You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
postgres/src/include/optimizer/prep.h

53 lines
1.4 KiB

/*-------------------------------------------------------------------------
*
* prep.h
* prototypes for files in optimizer/prep/
*
*
* Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* src/include/optimizer/prep.h
*
*-------------------------------------------------------------------------
*/
#ifndef PREP_H
#define PREP_H
27 years ago
#include "nodes/plannodes.h"
#include "nodes/relation.h"
/*
* prototypes for prepjointree.c
*/
In the planner, replace an empty FROM clause with a dummy RTE. The fact that "SELECT expression" has no base relations has long been a thorn in the side of the planner. It makes it hard to flatten a sub-query that looks like that, or is a trivial VALUES() item, because the planner generally uses relid sets to identify sub-relations, and such a sub-query would have an empty relid set if we flattened it. prepjointree.c contains some baroque logic that works around this in certain special cases --- but there is a much better answer. We can replace an empty FROM clause with a dummy RTE that acts like a table of one row and no columns, and then there are no such corner cases to worry about. Instead we need some logic to get rid of useless dummy RTEs, but that's simpler and covers more cases than what was there before. For really trivial cases, where the query is just "SELECT expression" and nothing else, there's a hazard that adding the extra RTE makes for a noticeable slowdown; even though it's not much processing, there's not that much for the planner to do overall. However testing says that the penalty is very small, close to the noise level. In more complex queries, this is able to find optimizations that we could not find before. The new RTE type is called RTE_RESULT, since the "scan" plan type it gives rise to is a Result node (the same plan we produced for a "SELECT expression" query before). To avoid confusion, rename the old ResultPath path type to GroupResultPath, reflecting that it's only used in degenerate grouping cases where we know the query produces just one grouped row. (It wouldn't work to unify the two cases, because there are different rules about where the associated quals live during query_planner.) Note: although this touches readfuncs.c, I don't think a catversion bump is required, because the added case can't occur in stored rules, only plans. Patch by me, reviewed by David Rowley and Mark Dilger Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us
7 years ago
extern void replace_empty_jointree(Query *parse);
extern void pull_up_sublinks(PlannerInfo *root);
extern void inline_set_returning_functions(PlannerInfo *root);
extern void pull_up_subqueries(PlannerInfo *root);
extern void flatten_simple_union_all(PlannerInfo *root);
extern void reduce_outer_joins(PlannerInfo *root);
In the planner, replace an empty FROM clause with a dummy RTE. The fact that "SELECT expression" has no base relations has long been a thorn in the side of the planner. It makes it hard to flatten a sub-query that looks like that, or is a trivial VALUES() item, because the planner generally uses relid sets to identify sub-relations, and such a sub-query would have an empty relid set if we flattened it. prepjointree.c contains some baroque logic that works around this in certain special cases --- but there is a much better answer. We can replace an empty FROM clause with a dummy RTE that acts like a table of one row and no columns, and then there are no such corner cases to worry about. Instead we need some logic to get rid of useless dummy RTEs, but that's simpler and covers more cases than what was there before. For really trivial cases, where the query is just "SELECT expression" and nothing else, there's a hazard that adding the extra RTE makes for a noticeable slowdown; even though it's not much processing, there's not that much for the planner to do overall. However testing says that the penalty is very small, close to the noise level. In more complex queries, this is able to find optimizations that we could not find before. The new RTE type is called RTE_RESULT, since the "scan" plan type it gives rise to is a Result node (the same plan we produced for a "SELECT expression" query before). To avoid confusion, rename the old ResultPath path type to GroupResultPath, reflecting that it's only used in degenerate grouping cases where we know the query produces just one grouped row. (It wouldn't work to unify the two cases, because there are different rules about where the associated quals live during query_planner.) Note: although this touches readfuncs.c, I don't think a catversion bump is required, because the added case can't occur in stored rules, only plans. Patch by me, reviewed by David Rowley and Mark Dilger Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us
7 years ago
extern void remove_useless_result_rtes(PlannerInfo *root);
extern Relids get_relids_in_jointree(Node *jtnode, bool include_joins);
extern Relids get_relids_for_join(PlannerInfo *root, int joinrelid);
/*
* prototypes for prepqual.c
*/
extern Node *negate_clause(Node *node);
Fix improper uses of canonicalize_qual(). One of the things canonicalize_qual() does is to remove constant-NULL subexpressions of top-level AND/OR clauses. It does that on the assumption that what it's given is a top-level WHERE clause, so that NULL can be treated like FALSE. Although this is documented down inside a subroutine of canonicalize_qual(), it wasn't mentioned in the documentation of that function itself, and some callers hadn't gotten that memo. Notably, commit d007a9505 caused get_relation_constraints() to apply canonicalize_qual() to CHECK constraints. That allowed constraint exclusion to misoptimize situations in which a CHECK constraint had a provably-NULL subclause, as seen in the regression test case added here, in which a child table that should be scanned is not. (Although this thinko is ancient, the test case doesn't fail before 9.2, for reasons I've not bothered to track down in detail. There may be related cases that do fail before that.) More recently, commit f0e44751d added an independent bug by applying canonicalize_qual() to index expressions, which is even sillier since those might not even be boolean. If they are, though, I think this could lead to making incorrect index entries for affected index expressions in v10. I haven't attempted to prove that though. To fix, add an "is_check" parameter to canonicalize_qual() to specify whether it should assume WHERE or CHECK semantics, and make it perform NULL-elimination accordingly. Adjust the callers to apply the right semantics, or remove the call entirely in cases where it's not known that the expression has one or the other semantics. I also removed the call in some cases involving partition expressions, where it should be a no-op because such expressions should be canonical already ... and was a no-op, independently of whether it could in principle have done something, because it was being handed the qual in implicit-AND format which isn't what it expects. In HEAD, add an Assert to catch that type of mistake in future. This represents an API break for external callers of canonicalize_qual(). While that's intentional in HEAD to make such callers think about which case applies to them, it seems like something we probably wouldn't be thanked for in released branches. Hence, in released branches, the extra parameter is added to a new function canonicalize_qual_ext(), and canonicalize_qual() is a wrapper that retains its old behavior. Patch by me with suggestions from Dean Rasheed. Back-patch to all supported branches. Discussion: https://postgr.es/m/24475.1520635069@sss.pgh.pa.us
8 years ago
extern Expr *canonicalize_qual(Expr *qual, bool is_check);
/*
* prototypes for preptlist.c
*/
Fix creation of resjunk tlist entries for inherited mixed UPDATE/DELETE. rewriteTargetListUD's processing is dependent on the relkind of the query's target table. That was fine at the time it was made to act that way, even for queries on inheritance trees, because all tables in an inheritance tree would necessarily be plain tables. However, the 9.5 feature addition allowing some members of an inheritance tree to be foreign tables broke the assumption that rewriteTargetListUD's output tlist could be applied to all child tables with nothing more than column-number mapping. This led to visible failures if foreign child tables had row-level triggers, and would also break in cases where child tables belonged to FDWs that used methods other than CTID for row identification. To fix, delay running rewriteTargetListUD until after the planner has expanded inheritance, so that it is applied separately to the (already mapped) tlist for each child table. We can conveniently call it from preprocess_targetlist. Refactor associated code slightly to avoid the need to heap_open the target relation multiple times during preprocess_targetlist. (The APIs remain a bit ugly, particularly around the point of which steps scribble on parse->targetList and which don't. But avoiding such scribbling would require a change in FDW callback APIs, which is more pain than it's worth.) Also fix ExecModifyTable to ensure that "tupleid" is reset to NULL when we transition from rows providing a CTID to rows that don't. (That's really an independent bug, but it manifests in much the same cases.) Add a regression test checking one manifestation of this problem, which was that row-level triggers on a foreign child table did not work right. Back-patch to 9.5 where the problem was introduced. Etsuro Fujita, reviewed by Ildus Kurbangaliev and Ashutosh Bapat Discussion: https://postgr.es/m/20170514150525.0346ba72@postgrespro.ru
8 years ago
extern List *preprocess_targetlist(PlannerInfo *root);
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
11 years ago
extern PlanRowMark *get_plan_rowmark(List *rowmarks, Index rtindex);
/*
* prototypes for prepunion.c
*/
Make the upper part of the planner work by generating and comparing Paths. I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
10 years ago
extern RelOptInfo *plan_set_operations(PlannerInfo *root);
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
8 years ago
#endif /* PREP_H */