O when using GSSAPI encryption. The encryption layer could return the wrong status information to its caller, resulting in effectively dropping some data (or possibly in aborting a not-broken connection), or in a "livelock" situation where data remains to be sent but the upper layers think transmission is done and just go to sleep. There were multiple small thinkos contributing to that, as well as one big one (failure to think through what to do when a send fails after having already transmitted data). Note that these errors could cause failures whether the client application asked for non-blocking I/O or not, since both libpq and the backend always run things in non-block mode at this level. Also get rid of use of static variables for GSSAPI inside libpq; that's entirely not okay given that multiple connections could be open at once inside a single client process. Also adjust a bunch of random small discrepancies between the frontend and backend versions of the send/receive functions -- except for error handling, they should be identical, and now they are. Also extend the Kerberos TAP tests to exercise cases where nontrivial amounts of data need to be pushed through encryption. Before, those tests didn't provide any useful coverage at all for the cases of interest here. (They still might not, depending on timing, but at least there's a chance.) Per complaint from pmc@citylink and subsequent investigation. Back-patch to v12 where this code was introduced. Discussion: https://postgr.es/m/20200109181822.GA74698@gate.oper.dinoex.org
6 years ago
/* Ask to be called again to write data */
GSSAPI encryption support On both the frontend and backend, prepare for GSSAPI encryption support by moving common code for error handling into a separate file. Fix a TODO for handling multiple status messages in the process. Eliminate the OIDs, which have not been needed for some time. Add frontend and backend encryption support functions. Keep the context initiation for authentication-only separate on both the frontend and backend in order to avoid concerns about changing the requested flags to include encryption support. In postmaster, pull GSSAPI authorization checking into a shared function. Also share the initiator name between the encryption and non-encryption codepaths. For HBA, add "hostgssenc" and "hostnogssenc" entries that behave similarly to their SSL counterparts. "hostgssenc" requires either "gss", "trust", or "reject" for its authentication. Similarly, add a "gssencmode" parameter to libpq. Supported values are "disable", "require", and "prefer". Notably, negotiation will only be attempted if credentials can be acquired. Move credential acquisition into its own function to support this behavior. Add a simple pg_stat_gssapi view similar to pg_stat_ssl, for monitoring if GSSAPI authentication was used, what principal was used, and if encryption is being used on the connection. Finally, add documentation for everything new, and update existing documentation on connection security. Thanks to Michael Paquier for the Windows fixes. Author: Robbie Harwood, with changes to the read/write functions by me. Reviewed in various forms and at different times by: Michael Paquier, Andres Freund, David Steele. Discussion: https://www.postgresql.org/message-id/flat/jlg1tgq1ktm.fsf@thriss.redhat.com
7 years ago
return PGRES_POLLING_WRITING;
}
/*
* GSSAPI Information functions.
*/
/*
* Return the GSSAPI Context itself.
*/
void *
PQgetgssctx(PGconn *conn)
{
if (!conn)
return NULL;
return conn->gctx;
}
/*
* Return true if GSSAPI encryption is in use.
*/
int
PQgssEncInUse(PGconn *conn)
{
if (!conn || !conn->gctx)
return 0;
return conn->gssenc;
}