You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
postgres/src/backend/utils/adt/date.c

3173 lines
71 KiB

/*-------------------------------------------------------------------------
*
* date.c
* implements DATE and TIME data types specified in SQL standard
*
* Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
* Portions Copyright (c) 1994-5, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/utils/adt/date.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <ctype.h>
#include <limits.h>
#include <float.h>
#include <math.h>
#include <time.h>
#include "access/xact.h"
#include "catalog/pg_type.h"
#include "common/hashfn.h"
#include "common/int.h"
#include "libpq/pqformat.h"
27 years ago
#include "miscadmin.h"
#include "nodes/supportnodes.h"
#include "parser/scansup.h"
#include "utils/array.h"
#include "utils/builtins.h"
#include "utils/date.h"
#include "utils/datetime.h"
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
#include "utils/numeric.h"
#include "utils/sortsupport.h"
/*
* gcc's -ffast-math switch breaks routines that expect exact results from
* expressions like timeval / SECS_PER_HOUR, where timeval is double.
*/
#ifdef __FAST_MATH__
#error -ffast-math is known to break this code
#endif
/* common code for timetypmodin and timetztypmodin */
static int32
anytime_typmodin(bool istz, ArrayType *ta)
{
int32 *tl;
int n;
tl = ArrayGetIntegerTypmods(ta, &n);
/*
* we're not too tense about good error message here because grammar
* shouldn't allow wrong number of modifiers for TIME
*/
if (n != 1)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("invalid type modifier")));
return anytime_typmod_check(istz, tl[0]);
}
/* exported so parse_expr.c can use it */
int32
anytime_typmod_check(bool istz, int32 typmod)
{
if (typmod < 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("TIME(%d)%s precision must not be negative",
typmod, (istz ? " WITH TIME ZONE" : ""))));
if (typmod > MAX_TIME_PRECISION)
{
ereport(WARNING,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("TIME(%d)%s precision reduced to maximum allowed, %d",
typmod, (istz ? " WITH TIME ZONE" : ""),
MAX_TIME_PRECISION)));
typmod = MAX_TIME_PRECISION;
}
return typmod;
}
/* common code for timetypmodout and timetztypmodout */
static char *
anytime_typmodout(bool istz, int32 typmod)
{
const char *tz = istz ? " with time zone" : " without time zone";
if (typmod >= 0)
return psprintf("(%d)%s", (int) typmod, tz);
else
return pstrdup(tz);
}
/*****************************************************************************
* Date ADT
*****************************************************************************/
/* date_in()
* Given date text string, convert to internal date format.
*/
Datum
date_in(PG_FUNCTION_ARGS)
{
char *str = PG_GETARG_CSTRING(0);
Node *escontext = fcinfo->context;
DateADT date;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
fsec_t fsec;
struct pg_tm tt,
*tm = &tt;
int tzp;
int dtype;
int nf;
int dterr;
char *field[MAXDATEFIELDS];
int ftype[MAXDATEFIELDS];
char workbuf[MAXDATELEN + 1];
DateTimeErrorExtra extra;
dterr = ParseDateTime(str, workbuf, sizeof(workbuf),
field, ftype, MAXDATEFIELDS, &nf);
if (dterr == 0)
dterr = DecodeDateTime(field, ftype, nf,
&dtype, tm, &fsec, &tzp, &extra);
if (dterr != 0)
{
DateTimeParseError(dterr, &extra, str, "date", escontext);
PG_RETURN_NULL();
}
switch (dtype)
{
case DTK_DATE:
break;
case DTK_EPOCH:
GetEpochTime(tm);
break;
case DTK_LATE:
DATE_NOEND(date);
PG_RETURN_DATEADT(date);
case DTK_EARLY:
DATE_NOBEGIN(date);
PG_RETURN_DATEADT(date);
default:
DateTimeParseError(DTERR_BAD_FORMAT, &extra, str, "date", escontext);
PG_RETURN_NULL();
}
/* Prevent overflow in Julian-day routines */
if (!IS_VALID_JULIAN(tm->tm_year, tm->tm_mon, tm->tm_mday))
ereturn(escontext, (Datum) 0,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("date out of range: \"%s\"", str)));
date = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) - POSTGRES_EPOCH_JDATE;
/* Now check for just-out-of-range dates */
if (!IS_VALID_DATE(date))
ereturn(escontext, (Datum) 0,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("date out of range: \"%s\"", str)));
PG_RETURN_DATEADT(date);
}
/* date_out()
* Given internal format date, convert to text string.
*/
Datum
date_out(PG_FUNCTION_ARGS)
{
DateADT date = PG_GETARG_DATEADT(0);
char *result;
struct pg_tm tt,
*tm = &tt;
char buf[MAXDATELEN + 1];
if (DATE_NOT_FINITE(date))
EncodeSpecialDate(date, buf);
else
{
j2date(date + POSTGRES_EPOCH_JDATE,
&(tm->tm_year), &(tm->tm_mon), &(tm->tm_mday));
EncodeDateOnly(tm, DateStyle, buf);
}
result = pstrdup(buf);
PG_RETURN_CSTRING(result);
}
/*
* date_recv - converts external binary format to date
*/
Datum
date_recv(PG_FUNCTION_ARGS)
{
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
DateADT result;
result = (DateADT) pq_getmsgint(buf, sizeof(DateADT));
/* Limit to the same range that date_in() accepts. */
if (DATE_NOT_FINITE(result))
/* ok */ ;
else if (!IS_VALID_DATE(result))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("date out of range")));
PG_RETURN_DATEADT(result);
}
/*
* date_send - converts date to binary format
*/
Datum
date_send(PG_FUNCTION_ARGS)
{
DateADT date = PG_GETARG_DATEADT(0);
StringInfoData buf;
pq_begintypsend(&buf);
pq_sendint32(&buf, date);
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
/*
* make_date - date constructor
*/
Datum
make_date(PG_FUNCTION_ARGS)
{
struct pg_tm tm;
DateADT date;
int dterr;
bool bc = false;
tm.tm_year = PG_GETARG_INT32(0);
tm.tm_mon = PG_GETARG_INT32(1);
tm.tm_mday = PG_GETARG_INT32(2);
/* Handle negative years as BC */
if (tm.tm_year < 0)
{
bc = true;
tm.tm_year = -tm.tm_year;
}
dterr = ValidateDate(DTK_DATE_M, false, false, bc, &tm);
if (dterr != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_FIELD_OVERFLOW),
errmsg("date field value out of range: %d-%02d-%02d",
tm.tm_year, tm.tm_mon, tm.tm_mday)));
/* Prevent overflow in Julian-day routines */
if (!IS_VALID_JULIAN(tm.tm_year, tm.tm_mon, tm.tm_mday))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("date out of range: %d-%02d-%02d",
tm.tm_year, tm.tm_mon, tm.tm_mday)));
date = date2j(tm.tm_year, tm.tm_mon, tm.tm_mday) - POSTGRES_EPOCH_JDATE;
/* Now check for just-out-of-range dates */
if (!IS_VALID_DATE(date))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("date out of range: %d-%02d-%02d",
tm.tm_year, tm.tm_mon, tm.tm_mday)));
PG_RETURN_DATEADT(date);
}
/*
* Convert reserved date values to string.
*/
void
EncodeSpecialDate(DateADT dt, char *str)
{
if (DATE_IS_NOBEGIN(dt))
strcpy(str, EARLY);
else if (DATE_IS_NOEND(dt))
strcpy(str, LATE);
9 years ago
else /* shouldn't happen */
elog(ERROR, "invalid argument for EncodeSpecialDate");
}
/*
* GetSQLCurrentDate -- implements CURRENT_DATE
*/
DateADT
GetSQLCurrentDate(void)
{
struct pg_tm tm;
static int cache_year = 0;
static int cache_mon = 0;
static int cache_mday = 0;
static DateADT cache_date;
GetCurrentDateTime(&tm);
/*
* date2j involves several integer divisions; moreover, unless our session
* lives across local midnight, we don't really have to do it more than
* once. So it seems worth having a separate cache here.
*/
if (tm.tm_year != cache_year ||
tm.tm_mon != cache_mon ||
tm.tm_mday != cache_mday)
{
cache_date = date2j(tm.tm_year, tm.tm_mon, tm.tm_mday) - POSTGRES_EPOCH_JDATE;
cache_year = tm.tm_year;
cache_mon = tm.tm_mon;
cache_mday = tm.tm_mday;
}
return cache_date;
}
/*
* GetSQLCurrentTime -- implements CURRENT_TIME, CURRENT_TIME(n)
*/
TimeTzADT *
GetSQLCurrentTime(int32 typmod)
{
TimeTzADT *result;
struct pg_tm tt,
*tm = &tt;
fsec_t fsec;
int tz;
GetCurrentTimeUsec(tm, &fsec, &tz);
result = (TimeTzADT *) palloc(sizeof(TimeTzADT));
tm2timetz(tm, fsec, tz, result);
AdjustTimeForTypmod(&(result->time), typmod);
return result;
}
/*
* GetSQLLocalTime -- implements LOCALTIME, LOCALTIME(n)
*/
TimeADT
GetSQLLocalTime(int32 typmod)
{
TimeADT result;
struct pg_tm tt,
*tm = &tt;
fsec_t fsec;
int tz;
GetCurrentTimeUsec(tm, &fsec, &tz);
tm2time(tm, fsec, &result);
AdjustTimeForTypmod(&result, typmod);
return result;
}
/*
* Comparison functions for dates
*/
Datum
date_eq(PG_FUNCTION_ARGS)
{
DateADT dateVal1 = PG_GETARG_DATEADT(0);
DateADT dateVal2 = PG_GETARG_DATEADT(1);
PG_RETURN_BOOL(dateVal1 == dateVal2);
}
Datum
date_ne(PG_FUNCTION_ARGS)
{
DateADT dateVal1 = PG_GETARG_DATEADT(0);
DateADT dateVal2 = PG_GETARG_DATEADT(1);
PG_RETURN_BOOL(dateVal1 != dateVal2);
}
Datum
date_lt(PG_FUNCTION_ARGS)
{
DateADT dateVal1 = PG_GETARG_DATEADT(0);
DateADT dateVal2 = PG_GETARG_DATEADT(1);
PG_RETURN_BOOL(dateVal1 < dateVal2);
}
Datum
date_le(PG_FUNCTION_ARGS)
{
DateADT dateVal1 = PG_GETARG_DATEADT(0);
DateADT dateVal2 = PG_GETARG_DATEADT(1);
PG_RETURN_BOOL(dateVal1 <= dateVal2);
}
Datum
date_gt(PG_FUNCTION_ARGS)
{
DateADT dateVal1 = PG_GETARG_DATEADT(0);
DateADT dateVal2 = PG_GETARG_DATEADT(1);
PG_RETURN_BOOL(dateVal1 > dateVal2);
}
Datum
date_ge(PG_FUNCTION_ARGS)
{
DateADT dateVal1 = PG_GETARG_DATEADT(0);
DateADT dateVal2 = PG_GETARG_DATEADT(1);
PG_RETURN_BOOL(dateVal1 >= dateVal2);
}
Datum
date_cmp(PG_FUNCTION_ARGS)
{
DateADT dateVal1 = PG_GETARG_DATEADT(0);
DateADT dateVal2 = PG_GETARG_DATEADT(1);
if (dateVal1 < dateVal2)
PG_RETURN_INT32(-1);
else if (dateVal1 > dateVal2)
PG_RETURN_INT32(1);
PG_RETURN_INT32(0);
}
Datum
date_sortsupport(PG_FUNCTION_ARGS)
{
SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0);
ssup->comparator = ssup_datum_int32_cmp;
PG_RETURN_VOID();
}
Datum
date_finite(PG_FUNCTION_ARGS)
{
DateADT date = PG_GETARG_DATEADT(0);
PG_RETURN_BOOL(!DATE_NOT_FINITE(date));
}
Datum
date_larger(PG_FUNCTION_ARGS)
{
DateADT dateVal1 = PG_GETARG_DATEADT(0);
DateADT dateVal2 = PG_GETARG_DATEADT(1);
PG_RETURN_DATEADT((dateVal1 > dateVal2) ? dateVal1 : dateVal2);
}
Datum
date_smaller(PG_FUNCTION_ARGS)
{
DateADT dateVal1 = PG_GETARG_DATEADT(0);
DateADT dateVal2 = PG_GETARG_DATEADT(1);
PG_RETURN_DATEADT((dateVal1 < dateVal2) ? dateVal1 : dateVal2);
}
/* Compute difference between two dates in days.
*/
Datum
date_mi(PG_FUNCTION_ARGS)
{
DateADT dateVal1 = PG_GETARG_DATEADT(0);
DateADT dateVal2 = PG_GETARG_DATEADT(1);
if (DATE_NOT_FINITE(dateVal1) || DATE_NOT_FINITE(dateVal2))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("cannot subtract infinite dates")));
PG_RETURN_INT32((int32) (dateVal1 - dateVal2));
}
/* Add a number of days to a date, giving a new date.
* Must handle both positive and negative numbers of days.
*/
Datum
date_pli(PG_FUNCTION_ARGS)
{
DateADT dateVal = PG_GETARG_DATEADT(0);
int32 days = PG_GETARG_INT32(1);
DateADT result;
if (DATE_NOT_FINITE(dateVal))
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
9 years ago
PG_RETURN_DATEADT(dateVal); /* can't change infinity */
result = dateVal + days;
/* Check for integer overflow and out-of-allowed-range */
if ((days >= 0 ? (result < dateVal) : (result > dateVal)) ||
!IS_VALID_DATE(result))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("date out of range")));
PG_RETURN_DATEADT(result);
}
/* Subtract a number of days from a date, giving a new date.
*/
Datum
date_mii(PG_FUNCTION_ARGS)
{
DateADT dateVal = PG_GETARG_DATEADT(0);
int32 days = PG_GETARG_INT32(1);
DateADT result;
if (DATE_NOT_FINITE(dateVal))
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
9 years ago
PG_RETURN_DATEADT(dateVal); /* can't change infinity */
result = dateVal - days;
/* Check for integer overflow and out-of-allowed-range */
if ((days >= 0 ? (result > dateVal) : (result < dateVal)) ||
!IS_VALID_DATE(result))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("date out of range")));
PG_RETURN_DATEADT(result);
}
/*
* Promote date to timestamp.
*
* On successful conversion, *overflow is set to zero if it's not NULL.
*
* If the date is finite but out of the valid range for timestamp, then:
* if overflow is NULL, we throw an out-of-range error.
* if overflow is not NULL, we store +1 or -1 there to indicate the sign
* of the overflow, and return the appropriate timestamp infinity.
*
* Note: *overflow = -1 is actually not possible currently, since both
* datatypes have the same lower bound, Julian day zero.
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
*/
Timestamp
date2timestamp_opt_overflow(DateADT dateVal, int *overflow)
{
Timestamp result;
if (overflow)
*overflow = 0;
if (DATE_IS_NOBEGIN(dateVal))
TIMESTAMP_NOBEGIN(result);
else if (DATE_IS_NOEND(dateVal))
TIMESTAMP_NOEND(result);
else
{
/*
* Since dates have the same minimum values as timestamps, only upper
* boundary need be checked for overflow.
*/
if (dateVal >= (TIMESTAMP_END_JULIAN - POSTGRES_EPOCH_JDATE))
{
if (overflow)
{
*overflow = 1;
TIMESTAMP_NOEND(result);
return result;
}
else
{
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("date out of range for timestamp")));
}
}
/* date is days since 2000, timestamp is microseconds since same... */
result = dateVal * USECS_PER_DAY;
}
return result;
}
/*
* Promote date to timestamp, throwing error for overflow.
*/
static TimestampTz
date2timestamp(DateADT dateVal)
{
return date2timestamp_opt_overflow(dateVal, NULL);
}
/*
* Promote date to timestamp with time zone.
*
* On successful conversion, *overflow is set to zero if it's not NULL.
*
* If the date is finite but out of the valid range for timestamptz, then:
* if overflow is NULL, we throw an out-of-range error.
* if overflow is not NULL, we store +1 or -1 there to indicate the sign
* of the overflow, and return the appropriate timestamptz infinity.
*/
TimestampTz
date2timestamptz_opt_overflow(DateADT dateVal, int *overflow)
{
TimestampTz result;
struct pg_tm tt,
*tm = &tt;
int tz;
if (overflow)
*overflow = 0;
if (DATE_IS_NOBEGIN(dateVal))
TIMESTAMP_NOBEGIN(result);
else if (DATE_IS_NOEND(dateVal))
TIMESTAMP_NOEND(result);
else
{
/*
* Since dates have the same minimum values as timestamps, only upper
* boundary need be checked for overflow.
*/
if (dateVal >= (TIMESTAMP_END_JULIAN - POSTGRES_EPOCH_JDATE))
{
if (overflow)
{
*overflow = 1;
TIMESTAMP_NOEND(result);
return result;
}
else
{
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("date out of range for timestamp")));
}
}
j2date(dateVal + POSTGRES_EPOCH_JDATE,
&(tm->tm_year), &(tm->tm_mon), &(tm->tm_mday));
tm->tm_hour = 0;
tm->tm_min = 0;
tm->tm_sec = 0;
tz = DetermineTimeZoneOffset(tm, session_timezone);
result = dateVal * USECS_PER_DAY + tz * USECS_PER_SEC;
/*
* Since it is possible to go beyond allowed timestamptz range because
* of time zone, check for allowed timestamp range after adding tz.
*/
if (!IS_VALID_TIMESTAMP(result))
{
if (overflow)
{
if (result < MIN_TIMESTAMP)
{
*overflow = -1;
TIMESTAMP_NOBEGIN(result);
}
else
{
*overflow = 1;
TIMESTAMP_NOEND(result);
}
}
else
{
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("date out of range for timestamp")));
}
}
}
return result;
}
/*
* Promote date to timestamptz, throwing error for overflow.
*/
static TimestampTz
date2timestamptz(DateADT dateVal)
{
return date2timestamptz_opt_overflow(dateVal, NULL);
}
/*
* date2timestamp_no_overflow
*
* This is chartered to produce a double value that is numerically
* equivalent to the corresponding Timestamp value, if the date is in the
* valid range of Timestamps, but in any case not throw an overflow error.
* We can do this since the numerical range of double is greater than
* that of non-erroneous timestamps. The results are currently only
* used for statistical estimation purposes.
*/
double
date2timestamp_no_overflow(DateADT dateVal)
{
double result;
if (DATE_IS_NOBEGIN(dateVal))
result = -DBL_MAX;
else if (DATE_IS_NOEND(dateVal))
result = DBL_MAX;
else
{
/* date is days since 2000, timestamp is microseconds since same... */
result = dateVal * (double) USECS_PER_DAY;
}
return result;
}
/*
* Crosstype comparison functions for dates
*/
int32
date_cmp_timestamp_internal(DateADT dateVal, Timestamp dt2)
{
Timestamp dt1;
int overflow;
dt1 = date2timestamp_opt_overflow(dateVal, &overflow);
if (overflow > 0)
{
/* dt1 is larger than any finite timestamp, but less than infinity */
return TIMESTAMP_IS_NOEND(dt2) ? -1 : +1;
}
Assert(overflow == 0); /* -1 case cannot occur */
return timestamp_cmp_internal(dt1, dt2);
}
Datum
date_eq_timestamp(PG_FUNCTION_ARGS)
{
DateADT dateVal = PG_GETARG_DATEADT(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_BOOL(date_cmp_timestamp_internal(dateVal, dt2) == 0);
}
Datum
date_ne_timestamp(PG_FUNCTION_ARGS)
{
DateADT dateVal = PG_GETARG_DATEADT(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_BOOL(date_cmp_timestamp_internal(dateVal, dt2) != 0);
}
Datum
date_lt_timestamp(PG_FUNCTION_ARGS)
{
DateADT dateVal = PG_GETARG_DATEADT(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_BOOL(date_cmp_timestamp_internal(dateVal, dt2) < 0);
}
Datum
date_gt_timestamp(PG_FUNCTION_ARGS)
{
DateADT dateVal = PG_GETARG_DATEADT(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_BOOL(date_cmp_timestamp_internal(dateVal, dt2) > 0);
}
Datum
date_le_timestamp(PG_FUNCTION_ARGS)
{
DateADT dateVal = PG_GETARG_DATEADT(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_BOOL(date_cmp_timestamp_internal(dateVal, dt2) <= 0);
}
Datum
date_ge_timestamp(PG_FUNCTION_ARGS)
{
DateADT dateVal = PG_GETARG_DATEADT(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_BOOL(date_cmp_timestamp_internal(dateVal, dt2) >= 0);
}
Datum
date_cmp_timestamp(PG_FUNCTION_ARGS)
{
DateADT dateVal = PG_GETARG_DATEADT(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_INT32(date_cmp_timestamp_internal(dateVal, dt2));
}
int32
date_cmp_timestamptz_internal(DateADT dateVal, TimestampTz dt2)
{
TimestampTz dt1;
int overflow;
dt1 = date2timestamptz_opt_overflow(dateVal, &overflow);
if (overflow > 0)
{
/* dt1 is larger than any finite timestamp, but less than infinity */
return TIMESTAMP_IS_NOEND(dt2) ? -1 : +1;
}
if (overflow < 0)
{
/* dt1 is less than any finite timestamp, but more than -infinity */
return TIMESTAMP_IS_NOBEGIN(dt2) ? +1 : -1;
}
return timestamptz_cmp_internal(dt1, dt2);
}
Datum
date_eq_timestamptz(PG_FUNCTION_ARGS)
{
DateADT dateVal = PG_GETARG_DATEADT(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
PG_RETURN_BOOL(date_cmp_timestamptz_internal(dateVal, dt2) == 0);
}
Datum
date_ne_timestamptz(PG_FUNCTION_ARGS)
{
DateADT dateVal = PG_GETARG_DATEADT(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
PG_RETURN_BOOL(date_cmp_timestamptz_internal(dateVal, dt2) != 0);
}
Datum
date_lt_timestamptz(PG_FUNCTION_ARGS)
{
DateADT dateVal = PG_GETARG_DATEADT(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
PG_RETURN_BOOL(date_cmp_timestamptz_internal(dateVal, dt2) < 0);
}
Datum
date_gt_timestamptz(PG_FUNCTION_ARGS)
{
DateADT dateVal = PG_GETARG_DATEADT(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
PG_RETURN_BOOL(date_cmp_timestamptz_internal(dateVal, dt2) > 0);
}
Datum
date_le_timestamptz(PG_FUNCTION_ARGS)
{
DateADT dateVal = PG_GETARG_DATEADT(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
PG_RETURN_BOOL(date_cmp_timestamptz_internal(dateVal, dt2) <= 0);
}
Datum
date_ge_timestamptz(PG_FUNCTION_ARGS)
{
DateADT dateVal = PG_GETARG_DATEADT(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
PG_RETURN_BOOL(date_cmp_timestamptz_internal(dateVal, dt2) >= 0);
}
Datum
date_cmp_timestamptz(PG_FUNCTION_ARGS)
{
DateADT dateVal = PG_GETARG_DATEADT(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
PG_RETURN_INT32(date_cmp_timestamptz_internal(dateVal, dt2));
}
Datum
timestamp_eq_date(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
DateADT dateVal = PG_GETARG_DATEADT(1);
PG_RETURN_BOOL(date_cmp_timestamp_internal(dateVal, dt1) == 0);
}
Datum
timestamp_ne_date(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
DateADT dateVal = PG_GETARG_DATEADT(1);
PG_RETURN_BOOL(date_cmp_timestamp_internal(dateVal, dt1) != 0);
}
Datum
timestamp_lt_date(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
DateADT dateVal = PG_GETARG_DATEADT(1);
PG_RETURN_BOOL(date_cmp_timestamp_internal(dateVal, dt1) > 0);
}
Datum
timestamp_gt_date(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
DateADT dateVal = PG_GETARG_DATEADT(1);
PG_RETURN_BOOL(date_cmp_timestamp_internal(dateVal, dt1) < 0);
}
Datum
timestamp_le_date(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
DateADT dateVal = PG_GETARG_DATEADT(1);
PG_RETURN_BOOL(date_cmp_timestamp_internal(dateVal, dt1) >= 0);
}
Datum
timestamp_ge_date(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
DateADT dateVal = PG_GETARG_DATEADT(1);
PG_RETURN_BOOL(date_cmp_timestamp_internal(dateVal, dt1) <= 0);
}
Datum
timestamp_cmp_date(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
DateADT dateVal = PG_GETARG_DATEADT(1);
PG_RETURN_INT32(-date_cmp_timestamp_internal(dateVal, dt1));
}
Datum
timestamptz_eq_date(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
DateADT dateVal = PG_GETARG_DATEADT(1);
PG_RETURN_BOOL(date_cmp_timestamptz_internal(dateVal, dt1) == 0);
}
Datum
timestamptz_ne_date(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
DateADT dateVal = PG_GETARG_DATEADT(1);
PG_RETURN_BOOL(date_cmp_timestamptz_internal(dateVal, dt1) != 0);
}
Datum
timestamptz_lt_date(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
DateADT dateVal = PG_GETARG_DATEADT(1);
PG_RETURN_BOOL(date_cmp_timestamptz_internal(dateVal, dt1) > 0);
}
Datum
timestamptz_gt_date(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
DateADT dateVal = PG_GETARG_DATEADT(1);
PG_RETURN_BOOL(date_cmp_timestamptz_internal(dateVal, dt1) < 0);
}
Datum
timestamptz_le_date(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
DateADT dateVal = PG_GETARG_DATEADT(1);
PG_RETURN_BOOL(date_cmp_timestamptz_internal(dateVal, dt1) >= 0);
}
Datum
timestamptz_ge_date(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
DateADT dateVal = PG_GETARG_DATEADT(1);
PG_RETURN_BOOL(date_cmp_timestamptz_internal(dateVal, dt1) <= 0);
}
Datum
timestamptz_cmp_date(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
DateADT dateVal = PG_GETARG_DATEADT(1);
PG_RETURN_INT32(-date_cmp_timestamptz_internal(dateVal, dt1));
}
Support all SQL:2011 options for window frame clauses. This patch adds the ability to use "RANGE offset PRECEDING/FOLLOWING" frame boundaries in window functions. We'd punted on that back in the original patch to add window functions, because it was not clear how to do it in a reasonably data-type-extensible fashion. That problem is resolved here by adding the ability for btree operator classes to provide an "in_range" support function that defines how to add or subtract the RANGE offset value. Factoring it this way also allows the operator class to avoid overflow problems near the ends of the datatype's range, if it wishes to expend effort on that. (In the committed patch, the integer opclasses handle that issue, but it did not seem worth the trouble to avoid overflow failures for datetime types.) The patch includes in_range support for the integer_ops opfamily (int2/int4/int8) as well as the standard datetime types. Support for other numeric types has been requested, but that seems like suitable material for a follow-on patch. In addition, the patch adds GROUPS mode which counts the offset in ORDER-BY peer groups rather than rows, and it adds the frame_exclusion options specified by SQL:2011. As far as I can see, we are now fully up to spec on window framing options. Existing behaviors remain unchanged, except that I changed the errcode for a couple of existing error reports to meet the SQL spec's expectation that negative "offset" values should be reported as SQLSTATE 22013. Internally and in relevant parts of the documentation, we now consistently use the terminology "offset PRECEDING/FOLLOWING" rather than "value PRECEDING/FOLLOWING", since the term "value" is confusingly vague. Oliver Ford, reviewed and whacked around some by me Discussion: https://postgr.es/m/CAGMVOdu9sivPAxbNN0X+q19Sfv9edEPv=HibOJhB14TJv_RCQg@mail.gmail.com
8 years ago
/*
* in_range support function for date.
*
* We implement this by promoting the dates to timestamp (without time zone)
* and then using the timestamp-and-interval in_range function.
*/
Datum
in_range_date_interval(PG_FUNCTION_ARGS)
{
DateADT val = PG_GETARG_DATEADT(0);
DateADT base = PG_GETARG_DATEADT(1);
Interval *offset = PG_GETARG_INTERVAL_P(2);
bool sub = PG_GETARG_BOOL(3);
bool less = PG_GETARG_BOOL(4);
Timestamp valStamp;
Timestamp baseStamp;
/* XXX we could support out-of-range cases here, perhaps */
Support all SQL:2011 options for window frame clauses. This patch adds the ability to use "RANGE offset PRECEDING/FOLLOWING" frame boundaries in window functions. We'd punted on that back in the original patch to add window functions, because it was not clear how to do it in a reasonably data-type-extensible fashion. That problem is resolved here by adding the ability for btree operator classes to provide an "in_range" support function that defines how to add or subtract the RANGE offset value. Factoring it this way also allows the operator class to avoid overflow problems near the ends of the datatype's range, if it wishes to expend effort on that. (In the committed patch, the integer opclasses handle that issue, but it did not seem worth the trouble to avoid overflow failures for datetime types.) The patch includes in_range support for the integer_ops opfamily (int2/int4/int8) as well as the standard datetime types. Support for other numeric types has been requested, but that seems like suitable material for a follow-on patch. In addition, the patch adds GROUPS mode which counts the offset in ORDER-BY peer groups rather than rows, and it adds the frame_exclusion options specified by SQL:2011. As far as I can see, we are now fully up to spec on window framing options. Existing behaviors remain unchanged, except that I changed the errcode for a couple of existing error reports to meet the SQL spec's expectation that negative "offset" values should be reported as SQLSTATE 22013. Internally and in relevant parts of the documentation, we now consistently use the terminology "offset PRECEDING/FOLLOWING" rather than "value PRECEDING/FOLLOWING", since the term "value" is confusingly vague. Oliver Ford, reviewed and whacked around some by me Discussion: https://postgr.es/m/CAGMVOdu9sivPAxbNN0X+q19Sfv9edEPv=HibOJhB14TJv_RCQg@mail.gmail.com
8 years ago
valStamp = date2timestamp(val);
baseStamp = date2timestamp(base);
return DirectFunctionCall5(in_range_timestamp_interval,
TimestampGetDatum(valStamp),
TimestampGetDatum(baseStamp),
IntervalPGetDatum(offset),
BoolGetDatum(sub),
BoolGetDatum(less));
}
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
/* extract_date()
* Extract specified field from date type.
*/
Datum
extract_date(PG_FUNCTION_ARGS)
{
text *units = PG_GETARG_TEXT_PP(0);
DateADT date = PG_GETARG_DATEADT(1);
int64 intresult;
int type,
val;
char *lowunits;
int year,
mon,
mday;
lowunits = downcase_truncate_identifier(VARDATA_ANY(units),
VARSIZE_ANY_EXHDR(units),
false);
type = DecodeUnits(0, lowunits, &val);
if (type == UNKNOWN_FIELD)
type = DecodeSpecial(0, lowunits, &val);
if (DATE_NOT_FINITE(date) && (type == UNITS || type == RESERV))
{
switch (val)
{
/* Oscillating units */
case DTK_DAY:
case DTK_MONTH:
case DTK_QUARTER:
case DTK_WEEK:
case DTK_DOW:
case DTK_ISODOW:
case DTK_DOY:
PG_RETURN_NULL();
break;
/* Monotonically-increasing units */
case DTK_YEAR:
case DTK_DECADE:
case DTK_CENTURY:
case DTK_MILLENNIUM:
case DTK_JULIAN:
case DTK_ISOYEAR:
case DTK_EPOCH:
if (DATE_IS_NOBEGIN(date))
PG_RETURN_NUMERIC(DatumGetNumeric(DirectFunctionCall3(numeric_in,
CStringGetDatum("-Infinity"),
ObjectIdGetDatum(InvalidOid),
Int32GetDatum(-1))));
else
PG_RETURN_NUMERIC(DatumGetNumeric(DirectFunctionCall3(numeric_in,
CStringGetDatum("Infinity"),
ObjectIdGetDatum(InvalidOid),
Int32GetDatum(-1))));
default:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("unit \"%s\" not supported for type %s",
lowunits, format_type_be(DATEOID))));
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
}
}
else if (type == UNITS)
{
j2date(date + POSTGRES_EPOCH_JDATE, &year, &mon, &mday);
switch (val)
{
case DTK_DAY:
intresult = mday;
break;
case DTK_MONTH:
intresult = mon;
break;
case DTK_QUARTER:
intresult = (mon - 1) / 3 + 1;
break;
case DTK_WEEK:
intresult = date2isoweek(year, mon, mday);
break;
case DTK_YEAR:
if (year > 0)
intresult = year;
else
/* there is no year 0, just 1 BC and 1 AD */
intresult = year - 1;
break;
case DTK_DECADE:
/* see comments in timestamp_part */
if (year >= 0)
intresult = year / 10;
else
intresult = -((8 - (year - 1)) / 10);
break;
case DTK_CENTURY:
/* see comments in timestamp_part */
if (year > 0)
intresult = (year + 99) / 100;
else
intresult = -((99 - (year - 1)) / 100);
break;
case DTK_MILLENNIUM:
/* see comments in timestamp_part */
if (year > 0)
intresult = (year + 999) / 1000;
else
intresult = -((999 - (year - 1)) / 1000);
break;
case DTK_JULIAN:
intresult = date + POSTGRES_EPOCH_JDATE;
break;
case DTK_ISOYEAR:
intresult = date2isoyear(year, mon, mday);
/* Adjust BC years */
if (intresult <= 0)
intresult -= 1;
break;
case DTK_DOW:
case DTK_ISODOW:
intresult = j2day(date + POSTGRES_EPOCH_JDATE);
if (val == DTK_ISODOW && intresult == 0)
intresult = 7;
break;
case DTK_DOY:
intresult = date2j(year, mon, mday) - date2j(year, 1, 1) + 1;
break;
default:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("unit \"%s\" not supported for type %s",
lowunits, format_type_be(DATEOID))));
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
intresult = 0;
}
}
else if (type == RESERV)
{
switch (val)
{
case DTK_EPOCH:
intresult = ((int64) date + POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY;
break;
default:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("unit \"%s\" not supported for type %s",
lowunits, format_type_be(DATEOID))));
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
intresult = 0;
}
}
else
{
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("unit \"%s\" not recognized for type %s",
lowunits, format_type_be(DATEOID))));
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
intresult = 0;
}
PG_RETURN_NUMERIC(int64_to_numeric(intresult));
}
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
/* Add an interval to a date, giving a new date.
* Must handle both positive and negative intervals.
*
* We implement this by promoting the date to timestamp (without time zone)
* and then using the timestamp plus interval function.
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
*/
Datum
date_pl_interval(PG_FUNCTION_ARGS)
{
DateADT dateVal = PG_GETARG_DATEADT(0);
Interval *span = PG_GETARG_INTERVAL_P(1);
Timestamp dateStamp;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
dateStamp = date2timestamp(dateVal);
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
return DirectFunctionCall2(timestamp_pl_interval,
TimestampGetDatum(dateStamp),
PointerGetDatum(span));
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
}
/* Subtract an interval from a date, giving a new date.
* Must handle both positive and negative intervals.
*
* We implement this by promoting the date to timestamp (without time zone)
* and then using the timestamp minus interval function.
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
*/
Datum
date_mi_interval(PG_FUNCTION_ARGS)
{
DateADT dateVal = PG_GETARG_DATEADT(0);
Interval *span = PG_GETARG_INTERVAL_P(1);
Timestamp dateStamp;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
dateStamp = date2timestamp(dateVal);
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
return DirectFunctionCall2(timestamp_mi_interval,
TimestampGetDatum(dateStamp),
PointerGetDatum(span));
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
}
/* date_timestamp()
* Convert date to timestamp data type.
*/
Datum
date_timestamp(PG_FUNCTION_ARGS)
{
DateADT dateVal = PG_GETARG_DATEADT(0);
Timestamp result;
result = date2timestamp(dateVal);
PG_RETURN_TIMESTAMP(result);
}
/* timestamp_date()
* Convert timestamp to date data type.
*/
Datum
timestamp_date(PG_FUNCTION_ARGS)
{
Timestamp timestamp = PG_GETARG_TIMESTAMP(0);
DateADT result;
struct pg_tm tt,
*tm = &tt;
fsec_t fsec;
if (TIMESTAMP_IS_NOBEGIN(timestamp))
DATE_NOBEGIN(result);
else if (TIMESTAMP_IS_NOEND(timestamp))
DATE_NOEND(result);
else
{
if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
result = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) - POSTGRES_EPOCH_JDATE;
}
PG_RETURN_DATEADT(result);
}
/* date_timestamptz()
* Convert date to timestamp with time zone data type.
*/
Datum
date_timestamptz(PG_FUNCTION_ARGS)
{
DateADT dateVal = PG_GETARG_DATEADT(0);
TimestampTz result;
result = date2timestamptz(dateVal);
PG_RETURN_TIMESTAMP(result);
}
/* timestamptz_date()
* Convert timestamp with time zone to date data type.
*/
Datum
timestamptz_date(PG_FUNCTION_ARGS)
{
TimestampTz timestamp = PG_GETARG_TIMESTAMP(0);
DateADT result;
struct pg_tm tt,
*tm = &tt;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
fsec_t fsec;
int tz;
if (TIMESTAMP_IS_NOBEGIN(timestamp))
DATE_NOBEGIN(result);
else if (TIMESTAMP_IS_NOEND(timestamp))
DATE_NOEND(result);
else
{
if (timestamp2tm(timestamp, &tz, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
result = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) - POSTGRES_EPOCH_JDATE;
}
PG_RETURN_DATEADT(result);
}
/*****************************************************************************
* Time ADT
*****************************************************************************/
Datum
time_in(PG_FUNCTION_ARGS)
{
char *str = PG_GETARG_CSTRING(0);
#ifdef NOT_USED
Oid typelem = PG_GETARG_OID(1);
#endif
int32 typmod = PG_GETARG_INT32(2);
Node *escontext = fcinfo->context;
TimeADT result;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
fsec_t fsec;
struct pg_tm tt,
*tm = &tt;
int tz;
int nf;
int dterr;
char workbuf[MAXDATELEN + 1];
char *field[MAXDATEFIELDS];
int dtype;
int ftype[MAXDATEFIELDS];
DateTimeErrorExtra extra;
dterr = ParseDateTime(str, workbuf, sizeof(workbuf),
field, ftype, MAXDATEFIELDS, &nf);
if (dterr == 0)
dterr = DecodeTimeOnly(field, ftype, nf,
&dtype, tm, &fsec, &tz, &extra);
if (dterr != 0)
{
DateTimeParseError(dterr, &extra, str, "time", escontext);
PG_RETURN_NULL();
}
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
tm2time(tm, fsec, &result);
AdjustTimeForTypmod(&result, typmod);
PG_RETURN_TIMEADT(result);
}
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
/* tm2time()
* Convert a tm structure to a time data type.
*/
int
9 years ago
tm2time(struct pg_tm *tm, fsec_t fsec, TimeADT *result)
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
{
*result = ((((tm->tm_hour * MINS_PER_HOUR + tm->tm_min) * SECS_PER_MINUTE) + tm->tm_sec)
* USECS_PER_SEC) + fsec;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
return 0;
}
/* time_overflows()
* Check to see if a broken-down time-of-day is out of range.
*/
bool
time_overflows(int hour, int min, int sec, fsec_t fsec)
{
/* Range-check the fields individually. */
if (hour < 0 || hour > HOURS_PER_DAY ||
min < 0 || min >= MINS_PER_HOUR ||
sec < 0 || sec > SECS_PER_MINUTE ||
fsec < 0 || fsec > USECS_PER_SEC)
return true;
/*
* Because we allow, eg, hour = 24 or sec = 60, we must check separately
* that the total time value doesn't exceed 24:00:00.
*/
if ((((((hour * MINS_PER_HOUR + min) * SECS_PER_MINUTE)
+ sec) * USECS_PER_SEC) + fsec) > USECS_PER_DAY)
return true;
return false;
}
/* float_time_overflows()
* Same, when we have seconds + fractional seconds as one "double" value.
*/
bool
float_time_overflows(int hour, int min, double sec)
{
/* Range-check the fields individually. */
if (hour < 0 || hour > HOURS_PER_DAY ||
min < 0 || min >= MINS_PER_HOUR)
return true;
/*
* "sec", being double, requires extra care. Cope with NaN, and round off
* before applying the range check to avoid unexpected errors due to
* imprecise input. (We assume rint() behaves sanely with infinities.)
*/
if (isnan(sec))
return true;
sec = rint(sec * USECS_PER_SEC);
if (sec < 0 || sec > SECS_PER_MINUTE * USECS_PER_SEC)
return true;
/*
* Because we allow, eg, hour = 24 or sec = 60, we must check separately
* that the total time value doesn't exceed 24:00:00. This must match the
* way that callers will convert the fields to a time.
*/
if (((((hour * MINS_PER_HOUR + min) * SECS_PER_MINUTE)
* USECS_PER_SEC) + (int64) sec) > USECS_PER_DAY)
return true;
return false;
}
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
/* time2tm()
* Convert time data type to POSIX time structure.
*
* Note that only the hour/min/sec/fractional-sec fields are filled in.
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
*/
int
9 years ago
time2tm(TimeADT time, struct pg_tm *tm, fsec_t *fsec)
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
{
tm->tm_hour = time / USECS_PER_HOUR;
time -= tm->tm_hour * USECS_PER_HOUR;
tm->tm_min = time / USECS_PER_MINUTE;
time -= tm->tm_min * USECS_PER_MINUTE;
tm->tm_sec = time / USECS_PER_SEC;
time -= tm->tm_sec * USECS_PER_SEC;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
*fsec = time;
return 0;
}
Datum
time_out(PG_FUNCTION_ARGS)
{
TimeADT time = PG_GETARG_TIMEADT(0);
char *result;
struct pg_tm tt,
*tm = &tt;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
fsec_t fsec;
char buf[MAXDATELEN + 1];
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
time2tm(time, tm, &fsec);
EncodeTimeOnly(tm, fsec, false, 0, DateStyle, buf);
result = pstrdup(buf);
PG_RETURN_CSTRING(result);
}
/*
* time_recv - converts external binary format to time
*/
Datum
time_recv(PG_FUNCTION_ARGS)
{
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
#ifdef NOT_USED
Oid typelem = PG_GETARG_OID(1);
#endif
int32 typmod = PG_GETARG_INT32(2);
TimeADT result;
result = pq_getmsgint64(buf);
if (result < INT64CONST(0) || result > USECS_PER_DAY)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("time out of range")));
AdjustTimeForTypmod(&result, typmod);
PG_RETURN_TIMEADT(result);
}
/*
* time_send - converts time to binary format
*/
Datum
time_send(PG_FUNCTION_ARGS)
{
TimeADT time = PG_GETARG_TIMEADT(0);
StringInfoData buf;
pq_begintypsend(&buf);
pq_sendint64(&buf, time);
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
Datum
timetypmodin(PG_FUNCTION_ARGS)
{
ArrayType *ta = PG_GETARG_ARRAYTYPE_P(0);
PG_RETURN_INT32(anytime_typmodin(false, ta));
}
Datum
timetypmodout(PG_FUNCTION_ARGS)
{
int32 typmod = PG_GETARG_INT32(0);
PG_RETURN_CSTRING(anytime_typmodout(false, typmod));
}
/*
* make_time - time constructor
*/
Datum
make_time(PG_FUNCTION_ARGS)
{
int tm_hour = PG_GETARG_INT32(0);
int tm_min = PG_GETARG_INT32(1);
double sec = PG_GETARG_FLOAT8(2);
TimeADT time;
/* Check for time overflow */
if (float_time_overflows(tm_hour, tm_min, sec))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_FIELD_OVERFLOW),
errmsg("time field value out of range: %d:%02d:%02g",
tm_hour, tm_min, sec)));
/* This should match tm2time */
time = (((tm_hour * MINS_PER_HOUR + tm_min) * SECS_PER_MINUTE)
* USECS_PER_SEC) + (int64) rint(sec * USECS_PER_SEC);
PG_RETURN_TIMEADT(time);
}
/* time_support()
*
* Planner support function for the time_scale() and timetz_scale()
* length coercion functions (we need not distinguish them here).
*/
Datum
time_support(PG_FUNCTION_ARGS)
{
Node *rawreq = (Node *) PG_GETARG_POINTER(0);
Node *ret = NULL;
if (IsA(rawreq, SupportRequestSimplify))
{
SupportRequestSimplify *req = (SupportRequestSimplify *) rawreq;
ret = TemporalSimplify(MAX_TIME_PRECISION, (Node *) req->fcall);
}
PG_RETURN_POINTER(ret);
}
/* time_scale()
* Adjust time type for specified scale factor.
* Used by PostgreSQL type system to stuff columns.
*/
Datum
time_scale(PG_FUNCTION_ARGS)
{
TimeADT time = PG_GETARG_TIMEADT(0);
int32 typmod = PG_GETARG_INT32(1);
TimeADT result;
result = time;
AdjustTimeForTypmod(&result, typmod);
PG_RETURN_TIMEADT(result);
}
/* AdjustTimeForTypmod()
* Force the precision of the time value to a specified value.
* Uses *exactly* the same code as in AdjustTimestampForTypmod()
* but we make a separate copy because those types do not
* have a fundamental tie together but rather a coincidence of
* implementation. - thomas
*/
void
AdjustTimeForTypmod(TimeADT *time, int32 typmod)
{
static const int64 TimeScales[MAX_TIME_PRECISION + 1] = {
INT64CONST(1000000),
INT64CONST(100000),
INT64CONST(10000),
INT64CONST(1000),
INT64CONST(100),
INT64CONST(10),
INT64CONST(1)
};
static const int64 TimeOffsets[MAX_TIME_PRECISION + 1] = {
INT64CONST(500000),
INT64CONST(50000),
INT64CONST(5000),
INT64CONST(500),
INT64CONST(50),
INT64CONST(5),
INT64CONST(0)
};
if (typmod >= 0 && typmod <= MAX_TIME_PRECISION)
{
if (*time >= INT64CONST(0))
*time = ((*time + TimeOffsets[typmod]) / TimeScales[typmod]) *
TimeScales[typmod];
else
*time = -((((-*time) + TimeOffsets[typmod]) / TimeScales[typmod]) *
TimeScales[typmod]);
}
}
Datum
time_eq(PG_FUNCTION_ARGS)
{
TimeADT time1 = PG_GETARG_TIMEADT(0);
TimeADT time2 = PG_GETARG_TIMEADT(1);
PG_RETURN_BOOL(time1 == time2);
}
Datum
time_ne(PG_FUNCTION_ARGS)
{
TimeADT time1 = PG_GETARG_TIMEADT(0);
TimeADT time2 = PG_GETARG_TIMEADT(1);
PG_RETURN_BOOL(time1 != time2);
}
Datum
time_lt(PG_FUNCTION_ARGS)
{
TimeADT time1 = PG_GETARG_TIMEADT(0);
TimeADT time2 = PG_GETARG_TIMEADT(1);
PG_RETURN_BOOL(time1 < time2);
}
Datum
time_le(PG_FUNCTION_ARGS)
{
TimeADT time1 = PG_GETARG_TIMEADT(0);
TimeADT time2 = PG_GETARG_TIMEADT(1);
PG_RETURN_BOOL(time1 <= time2);
}
Datum
time_gt(PG_FUNCTION_ARGS)
{
TimeADT time1 = PG_GETARG_TIMEADT(0);
TimeADT time2 = PG_GETARG_TIMEADT(1);
PG_RETURN_BOOL(time1 > time2);
}
Datum
time_ge(PG_FUNCTION_ARGS)
{
TimeADT time1 = PG_GETARG_TIMEADT(0);
TimeADT time2 = PG_GETARG_TIMEADT(1);
PG_RETURN_BOOL(time1 >= time2);
}
Datum
time_cmp(PG_FUNCTION_ARGS)
{
TimeADT time1 = PG_GETARG_TIMEADT(0);
TimeADT time2 = PG_GETARG_TIMEADT(1);
if (time1 < time2)
PG_RETURN_INT32(-1);
if (time1 > time2)
PG_RETURN_INT32(1);
PG_RETURN_INT32(0);
}
Datum
time_hash(PG_FUNCTION_ARGS)
{
return hashint8(fcinfo);
}
Datum
time_hash_extended(PG_FUNCTION_ARGS)
{
return hashint8extended(fcinfo);
}
Datum
time_larger(PG_FUNCTION_ARGS)
{
TimeADT time1 = PG_GETARG_TIMEADT(0);
TimeADT time2 = PG_GETARG_TIMEADT(1);
PG_RETURN_TIMEADT((time1 > time2) ? time1 : time2);
}
Datum
time_smaller(PG_FUNCTION_ARGS)
{
TimeADT time1 = PG_GETARG_TIMEADT(0);
TimeADT time2 = PG_GETARG_TIMEADT(1);
PG_RETURN_TIMEADT((time1 < time2) ? time1 : time2);
}
/* overlaps_time() --- implements the SQL OVERLAPS operator.
*
* Algorithm is per SQL spec. This is much harder than you'd think
* because the spec requires us to deliver a non-null answer in some cases
* where some of the inputs are null.
*/
Datum
overlaps_time(PG_FUNCTION_ARGS)
{
/*
* The arguments are TimeADT, but we leave them as generic Datums to avoid
* dereferencing nulls (TimeADT is pass-by-reference!)
*/
Datum ts1 = PG_GETARG_DATUM(0);
Datum te1 = PG_GETARG_DATUM(1);
Datum ts2 = PG_GETARG_DATUM(2);
Datum te2 = PG_GETARG_DATUM(3);
bool ts1IsNull = PG_ARGISNULL(0);
bool te1IsNull = PG_ARGISNULL(1);
bool ts2IsNull = PG_ARGISNULL(2);
bool te2IsNull = PG_ARGISNULL(3);
#define TIMEADT_GT(t1,t2) \
(DatumGetTimeADT(t1) > DatumGetTimeADT(t2))
#define TIMEADT_LT(t1,t2) \
(DatumGetTimeADT(t1) < DatumGetTimeADT(t2))
/*
* If both endpoints of interval 1 are null, the result is null (unknown).
* If just one endpoint is null, take ts1 as the non-null one. Otherwise,
* take ts1 as the lesser endpoint.
*/
if (ts1IsNull)
{
if (te1IsNull)
PG_RETURN_NULL();
/* swap null for non-null */
ts1 = te1;
te1IsNull = true;
}
else if (!te1IsNull)
{
if (TIMEADT_GT(ts1, te1))
{
Datum tt = ts1;
ts1 = te1;
te1 = tt;
}
}
/* Likewise for interval 2. */
if (ts2IsNull)
{
if (te2IsNull)
PG_RETURN_NULL();
/* swap null for non-null */
ts2 = te2;
te2IsNull = true;
}
else if (!te2IsNull)
{
if (TIMEADT_GT(ts2, te2))
{
Datum tt = ts2;
ts2 = te2;
te2 = tt;
}
}
/*
* At this point neither ts1 nor ts2 is null, so we can consider three
* cases: ts1 > ts2, ts1 < ts2, ts1 = ts2
*/
if (TIMEADT_GT(ts1, ts2))
{
/*
* This case is ts1 < te2 OR te1 < te2, which may look redundant but
* in the presence of nulls it's not quite completely so.
*/
if (te2IsNull)
PG_RETURN_NULL();
if (TIMEADT_LT(ts1, te2))
PG_RETURN_BOOL(true);
if (te1IsNull)
PG_RETURN_NULL();
/*
* If te1 is not null then we had ts1 <= te1 above, and we just found
* ts1 >= te2, hence te1 >= te2.
*/
PG_RETURN_BOOL(false);
}
else if (TIMEADT_LT(ts1, ts2))
{
/* This case is ts2 < te1 OR te2 < te1 */
if (te1IsNull)
PG_RETURN_NULL();
if (TIMEADT_LT(ts2, te1))
PG_RETURN_BOOL(true);
if (te2IsNull)
PG_RETURN_NULL();
/*
* If te2 is not null then we had ts2 <= te2 above, and we just found
* ts2 >= te1, hence te2 >= te1.
*/
PG_RETURN_BOOL(false);
}
else
{
/*
* For ts1 = ts2 the spec says te1 <> te2 OR te1 = te2, which is a
* rather silly way of saying "true if both are nonnull, else null".
*/
if (te1IsNull || te2IsNull)
PG_RETURN_NULL();
PG_RETURN_BOOL(true);
}
#undef TIMEADT_GT
#undef TIMEADT_LT
}
/* timestamp_time()
* Convert timestamp to time data type.
*/
Datum
timestamp_time(PG_FUNCTION_ARGS)
{
Timestamp timestamp = PG_GETARG_TIMESTAMP(0);
TimeADT result;
struct pg_tm tt,
*tm = &tt;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
fsec_t fsec;
if (TIMESTAMP_NOT_FINITE(timestamp))
PG_RETURN_NULL();
if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
24 years ago
/*
* Could also do this with time = (timestamp / USECS_PER_DAY *
* USECS_PER_DAY) - timestamp;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
*/
result = ((((tm->tm_hour * MINS_PER_HOUR + tm->tm_min) * SECS_PER_MINUTE) + tm->tm_sec) *
USECS_PER_SEC) + fsec;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
PG_RETURN_TIMEADT(result);
}
/* timestamptz_time()
* Convert timestamptz to time data type.
*/
Datum
timestamptz_time(PG_FUNCTION_ARGS)
{
TimestampTz timestamp = PG_GETARG_TIMESTAMP(0);
TimeADT result;
struct pg_tm tt,
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
*tm = &tt;
int tz;
fsec_t fsec;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
if (TIMESTAMP_NOT_FINITE(timestamp))
PG_RETURN_NULL();
if (timestamp2tm(timestamp, &tz, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
24 years ago
/*
* Could also do this with time = (timestamp / USECS_PER_DAY *
* USECS_PER_DAY) - timestamp;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
*/
result = ((((tm->tm_hour * MINS_PER_HOUR + tm->tm_min) * SECS_PER_MINUTE) + tm->tm_sec) *
USECS_PER_SEC) + fsec;
PG_RETURN_TIMEADT(result);
}
/* datetime_timestamp()
* Convert date and time to timestamp data type.
*/
Datum
datetime_timestamp(PG_FUNCTION_ARGS)
{
DateADT date = PG_GETARG_DATEADT(0);
TimeADT time = PG_GETARG_TIMEADT(1);
Timestamp result;
result = date2timestamp(date);
if (!TIMESTAMP_NOT_FINITE(result))
{
result += time;
if (!IS_VALID_TIMESTAMP(result))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
}
PG_RETURN_TIMESTAMP(result);
}
/* time_interval()
* Convert time to interval data type.
*/
Datum
time_interval(PG_FUNCTION_ARGS)
{
TimeADT time = PG_GETARG_TIMEADT(0);
Interval *result;
result = (Interval *) palloc(sizeof(Interval));
result->time = time;
result->day = 0;
result->month = 0;
PG_RETURN_INTERVAL_P(result);
}
/* interval_time()
* Convert interval to time data type.
*
* This is defined as producing the fractional-day portion of the interval.
* Therefore, we can just ignore the months field. It is not real clear
* what to do with negative intervals, but we choose to subtract the floor,
* so that, say, '-2 hours' becomes '22:00:00'.
*/
Datum
interval_time(PG_FUNCTION_ARGS)
{
Interval *span = PG_GETARG_INTERVAL_P(0);
TimeADT result;
if (INTERVAL_NOT_FINITE(span))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("cannot convert infinite interval to time")));
result = span->time % USECS_PER_DAY;
if (result < 0)
result += USECS_PER_DAY;
PG_RETURN_TIMEADT(result);
}
/* time_mi_time()
* Subtract two times to produce an interval.
*/
Datum
time_mi_time(PG_FUNCTION_ARGS)
{
TimeADT time1 = PG_GETARG_TIMEADT(0);
TimeADT time2 = PG_GETARG_TIMEADT(1);
Interval *result;
result = (Interval *) palloc(sizeof(Interval));
result->month = 0;
result->day = 0;
result->time = time1 - time2;
PG_RETURN_INTERVAL_P(result);
}
/* time_pl_interval()
* Add interval to time.
*/
Datum
time_pl_interval(PG_FUNCTION_ARGS)
{
TimeADT time = PG_GETARG_TIMEADT(0);
Interval *span = PG_GETARG_INTERVAL_P(1);
TimeADT result;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
if (INTERVAL_NOT_FINITE(span))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("cannot add infinite interval to time")));
result = time + span->time;
result -= result / USECS_PER_DAY * USECS_PER_DAY;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
if (result < INT64CONST(0))
result += USECS_PER_DAY;
PG_RETURN_TIMEADT(result);
}
/* time_mi_interval()
* Subtract interval from time.
*/
Datum
time_mi_interval(PG_FUNCTION_ARGS)
{
TimeADT time = PG_GETARG_TIMEADT(0);
Interval *span = PG_GETARG_INTERVAL_P(1);
TimeADT result;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
if (INTERVAL_NOT_FINITE(span))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("cannot subtract infinite interval from time")));
result = time - span->time;
result -= result / USECS_PER_DAY * USECS_PER_DAY;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
if (result < INT64CONST(0))
result += USECS_PER_DAY;
PG_RETURN_TIMEADT(result);
}
Support all SQL:2011 options for window frame clauses. This patch adds the ability to use "RANGE offset PRECEDING/FOLLOWING" frame boundaries in window functions. We'd punted on that back in the original patch to add window functions, because it was not clear how to do it in a reasonably data-type-extensible fashion. That problem is resolved here by adding the ability for btree operator classes to provide an "in_range" support function that defines how to add or subtract the RANGE offset value. Factoring it this way also allows the operator class to avoid overflow problems near the ends of the datatype's range, if it wishes to expend effort on that. (In the committed patch, the integer opclasses handle that issue, but it did not seem worth the trouble to avoid overflow failures for datetime types.) The patch includes in_range support for the integer_ops opfamily (int2/int4/int8) as well as the standard datetime types. Support for other numeric types has been requested, but that seems like suitable material for a follow-on patch. In addition, the patch adds GROUPS mode which counts the offset in ORDER-BY peer groups rather than rows, and it adds the frame_exclusion options specified by SQL:2011. As far as I can see, we are now fully up to spec on window framing options. Existing behaviors remain unchanged, except that I changed the errcode for a couple of existing error reports to meet the SQL spec's expectation that negative "offset" values should be reported as SQLSTATE 22013. Internally and in relevant parts of the documentation, we now consistently use the terminology "offset PRECEDING/FOLLOWING" rather than "value PRECEDING/FOLLOWING", since the term "value" is confusingly vague. Oliver Ford, reviewed and whacked around some by me Discussion: https://postgr.es/m/CAGMVOdu9sivPAxbNN0X+q19Sfv9edEPv=HibOJhB14TJv_RCQg@mail.gmail.com
8 years ago
/*
* in_range support function for time.
*/
Datum
in_range_time_interval(PG_FUNCTION_ARGS)
{
TimeADT val = PG_GETARG_TIMEADT(0);
TimeADT base = PG_GETARG_TIMEADT(1);
Interval *offset = PG_GETARG_INTERVAL_P(2);
bool sub = PG_GETARG_BOOL(3);
bool less = PG_GETARG_BOOL(4);
TimeADT sum;
/*
* Like time_pl_interval/time_mi_interval, we disregard the month and day
* fields of the offset. So our test for negative should too. This also
* catches -infinity, so we only need worry about +infinity below.
Support all SQL:2011 options for window frame clauses. This patch adds the ability to use "RANGE offset PRECEDING/FOLLOWING" frame boundaries in window functions. We'd punted on that back in the original patch to add window functions, because it was not clear how to do it in a reasonably data-type-extensible fashion. That problem is resolved here by adding the ability for btree operator classes to provide an "in_range" support function that defines how to add or subtract the RANGE offset value. Factoring it this way also allows the operator class to avoid overflow problems near the ends of the datatype's range, if it wishes to expend effort on that. (In the committed patch, the integer opclasses handle that issue, but it did not seem worth the trouble to avoid overflow failures for datetime types.) The patch includes in_range support for the integer_ops opfamily (int2/int4/int8) as well as the standard datetime types. Support for other numeric types has been requested, but that seems like suitable material for a follow-on patch. In addition, the patch adds GROUPS mode which counts the offset in ORDER-BY peer groups rather than rows, and it adds the frame_exclusion options specified by SQL:2011. As far as I can see, we are now fully up to spec on window framing options. Existing behaviors remain unchanged, except that I changed the errcode for a couple of existing error reports to meet the SQL spec's expectation that negative "offset" values should be reported as SQLSTATE 22013. Internally and in relevant parts of the documentation, we now consistently use the terminology "offset PRECEDING/FOLLOWING" rather than "value PRECEDING/FOLLOWING", since the term "value" is confusingly vague. Oliver Ford, reviewed and whacked around some by me Discussion: https://postgr.es/m/CAGMVOdu9sivPAxbNN0X+q19Sfv9edEPv=HibOJhB14TJv_RCQg@mail.gmail.com
8 years ago
*/
if (offset->time < 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
Support all SQL:2011 options for window frame clauses. This patch adds the ability to use "RANGE offset PRECEDING/FOLLOWING" frame boundaries in window functions. We'd punted on that back in the original patch to add window functions, because it was not clear how to do it in a reasonably data-type-extensible fashion. That problem is resolved here by adding the ability for btree operator classes to provide an "in_range" support function that defines how to add or subtract the RANGE offset value. Factoring it this way also allows the operator class to avoid overflow problems near the ends of the datatype's range, if it wishes to expend effort on that. (In the committed patch, the integer opclasses handle that issue, but it did not seem worth the trouble to avoid overflow failures for datetime types.) The patch includes in_range support for the integer_ops opfamily (int2/int4/int8) as well as the standard datetime types. Support for other numeric types has been requested, but that seems like suitable material for a follow-on patch. In addition, the patch adds GROUPS mode which counts the offset in ORDER-BY peer groups rather than rows, and it adds the frame_exclusion options specified by SQL:2011. As far as I can see, we are now fully up to spec on window framing options. Existing behaviors remain unchanged, except that I changed the errcode for a couple of existing error reports to meet the SQL spec's expectation that negative "offset" values should be reported as SQLSTATE 22013. Internally and in relevant parts of the documentation, we now consistently use the terminology "offset PRECEDING/FOLLOWING" rather than "value PRECEDING/FOLLOWING", since the term "value" is confusingly vague. Oliver Ford, reviewed and whacked around some by me Discussion: https://postgr.es/m/CAGMVOdu9sivPAxbNN0X+q19Sfv9edEPv=HibOJhB14TJv_RCQg@mail.gmail.com
8 years ago
errmsg("invalid preceding or following size in window function")));
/*
* We can't use time_pl_interval/time_mi_interval here, because their
* wraparound behavior would give wrong (or at least undesirable) answers.
* Fortunately the equivalent non-wrapping behavior is trivial, except
* that adding an infinite (or very large) interval might cause integer
* overflow. Subtraction cannot overflow here.
Support all SQL:2011 options for window frame clauses. This patch adds the ability to use "RANGE offset PRECEDING/FOLLOWING" frame boundaries in window functions. We'd punted on that back in the original patch to add window functions, because it was not clear how to do it in a reasonably data-type-extensible fashion. That problem is resolved here by adding the ability for btree operator classes to provide an "in_range" support function that defines how to add or subtract the RANGE offset value. Factoring it this way also allows the operator class to avoid overflow problems near the ends of the datatype's range, if it wishes to expend effort on that. (In the committed patch, the integer opclasses handle that issue, but it did not seem worth the trouble to avoid overflow failures for datetime types.) The patch includes in_range support for the integer_ops opfamily (int2/int4/int8) as well as the standard datetime types. Support for other numeric types has been requested, but that seems like suitable material for a follow-on patch. In addition, the patch adds GROUPS mode which counts the offset in ORDER-BY peer groups rather than rows, and it adds the frame_exclusion options specified by SQL:2011. As far as I can see, we are now fully up to spec on window framing options. Existing behaviors remain unchanged, except that I changed the errcode for a couple of existing error reports to meet the SQL spec's expectation that negative "offset" values should be reported as SQLSTATE 22013. Internally and in relevant parts of the documentation, we now consistently use the terminology "offset PRECEDING/FOLLOWING" rather than "value PRECEDING/FOLLOWING", since the term "value" is confusingly vague. Oliver Ford, reviewed and whacked around some by me Discussion: https://postgr.es/m/CAGMVOdu9sivPAxbNN0X+q19Sfv9edEPv=HibOJhB14TJv_RCQg@mail.gmail.com
8 years ago
*/
if (sub)
sum = base - offset->time;
else if (pg_add_s64_overflow(base, offset->time, &sum))
PG_RETURN_BOOL(less);
Support all SQL:2011 options for window frame clauses. This patch adds the ability to use "RANGE offset PRECEDING/FOLLOWING" frame boundaries in window functions. We'd punted on that back in the original patch to add window functions, because it was not clear how to do it in a reasonably data-type-extensible fashion. That problem is resolved here by adding the ability for btree operator classes to provide an "in_range" support function that defines how to add or subtract the RANGE offset value. Factoring it this way also allows the operator class to avoid overflow problems near the ends of the datatype's range, if it wishes to expend effort on that. (In the committed patch, the integer opclasses handle that issue, but it did not seem worth the trouble to avoid overflow failures for datetime types.) The patch includes in_range support for the integer_ops opfamily (int2/int4/int8) as well as the standard datetime types. Support for other numeric types has been requested, but that seems like suitable material for a follow-on patch. In addition, the patch adds GROUPS mode which counts the offset in ORDER-BY peer groups rather than rows, and it adds the frame_exclusion options specified by SQL:2011. As far as I can see, we are now fully up to spec on window framing options. Existing behaviors remain unchanged, except that I changed the errcode for a couple of existing error reports to meet the SQL spec's expectation that negative "offset" values should be reported as SQLSTATE 22013. Internally and in relevant parts of the documentation, we now consistently use the terminology "offset PRECEDING/FOLLOWING" rather than "value PRECEDING/FOLLOWING", since the term "value" is confusingly vague. Oliver Ford, reviewed and whacked around some by me Discussion: https://postgr.es/m/CAGMVOdu9sivPAxbNN0X+q19Sfv9edEPv=HibOJhB14TJv_RCQg@mail.gmail.com
8 years ago
if (less)
PG_RETURN_BOOL(val <= sum);
else
PG_RETURN_BOOL(val >= sum);
}
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
/* time_part() and extract_time()
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
* Extract specified field from time type.
*/
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
static Datum
time_part_common(PG_FUNCTION_ARGS, bool retnumeric)
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
{
text *units = PG_GETARG_TEXT_PP(0);
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
TimeADT time = PG_GETARG_TIMEADT(1);
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
int64 intresult;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
int type,
val;
char *lowunits;
lowunits = downcase_truncate_identifier(VARDATA_ANY(units),
VARSIZE_ANY_EXHDR(units),
false);
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
type = DecodeUnits(0, lowunits, &val);
if (type == UNKNOWN_FIELD)
type = DecodeSpecial(0, lowunits, &val);
if (type == UNITS)
{
fsec_t fsec;
struct pg_tm tt,
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
*tm = &tt;
time2tm(time, tm, &fsec);
switch (val)
{
case DTK_MICROSEC:
intresult = tm->tm_sec * INT64CONST(1000000) + fsec;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
break;
case DTK_MILLISEC:
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
if (retnumeric)
/*---
* tm->tm_sec * 1000 + fsec / 1000
* = (tm->tm_sec * 1'000'000 + fsec) / 1000
*/
PG_RETURN_NUMERIC(int64_div_fast_to_numeric(tm->tm_sec * INT64CONST(1000000) + fsec, 3));
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
else
PG_RETURN_FLOAT8(tm->tm_sec * 1000.0 + fsec / 1000.0);
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
break;
case DTK_SECOND:
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
if (retnumeric)
/*---
* tm->tm_sec + fsec / 1'000'000
* = (tm->tm_sec * 1'000'000 + fsec) / 1'000'000
*/
PG_RETURN_NUMERIC(int64_div_fast_to_numeric(tm->tm_sec * INT64CONST(1000000) + fsec, 6));
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
else
PG_RETURN_FLOAT8(tm->tm_sec + fsec / 1000000.0);
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
break;
case DTK_MINUTE:
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
intresult = tm->tm_min;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
break;
case DTK_HOUR:
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
intresult = tm->tm_hour;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
break;
case DTK_TZ:
case DTK_TZ_MINUTE:
case DTK_TZ_HOUR:
case DTK_DAY:
case DTK_MONTH:
case DTK_QUARTER:
case DTK_YEAR:
case DTK_DECADE:
case DTK_CENTURY:
case DTK_MILLENNIUM:
case DTK_ISOYEAR:
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
default:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("unit \"%s\" not supported for type %s",
lowunits, format_type_be(TIMEOID))));
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
intresult = 0;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
}
}
else if (type == RESERV && val == DTK_EPOCH)
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
{
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
if (retnumeric)
PG_RETURN_NUMERIC(int64_div_fast_to_numeric(time, 6));
else
PG_RETURN_FLOAT8(time / 1000000.0);
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
}
else
{
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("unit \"%s\" not recognized for type %s",
lowunits, format_type_be(TIMEOID))));
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
intresult = 0;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
}
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
if (retnumeric)
PG_RETURN_NUMERIC(int64_to_numeric(intresult));
else
PG_RETURN_FLOAT8(intresult);
}
Datum
time_part(PG_FUNCTION_ARGS)
{
return time_part_common(fcinfo, false);
}
Datum
extract_time(PG_FUNCTION_ARGS)
{
return time_part_common(fcinfo, true);
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
}
/*****************************************************************************
* Time With Time Zone ADT
*****************************************************************************/
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
/* tm2timetz()
* Convert a tm structure to a time data type.
*/
int
9 years ago
tm2timetz(struct pg_tm *tm, fsec_t fsec, int tz, TimeTzADT *result)
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
{
result->time = ((((tm->tm_hour * MINS_PER_HOUR + tm->tm_min) * SECS_PER_MINUTE) + tm->tm_sec) *
USECS_PER_SEC) + fsec;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
result->zone = tz;
return 0;
}
Datum
timetz_in(PG_FUNCTION_ARGS)
{
char *str = PG_GETARG_CSTRING(0);
#ifdef NOT_USED
Oid typelem = PG_GETARG_OID(1);
#endif
int32 typmod = PG_GETARG_INT32(2);
Node *escontext = fcinfo->context;
TimeTzADT *result;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
fsec_t fsec;
struct pg_tm tt,
*tm = &tt;
int tz;
int nf;
int dterr;
char workbuf[MAXDATELEN + 1];
char *field[MAXDATEFIELDS];
int dtype;
int ftype[MAXDATEFIELDS];
DateTimeErrorExtra extra;
dterr = ParseDateTime(str, workbuf, sizeof(workbuf),
field, ftype, MAXDATEFIELDS, &nf);
if (dterr == 0)
dterr = DecodeTimeOnly(field, ftype, nf,
&dtype, tm, &fsec, &tz, &extra);
if (dterr != 0)
{
DateTimeParseError(dterr, &extra, str, "time with time zone",
escontext);
PG_RETURN_NULL();
}
result = (TimeTzADT *) palloc(sizeof(TimeTzADT));
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
tm2timetz(tm, fsec, tz, result);
AdjustTimeForTypmod(&(result->time), typmod);
PG_RETURN_TIMETZADT_P(result);
}
Datum
timetz_out(PG_FUNCTION_ARGS)
{
TimeTzADT *time = PG_GETARG_TIMETZADT_P(0);
char *result;
struct pg_tm tt,
*tm = &tt;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
fsec_t fsec;
int tz;
char buf[MAXDATELEN + 1];
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
timetz2tm(time, tm, &fsec, &tz);
EncodeTimeOnly(tm, fsec, true, tz, DateStyle, buf);
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
result = pstrdup(buf);
PG_RETURN_CSTRING(result);
}
/*
* timetz_recv - converts external binary format to timetz
*/
Datum
timetz_recv(PG_FUNCTION_ARGS)
{
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
#ifdef NOT_USED
Oid typelem = PG_GETARG_OID(1);
#endif
int32 typmod = PG_GETARG_INT32(2);
TimeTzADT *result;
result = (TimeTzADT *) palloc(sizeof(TimeTzADT));
result->time = pq_getmsgint64(buf);
if (result->time < INT64CONST(0) || result->time > USECS_PER_DAY)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("time out of range")));
result->zone = pq_getmsgint(buf, sizeof(result->zone));
/* Check for sane GMT displacement; see notes in datatype/timestamp.h */
if (result->zone <= -TZDISP_LIMIT || result->zone >= TZDISP_LIMIT)
ereport(ERROR,
(errcode(ERRCODE_INVALID_TIME_ZONE_DISPLACEMENT_VALUE),
errmsg("time zone displacement out of range")));
AdjustTimeForTypmod(&(result->time), typmod);
PG_RETURN_TIMETZADT_P(result);
}
/*
* timetz_send - converts timetz to binary format
*/
Datum
timetz_send(PG_FUNCTION_ARGS)
{
TimeTzADT *time = PG_GETARG_TIMETZADT_P(0);
StringInfoData buf;
pq_begintypsend(&buf);
pq_sendint64(&buf, time->time);
pq_sendint32(&buf, time->zone);
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
Datum
timetztypmodin(PG_FUNCTION_ARGS)
{
ArrayType *ta = PG_GETARG_ARRAYTYPE_P(0);
PG_RETURN_INT32(anytime_typmodin(true, ta));
}
Datum
timetztypmodout(PG_FUNCTION_ARGS)
{
int32 typmod = PG_GETARG_INT32(0);
PG_RETURN_CSTRING(anytime_typmodout(true, typmod));
}
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
/* timetz2tm()
* Convert TIME WITH TIME ZONE data type to POSIX time structure.
*/
int
9 years ago
timetz2tm(TimeTzADT *time, struct pg_tm *tm, fsec_t *fsec, int *tzp)
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
{
TimeOffset trem = time->time;
tm->tm_hour = trem / USECS_PER_HOUR;
trem -= tm->tm_hour * USECS_PER_HOUR;
tm->tm_min = trem / USECS_PER_MINUTE;
trem -= tm->tm_min * USECS_PER_MINUTE;
tm->tm_sec = trem / USECS_PER_SEC;
*fsec = trem - tm->tm_sec * USECS_PER_SEC;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
if (tzp != NULL)
*tzp = time->zone;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
return 0;
}
/* timetz_scale()
* Adjust time type for specified scale factor.
* Used by PostgreSQL type system to stuff columns.
*/
Datum
timetz_scale(PG_FUNCTION_ARGS)
{
TimeTzADT *time = PG_GETARG_TIMETZADT_P(0);
int32 typmod = PG_GETARG_INT32(1);
TimeTzADT *result;
result = (TimeTzADT *) palloc(sizeof(TimeTzADT));
result->time = time->time;
result->zone = time->zone;
AdjustTimeForTypmod(&(result->time), typmod);
PG_RETURN_TIMETZADT_P(result);
}
static int
timetz_cmp_internal(TimeTzADT *time1, TimeTzADT *time2)
{
TimeOffset t1,
t2;
/* Primary sort is by true (GMT-equivalent) time */
t1 = time1->time + (time1->zone * USECS_PER_SEC);
t2 = time2->time + (time2->zone * USECS_PER_SEC);
if (t1 > t2)
return 1;
if (t1 < t2)
return -1;
/*
* If same GMT time, sort by timezone; we only want to say that two
* timetz's are equal if both the time and zone parts are equal.
*/
if (time1->zone > time2->zone)
return 1;
if (time1->zone < time2->zone)
return -1;
return 0;
}
Datum
timetz_eq(PG_FUNCTION_ARGS)
{
TimeTzADT *time1 = PG_GETARG_TIMETZADT_P(0);
TimeTzADT *time2 = PG_GETARG_TIMETZADT_P(1);
PG_RETURN_BOOL(timetz_cmp_internal(time1, time2) == 0);
}
Datum
timetz_ne(PG_FUNCTION_ARGS)
{
TimeTzADT *time1 = PG_GETARG_TIMETZADT_P(0);
TimeTzADT *time2 = PG_GETARG_TIMETZADT_P(1);
PG_RETURN_BOOL(timetz_cmp_internal(time1, time2) != 0);
}
Datum
timetz_lt(PG_FUNCTION_ARGS)
{
TimeTzADT *time1 = PG_GETARG_TIMETZADT_P(0);
TimeTzADT *time2 = PG_GETARG_TIMETZADT_P(1);
PG_RETURN_BOOL(timetz_cmp_internal(time1, time2) < 0);
}
Datum
timetz_le(PG_FUNCTION_ARGS)
{
TimeTzADT *time1 = PG_GETARG_TIMETZADT_P(0);
TimeTzADT *time2 = PG_GETARG_TIMETZADT_P(1);
PG_RETURN_BOOL(timetz_cmp_internal(time1, time2) <= 0);
}
Datum
timetz_gt(PG_FUNCTION_ARGS)
{
TimeTzADT *time1 = PG_GETARG_TIMETZADT_P(0);
TimeTzADT *time2 = PG_GETARG_TIMETZADT_P(1);
PG_RETURN_BOOL(timetz_cmp_internal(time1, time2) > 0);
}
Datum
timetz_ge(PG_FUNCTION_ARGS)
{
TimeTzADT *time1 = PG_GETARG_TIMETZADT_P(0);
TimeTzADT *time2 = PG_GETARG_TIMETZADT_P(1);
PG_RETURN_BOOL(timetz_cmp_internal(time1, time2) >= 0);
}
Datum
timetz_cmp(PG_FUNCTION_ARGS)
{
TimeTzADT *time1 = PG_GETARG_TIMETZADT_P(0);
TimeTzADT *time2 = PG_GETARG_TIMETZADT_P(1);
PG_RETURN_INT32(timetz_cmp_internal(time1, time2));
}
Datum
timetz_hash(PG_FUNCTION_ARGS)
{
TimeTzADT *key = PG_GETARG_TIMETZADT_P(0);
uint32 thash;
/*
* To avoid any problems with padding bytes in the struct, we figure the
* field hashes separately and XOR them.
*/
thash = DatumGetUInt32(DirectFunctionCall1(hashint8,
Int64GetDatumFast(key->time)));
thash ^= DatumGetUInt32(hash_uint32(key->zone));
PG_RETURN_UINT32(thash);
}
Datum
timetz_hash_extended(PG_FUNCTION_ARGS)
{
TimeTzADT *key = PG_GETARG_TIMETZADT_P(0);
Datum seed = PG_GETARG_DATUM(1);
uint64 thash;
/* Same approach as timetz_hash */
thash = DatumGetUInt64(DirectFunctionCall2(hashint8extended,
Int64GetDatumFast(key->time),
seed));
thash ^= DatumGetUInt64(hash_uint32_extended(key->zone,
DatumGetInt64(seed)));
PG_RETURN_UINT64(thash);
}
Datum
timetz_larger(PG_FUNCTION_ARGS)
{
TimeTzADT *time1 = PG_GETARG_TIMETZADT_P(0);
TimeTzADT *time2 = PG_GETARG_TIMETZADT_P(1);
TimeTzADT *result;
if (timetz_cmp_internal(time1, time2) > 0)
result = time1;
else
result = time2;
PG_RETURN_TIMETZADT_P(result);
}
Datum
timetz_smaller(PG_FUNCTION_ARGS)
{
TimeTzADT *time1 = PG_GETARG_TIMETZADT_P(0);
TimeTzADT *time2 = PG_GETARG_TIMETZADT_P(1);
TimeTzADT *result;
if (timetz_cmp_internal(time1, time2) < 0)
result = time1;
else
result = time2;
PG_RETURN_TIMETZADT_P(result);
}
/* timetz_pl_interval()
* Add interval to timetz.
*/
Datum
timetz_pl_interval(PG_FUNCTION_ARGS)
{
TimeTzADT *time = PG_GETARG_TIMETZADT_P(0);
Interval *span = PG_GETARG_INTERVAL_P(1);
TimeTzADT *result;
24 years ago
if (INTERVAL_NOT_FINITE(span))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("cannot add infinite interval to time")));
result = (TimeTzADT *) palloc(sizeof(TimeTzADT));
result->time = time->time + span->time;
result->time -= result->time / USECS_PER_DAY * USECS_PER_DAY;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
if (result->time < INT64CONST(0))
result->time += USECS_PER_DAY;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
result->zone = time->zone;
PG_RETURN_TIMETZADT_P(result);
}
/* timetz_mi_interval()
* Subtract interval from timetz.
*/
Datum
timetz_mi_interval(PG_FUNCTION_ARGS)
{
TimeTzADT *time = PG_GETARG_TIMETZADT_P(0);
Interval *span = PG_GETARG_INTERVAL_P(1);
TimeTzADT *result;
24 years ago
if (INTERVAL_NOT_FINITE(span))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("cannot subtract infinite interval from time")));
result = (TimeTzADT *) palloc(sizeof(TimeTzADT));
result->time = time->time - span->time;
result->time -= result->time / USECS_PER_DAY * USECS_PER_DAY;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
if (result->time < INT64CONST(0))
result->time += USECS_PER_DAY;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
result->zone = time->zone;
PG_RETURN_TIMETZADT_P(result);
}
Support all SQL:2011 options for window frame clauses. This patch adds the ability to use "RANGE offset PRECEDING/FOLLOWING" frame boundaries in window functions. We'd punted on that back in the original patch to add window functions, because it was not clear how to do it in a reasonably data-type-extensible fashion. That problem is resolved here by adding the ability for btree operator classes to provide an "in_range" support function that defines how to add or subtract the RANGE offset value. Factoring it this way also allows the operator class to avoid overflow problems near the ends of the datatype's range, if it wishes to expend effort on that. (In the committed patch, the integer opclasses handle that issue, but it did not seem worth the trouble to avoid overflow failures for datetime types.) The patch includes in_range support for the integer_ops opfamily (int2/int4/int8) as well as the standard datetime types. Support for other numeric types has been requested, but that seems like suitable material for a follow-on patch. In addition, the patch adds GROUPS mode which counts the offset in ORDER-BY peer groups rather than rows, and it adds the frame_exclusion options specified by SQL:2011. As far as I can see, we are now fully up to spec on window framing options. Existing behaviors remain unchanged, except that I changed the errcode for a couple of existing error reports to meet the SQL spec's expectation that negative "offset" values should be reported as SQLSTATE 22013. Internally and in relevant parts of the documentation, we now consistently use the terminology "offset PRECEDING/FOLLOWING" rather than "value PRECEDING/FOLLOWING", since the term "value" is confusingly vague. Oliver Ford, reviewed and whacked around some by me Discussion: https://postgr.es/m/CAGMVOdu9sivPAxbNN0X+q19Sfv9edEPv=HibOJhB14TJv_RCQg@mail.gmail.com
8 years ago
/*
* in_range support function for timetz.
*/
Datum
in_range_timetz_interval(PG_FUNCTION_ARGS)
{
TimeTzADT *val = PG_GETARG_TIMETZADT_P(0);
TimeTzADT *base = PG_GETARG_TIMETZADT_P(1);
Interval *offset = PG_GETARG_INTERVAL_P(2);
bool sub = PG_GETARG_BOOL(3);
bool less = PG_GETARG_BOOL(4);
TimeTzADT sum;
/*
* Like timetz_pl_interval/timetz_mi_interval, we disregard the month and
* day fields of the offset. So our test for negative should too. This
* also catches -infinity, so we only need worry about +infinity below.
Support all SQL:2011 options for window frame clauses. This patch adds the ability to use "RANGE offset PRECEDING/FOLLOWING" frame boundaries in window functions. We'd punted on that back in the original patch to add window functions, because it was not clear how to do it in a reasonably data-type-extensible fashion. That problem is resolved here by adding the ability for btree operator classes to provide an "in_range" support function that defines how to add or subtract the RANGE offset value. Factoring it this way also allows the operator class to avoid overflow problems near the ends of the datatype's range, if it wishes to expend effort on that. (In the committed patch, the integer opclasses handle that issue, but it did not seem worth the trouble to avoid overflow failures for datetime types.) The patch includes in_range support for the integer_ops opfamily (int2/int4/int8) as well as the standard datetime types. Support for other numeric types has been requested, but that seems like suitable material for a follow-on patch. In addition, the patch adds GROUPS mode which counts the offset in ORDER-BY peer groups rather than rows, and it adds the frame_exclusion options specified by SQL:2011. As far as I can see, we are now fully up to spec on window framing options. Existing behaviors remain unchanged, except that I changed the errcode for a couple of existing error reports to meet the SQL spec's expectation that negative "offset" values should be reported as SQLSTATE 22013. Internally and in relevant parts of the documentation, we now consistently use the terminology "offset PRECEDING/FOLLOWING" rather than "value PRECEDING/FOLLOWING", since the term "value" is confusingly vague. Oliver Ford, reviewed and whacked around some by me Discussion: https://postgr.es/m/CAGMVOdu9sivPAxbNN0X+q19Sfv9edEPv=HibOJhB14TJv_RCQg@mail.gmail.com
8 years ago
*/
if (offset->time < 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
Support all SQL:2011 options for window frame clauses. This patch adds the ability to use "RANGE offset PRECEDING/FOLLOWING" frame boundaries in window functions. We'd punted on that back in the original patch to add window functions, because it was not clear how to do it in a reasonably data-type-extensible fashion. That problem is resolved here by adding the ability for btree operator classes to provide an "in_range" support function that defines how to add or subtract the RANGE offset value. Factoring it this way also allows the operator class to avoid overflow problems near the ends of the datatype's range, if it wishes to expend effort on that. (In the committed patch, the integer opclasses handle that issue, but it did not seem worth the trouble to avoid overflow failures for datetime types.) The patch includes in_range support for the integer_ops opfamily (int2/int4/int8) as well as the standard datetime types. Support for other numeric types has been requested, but that seems like suitable material for a follow-on patch. In addition, the patch adds GROUPS mode which counts the offset in ORDER-BY peer groups rather than rows, and it adds the frame_exclusion options specified by SQL:2011. As far as I can see, we are now fully up to spec on window framing options. Existing behaviors remain unchanged, except that I changed the errcode for a couple of existing error reports to meet the SQL spec's expectation that negative "offset" values should be reported as SQLSTATE 22013. Internally and in relevant parts of the documentation, we now consistently use the terminology "offset PRECEDING/FOLLOWING" rather than "value PRECEDING/FOLLOWING", since the term "value" is confusingly vague. Oliver Ford, reviewed and whacked around some by me Discussion: https://postgr.es/m/CAGMVOdu9sivPAxbNN0X+q19Sfv9edEPv=HibOJhB14TJv_RCQg@mail.gmail.com
8 years ago
errmsg("invalid preceding or following size in window function")));
/*
* We can't use timetz_pl_interval/timetz_mi_interval here, because their
* wraparound behavior would give wrong (or at least undesirable) answers.
* Fortunately the equivalent non-wrapping behavior is trivial, except
* that adding an infinite (or very large) interval might cause integer
* overflow. Subtraction cannot overflow here.
Support all SQL:2011 options for window frame clauses. This patch adds the ability to use "RANGE offset PRECEDING/FOLLOWING" frame boundaries in window functions. We'd punted on that back in the original patch to add window functions, because it was not clear how to do it in a reasonably data-type-extensible fashion. That problem is resolved here by adding the ability for btree operator classes to provide an "in_range" support function that defines how to add or subtract the RANGE offset value. Factoring it this way also allows the operator class to avoid overflow problems near the ends of the datatype's range, if it wishes to expend effort on that. (In the committed patch, the integer opclasses handle that issue, but it did not seem worth the trouble to avoid overflow failures for datetime types.) The patch includes in_range support for the integer_ops opfamily (int2/int4/int8) as well as the standard datetime types. Support for other numeric types has been requested, but that seems like suitable material for a follow-on patch. In addition, the patch adds GROUPS mode which counts the offset in ORDER-BY peer groups rather than rows, and it adds the frame_exclusion options specified by SQL:2011. As far as I can see, we are now fully up to spec on window framing options. Existing behaviors remain unchanged, except that I changed the errcode for a couple of existing error reports to meet the SQL spec's expectation that negative "offset" values should be reported as SQLSTATE 22013. Internally and in relevant parts of the documentation, we now consistently use the terminology "offset PRECEDING/FOLLOWING" rather than "value PRECEDING/FOLLOWING", since the term "value" is confusingly vague. Oliver Ford, reviewed and whacked around some by me Discussion: https://postgr.es/m/CAGMVOdu9sivPAxbNN0X+q19Sfv9edEPv=HibOJhB14TJv_RCQg@mail.gmail.com
8 years ago
*/
if (sub)
sum.time = base->time - offset->time;
else if (pg_add_s64_overflow(base->time, offset->time, &sum.time))
PG_RETURN_BOOL(less);
Support all SQL:2011 options for window frame clauses. This patch adds the ability to use "RANGE offset PRECEDING/FOLLOWING" frame boundaries in window functions. We'd punted on that back in the original patch to add window functions, because it was not clear how to do it in a reasonably data-type-extensible fashion. That problem is resolved here by adding the ability for btree operator classes to provide an "in_range" support function that defines how to add or subtract the RANGE offset value. Factoring it this way also allows the operator class to avoid overflow problems near the ends of the datatype's range, if it wishes to expend effort on that. (In the committed patch, the integer opclasses handle that issue, but it did not seem worth the trouble to avoid overflow failures for datetime types.) The patch includes in_range support for the integer_ops opfamily (int2/int4/int8) as well as the standard datetime types. Support for other numeric types has been requested, but that seems like suitable material for a follow-on patch. In addition, the patch adds GROUPS mode which counts the offset in ORDER-BY peer groups rather than rows, and it adds the frame_exclusion options specified by SQL:2011. As far as I can see, we are now fully up to spec on window framing options. Existing behaviors remain unchanged, except that I changed the errcode for a couple of existing error reports to meet the SQL spec's expectation that negative "offset" values should be reported as SQLSTATE 22013. Internally and in relevant parts of the documentation, we now consistently use the terminology "offset PRECEDING/FOLLOWING" rather than "value PRECEDING/FOLLOWING", since the term "value" is confusingly vague. Oliver Ford, reviewed and whacked around some by me Discussion: https://postgr.es/m/CAGMVOdu9sivPAxbNN0X+q19Sfv9edEPv=HibOJhB14TJv_RCQg@mail.gmail.com
8 years ago
sum.zone = base->zone;
if (less)
PG_RETURN_BOOL(timetz_cmp_internal(val, &sum) <= 0);
else
PG_RETURN_BOOL(timetz_cmp_internal(val, &sum) >= 0);
}
/* overlaps_timetz() --- implements the SQL OVERLAPS operator.
*
* Algorithm is per SQL spec. This is much harder than you'd think
* because the spec requires us to deliver a non-null answer in some cases
* where some of the inputs are null.
*/
Datum
overlaps_timetz(PG_FUNCTION_ARGS)
{
/*
* The arguments are TimeTzADT *, but we leave them as generic Datums for
* convenience of notation --- and to avoid dereferencing nulls.
*/
Datum ts1 = PG_GETARG_DATUM(0);
Datum te1 = PG_GETARG_DATUM(1);
Datum ts2 = PG_GETARG_DATUM(2);
Datum te2 = PG_GETARG_DATUM(3);
bool ts1IsNull = PG_ARGISNULL(0);
bool te1IsNull = PG_ARGISNULL(1);
bool ts2IsNull = PG_ARGISNULL(2);
bool te2IsNull = PG_ARGISNULL(3);
#define TIMETZ_GT(t1,t2) \
DatumGetBool(DirectFunctionCall2(timetz_gt,t1,t2))
#define TIMETZ_LT(t1,t2) \
DatumGetBool(DirectFunctionCall2(timetz_lt,t1,t2))
/*
* If both endpoints of interval 1 are null, the result is null (unknown).
* If just one endpoint is null, take ts1 as the non-null one. Otherwise,
* take ts1 as the lesser endpoint.
*/
if (ts1IsNull)
{
if (te1IsNull)
PG_RETURN_NULL();
/* swap null for non-null */
ts1 = te1;
te1IsNull = true;
}
else if (!te1IsNull)
{
if (TIMETZ_GT(ts1, te1))
{
Datum tt = ts1;
ts1 = te1;
te1 = tt;
}
}
/* Likewise for interval 2. */
if (ts2IsNull)
{
if (te2IsNull)
PG_RETURN_NULL();
/* swap null for non-null */
ts2 = te2;
te2IsNull = true;
}
else if (!te2IsNull)
{
if (TIMETZ_GT(ts2, te2))
{
Datum tt = ts2;
ts2 = te2;
te2 = tt;
}
}
/*
* At this point neither ts1 nor ts2 is null, so we can consider three
* cases: ts1 > ts2, ts1 < ts2, ts1 = ts2
*/
if (TIMETZ_GT(ts1, ts2))
{
/*
* This case is ts1 < te2 OR te1 < te2, which may look redundant but
* in the presence of nulls it's not quite completely so.
*/
if (te2IsNull)
PG_RETURN_NULL();
if (TIMETZ_LT(ts1, te2))
PG_RETURN_BOOL(true);
if (te1IsNull)
PG_RETURN_NULL();
/*
* If te1 is not null then we had ts1 <= te1 above, and we just found
* ts1 >= te2, hence te1 >= te2.
*/
PG_RETURN_BOOL(false);
}
else if (TIMETZ_LT(ts1, ts2))
{
/* This case is ts2 < te1 OR te2 < te1 */
if (te1IsNull)
PG_RETURN_NULL();
if (TIMETZ_LT(ts2, te1))
PG_RETURN_BOOL(true);
if (te2IsNull)
PG_RETURN_NULL();
/*
* If te2 is not null then we had ts2 <= te2 above, and we just found
* ts2 >= te1, hence te2 >= te1.
*/
PG_RETURN_BOOL(false);
}
else
{
/*
* For ts1 = ts2 the spec says te1 <> te2 OR te1 = te2, which is a
* rather silly way of saying "true if both are nonnull, else null".
*/
if (te1IsNull || te2IsNull)
PG_RETURN_NULL();
PG_RETURN_BOOL(true);
}
#undef TIMETZ_GT
#undef TIMETZ_LT
}
Datum
timetz_time(PG_FUNCTION_ARGS)
{
TimeTzADT *timetz = PG_GETARG_TIMETZADT_P(0);
TimeADT result;
/* swallow the time zone and just return the time */
result = timetz->time;
PG_RETURN_TIMEADT(result);
}
Datum
time_timetz(PG_FUNCTION_ARGS)
{
TimeADT time = PG_GETARG_TIMEADT(0);
TimeTzADT *result;
struct pg_tm tt,
*tm = &tt;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
fsec_t fsec;
int tz;
GetCurrentDateTime(tm);
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
time2tm(time, tm, &fsec);
tz = DetermineTimeZoneOffset(tm, session_timezone);
result = (TimeTzADT *) palloc(sizeof(TimeTzADT));
result->time = time;
result->zone = tz;
PG_RETURN_TIMETZADT_P(result);
}
/* timestamptz_timetz()
* Convert timestamp to timetz data type.
*/
Datum
timestamptz_timetz(PG_FUNCTION_ARGS)
{
TimestampTz timestamp = PG_GETARG_TIMESTAMP(0);
TimeTzADT *result;
struct pg_tm tt,
*tm = &tt;
int tz;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
fsec_t fsec;
if (TIMESTAMP_NOT_FINITE(timestamp))
PG_RETURN_NULL();
if (timestamp2tm(timestamp, &tz, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
result = (TimeTzADT *) palloc(sizeof(TimeTzADT));
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
tm2timetz(tm, fsec, tz, result);
PG_RETURN_TIMETZADT_P(result);
}
/* datetimetz_timestamptz()
* Convert date and timetz to timestamp with time zone data type.
* Timestamp is stored in GMT, so add the time zone
* stored with the timetz to the result.
* - thomas 2000-03-10
*/
Datum
datetimetz_timestamptz(PG_FUNCTION_ARGS)
{
DateADT date = PG_GETARG_DATEADT(0);
TimeTzADT *time = PG_GETARG_TIMETZADT_P(1);
TimestampTz result;
if (DATE_IS_NOBEGIN(date))
TIMESTAMP_NOBEGIN(result);
else if (DATE_IS_NOEND(date))
TIMESTAMP_NOEND(result);
else
{
/*
* Date's range is wider than timestamp's, so check for boundaries.
* Since dates have the same minimum values as timestamps, only upper
* boundary need be checked for overflow.
*/
if (date >= (TIMESTAMP_END_JULIAN - POSTGRES_EPOCH_JDATE))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("date out of range for timestamp")));
result = date * USECS_PER_DAY + time->time + time->zone * USECS_PER_SEC;
/*
* Since it is possible to go beyond allowed timestamptz range because
* of time zone, check for allowed timestamp range after adding tz.
*/
if (!IS_VALID_TIMESTAMP(result))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("date out of range for timestamp")));
}
PG_RETURN_TIMESTAMP(result);
}
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
/* timetz_part() and extract_timetz()
* Extract specified field from time type.
*/
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
static Datum
timetz_part_common(PG_FUNCTION_ARGS, bool retnumeric)
{
text *units = PG_GETARG_TEXT_PP(0);
TimeTzADT *time = PG_GETARG_TIMETZADT_P(1);
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
int64 intresult;
int type,
val;
char *lowunits;
lowunits = downcase_truncate_identifier(VARDATA_ANY(units),
VARSIZE_ANY_EXHDR(units),
false);
type = DecodeUnits(0, lowunits, &val);
if (type == UNKNOWN_FIELD)
type = DecodeSpecial(0, lowunits, &val);
if (type == UNITS)
{
int tz;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
fsec_t fsec;
struct pg_tm tt,
*tm = &tt;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
timetz2tm(time, tm, &fsec, &tz);
switch (val)
{
case DTK_TZ:
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
intresult = -tz;
break;
case DTK_TZ_MINUTE:
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
intresult = (-tz / SECS_PER_MINUTE) % MINS_PER_HOUR;
break;
case DTK_TZ_HOUR:
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
intresult = -tz / SECS_PER_HOUR;
break;
case DTK_MICROSEC:
intresult = tm->tm_sec * INT64CONST(1000000) + fsec;
break;
case DTK_MILLISEC:
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
if (retnumeric)
/*---
* tm->tm_sec * 1000 + fsec / 1000
* = (tm->tm_sec * 1'000'000 + fsec) / 1000
*/
PG_RETURN_NUMERIC(int64_div_fast_to_numeric(tm->tm_sec * INT64CONST(1000000) + fsec, 3));
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
else
PG_RETURN_FLOAT8(tm->tm_sec * 1000.0 + fsec / 1000.0);
break;
case DTK_SECOND:
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
if (retnumeric)
/*---
* tm->tm_sec + fsec / 1'000'000
* = (tm->tm_sec * 1'000'000 + fsec) / 1'000'000
*/
PG_RETURN_NUMERIC(int64_div_fast_to_numeric(tm->tm_sec * INT64CONST(1000000) + fsec, 6));
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
else
PG_RETURN_FLOAT8(tm->tm_sec + fsec / 1000000.0);
break;
case DTK_MINUTE:
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
intresult = tm->tm_min;
break;
case DTK_HOUR:
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
intresult = tm->tm_hour;
break;
case DTK_DAY:
case DTK_MONTH:
case DTK_QUARTER:
case DTK_YEAR:
case DTK_DECADE:
case DTK_CENTURY:
case DTK_MILLENNIUM:
default:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("unit \"%s\" not supported for type %s",
lowunits, format_type_be(TIMETZOID))));
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
intresult = 0;
}
}
else if (type == RESERV && val == DTK_EPOCH)
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
{
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
if (retnumeric)
/*---
* time->time / 1'000'000 + time->zone
* = (time->time + time->zone * 1'000'000) / 1'000'000
*/
PG_RETURN_NUMERIC(int64_div_fast_to_numeric(time->time + time->zone * INT64CONST(1000000), 6));
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
else
PG_RETURN_FLOAT8(time->time / 1000000.0 + time->zone);
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
}
else
{
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("unit \"%s\" not recognized for type %s",
lowunits, format_type_be(TIMETZOID))));
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
intresult = 0;
}
Change return type of EXTRACT to numeric The previous implementation of EXTRACT mapped internally to date_part(), which returned type double precision (since it was implemented long before the numeric type existed). This can lead to imprecise output in some cases, so returning numeric would be preferrable. Changing the return type of an existing function is a bit risky, so instead we do the following: We implement a new set of functions, which are now called "extract", in parallel to the existing date_part functions. They work the same way internally but use numeric instead of float8. The EXTRACT construct is now mapped by the parser to these new extract functions. That way, dumps of views etc. from old versions (which would use date_part) continue to work unchanged, but new uses will map to the new extract functions. Additionally, the reverse compilation of EXTRACT now reproduces the original syntax, using the new mechanism introduced in 40c24bfef92530bd846e111c1742c2a54441c62c. The following minor changes of behavior result from the new implementation: - The column name from an isolated EXTRACT call is now "extract" instead of "date_part". - Extract from date now rejects inappropriate field names such as HOUR. It was previously mapped internally to extract from timestamp, so it would silently accept everything appropriate for timestamp. - Return values when extracting fields with possibly fractional values, such as second and epoch, now have the full scale that the value has internally (so, for example, '1.000000' instead of just '1'). Reported-by: Petr Fedorov <petr.fedorov@phystech.edu> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
5 years ago
if (retnumeric)
PG_RETURN_NUMERIC(int64_to_numeric(intresult));
else
PG_RETURN_FLOAT8(intresult);
}
Datum
timetz_part(PG_FUNCTION_ARGS)
{
return timetz_part_common(fcinfo, false);
}
Datum
extract_timetz(PG_FUNCTION_ARGS)
{
return timetz_part_common(fcinfo, true);
}
/* timetz_zone()
* Encode time with time zone type with specified time zone.
* Applies DST rules as of the transaction start time.
*/
Datum
timetz_zone(PG_FUNCTION_ARGS)
{
text *zone = PG_GETARG_TEXT_PP(0);
TimeTzADT *t = PG_GETARG_TIMETZADT_P(1);
TimeTzADT *result;
int tz;
char tzname[TZ_STRLEN_MAX + 1];
int type,
val;
pg_tz *tzp;
/*
* Look up the requested timezone.
*/
text_to_cstring_buffer(zone, tzname, sizeof(tzname));
Support timezone abbreviations that sometimes change. Up to now, PG has assumed that any given timezone abbreviation (such as "EDT") represents a constant GMT offset in the usage of any particular region; we had a way to configure what that offset was, but not for it to be changeable over time. But, as with most things horological, this view of the world is too simplistic: there are numerous regions that have at one time or another switched to a different GMT offset but kept using the same timezone abbreviation. Almost the entire Russian Federation did that a few years ago, and later this month they're going to do it again. And there are similar examples all over the world. To cope with this, invent the notion of a "dynamic timezone abbreviation", which is one that is referenced to a particular underlying timezone (as defined in the IANA timezone database) and means whatever it currently means in that zone. For zones that use or have used daylight-savings time, the standard and DST abbreviations continue to have the property that you can specify standard or DST time and get that time offset whether or not DST was theoretically in effect at the time. However, the abbreviations mean what they meant at the time in question (or most recently before that time) rather than being absolutely fixed. The standard abbreviation-list files have been changed to use this behavior for abbreviations that have actually varied in meaning since 1970. The old simple-numeric definitions are kept for abbreviations that have not changed, since they are a bit faster to resolve. While this is clearly a new feature, it seems necessary to back-patch it into all active branches, because otherwise use of Russian zone abbreviations is going to become even more problematic than it already was. This change supersedes the changes in commit 513d06ded et al to modify the fixed meanings of the Russian abbreviations; since we've not shipped that yet, this will avoid an undesirably incompatible (not to mention incorrect) change in behavior for timestamps between 2011 and 2014. This patch makes some cosmetic changes in ecpglib to keep its usage of datetime lookup tables as similar as possible to the backend code, but doesn't do anything about the increasingly obsolete set of timezone abbreviation definitions that are hard-wired into ecpglib. Whatever we do about that will likely not be appropriate material for back-patching. Also, a potential free() of a garbage pointer after an out-of-memory failure in ecpglib has been fixed. This patch also fixes pre-existing bugs in DetermineTimeZoneOffset() that caused it to produce unexpected results near a timezone transition, if both the "before" and "after" states are marked as standard time. We'd only ever thought about or tested transitions between standard and DST time, but that's not what's happening when a zone simply redefines their base GMT offset. In passing, update the SGML documentation to refer to the Olson/zoneinfo/ zic timezone database as the "IANA" database, since it's now being maintained under the auspices of IANA.
11 years ago
type = DecodeTimezoneName(tzname, &val, &tzp);
if (type == TZNAME_FIXED_OFFSET)
Support timezone abbreviations that sometimes change. Up to now, PG has assumed that any given timezone abbreviation (such as "EDT") represents a constant GMT offset in the usage of any particular region; we had a way to configure what that offset was, but not for it to be changeable over time. But, as with most things horological, this view of the world is too simplistic: there are numerous regions that have at one time or another switched to a different GMT offset but kept using the same timezone abbreviation. Almost the entire Russian Federation did that a few years ago, and later this month they're going to do it again. And there are similar examples all over the world. To cope with this, invent the notion of a "dynamic timezone abbreviation", which is one that is referenced to a particular underlying timezone (as defined in the IANA timezone database) and means whatever it currently means in that zone. For zones that use or have used daylight-savings time, the standard and DST abbreviations continue to have the property that you can specify standard or DST time and get that time offset whether or not DST was theoretically in effect at the time. However, the abbreviations mean what they meant at the time in question (or most recently before that time) rather than being absolutely fixed. The standard abbreviation-list files have been changed to use this behavior for abbreviations that have actually varied in meaning since 1970. The old simple-numeric definitions are kept for abbreviations that have not changed, since they are a bit faster to resolve. While this is clearly a new feature, it seems necessary to back-patch it into all active branches, because otherwise use of Russian zone abbreviations is going to become even more problematic than it already was. This change supersedes the changes in commit 513d06ded et al to modify the fixed meanings of the Russian abbreviations; since we've not shipped that yet, this will avoid an undesirably incompatible (not to mention incorrect) change in behavior for timestamps between 2011 and 2014. This patch makes some cosmetic changes in ecpglib to keep its usage of datetime lookup tables as similar as possible to the backend code, but doesn't do anything about the increasingly obsolete set of timezone abbreviation definitions that are hard-wired into ecpglib. Whatever we do about that will likely not be appropriate material for back-patching. Also, a potential free() of a garbage pointer after an out-of-memory failure in ecpglib has been fixed. This patch also fixes pre-existing bugs in DetermineTimeZoneOffset() that caused it to produce unexpected results near a timezone transition, if both the "before" and "after" states are marked as standard time. We'd only ever thought about or tested transitions between standard and DST time, but that's not what's happening when a zone simply redefines their base GMT offset. In passing, update the SGML documentation to refer to the Olson/zoneinfo/ zic timezone database as the "IANA" database, since it's now being maintained under the auspices of IANA.
11 years ago
{
/* fixed-offset abbreviation */
tz = -val;
}
else if (type == TZNAME_DYNTZ)
Support timezone abbreviations that sometimes change. Up to now, PG has assumed that any given timezone abbreviation (such as "EDT") represents a constant GMT offset in the usage of any particular region; we had a way to configure what that offset was, but not for it to be changeable over time. But, as with most things horological, this view of the world is too simplistic: there are numerous regions that have at one time or another switched to a different GMT offset but kept using the same timezone abbreviation. Almost the entire Russian Federation did that a few years ago, and later this month they're going to do it again. And there are similar examples all over the world. To cope with this, invent the notion of a "dynamic timezone abbreviation", which is one that is referenced to a particular underlying timezone (as defined in the IANA timezone database) and means whatever it currently means in that zone. For zones that use or have used daylight-savings time, the standard and DST abbreviations continue to have the property that you can specify standard or DST time and get that time offset whether or not DST was theoretically in effect at the time. However, the abbreviations mean what they meant at the time in question (or most recently before that time) rather than being absolutely fixed. The standard abbreviation-list files have been changed to use this behavior for abbreviations that have actually varied in meaning since 1970. The old simple-numeric definitions are kept for abbreviations that have not changed, since they are a bit faster to resolve. While this is clearly a new feature, it seems necessary to back-patch it into all active branches, because otherwise use of Russian zone abbreviations is going to become even more problematic than it already was. This change supersedes the changes in commit 513d06ded et al to modify the fixed meanings of the Russian abbreviations; since we've not shipped that yet, this will avoid an undesirably incompatible (not to mention incorrect) change in behavior for timestamps between 2011 and 2014. This patch makes some cosmetic changes in ecpglib to keep its usage of datetime lookup tables as similar as possible to the backend code, but doesn't do anything about the increasingly obsolete set of timezone abbreviation definitions that are hard-wired into ecpglib. Whatever we do about that will likely not be appropriate material for back-patching. Also, a potential free() of a garbage pointer after an out-of-memory failure in ecpglib has been fixed. This patch also fixes pre-existing bugs in DetermineTimeZoneOffset() that caused it to produce unexpected results near a timezone transition, if both the "before" and "after" states are marked as standard time. We'd only ever thought about or tested transitions between standard and DST time, but that's not what's happening when a zone simply redefines their base GMT offset. In passing, update the SGML documentation to refer to the Olson/zoneinfo/ zic timezone database as the "IANA" database, since it's now being maintained under the auspices of IANA.
11 years ago
{
/* dynamic-offset abbreviation, resolve using transaction start time */
TimestampTz now = GetCurrentTransactionStartTimestamp();
int isdst;
Support timezone abbreviations that sometimes change. Up to now, PG has assumed that any given timezone abbreviation (such as "EDT") represents a constant GMT offset in the usage of any particular region; we had a way to configure what that offset was, but not for it to be changeable over time. But, as with most things horological, this view of the world is too simplistic: there are numerous regions that have at one time or another switched to a different GMT offset but kept using the same timezone abbreviation. Almost the entire Russian Federation did that a few years ago, and later this month they're going to do it again. And there are similar examples all over the world. To cope with this, invent the notion of a "dynamic timezone abbreviation", which is one that is referenced to a particular underlying timezone (as defined in the IANA timezone database) and means whatever it currently means in that zone. For zones that use or have used daylight-savings time, the standard and DST abbreviations continue to have the property that you can specify standard or DST time and get that time offset whether or not DST was theoretically in effect at the time. However, the abbreviations mean what they meant at the time in question (or most recently before that time) rather than being absolutely fixed. The standard abbreviation-list files have been changed to use this behavior for abbreviations that have actually varied in meaning since 1970. The old simple-numeric definitions are kept for abbreviations that have not changed, since they are a bit faster to resolve. While this is clearly a new feature, it seems necessary to back-patch it into all active branches, because otherwise use of Russian zone abbreviations is going to become even more problematic than it already was. This change supersedes the changes in commit 513d06ded et al to modify the fixed meanings of the Russian abbreviations; since we've not shipped that yet, this will avoid an undesirably incompatible (not to mention incorrect) change in behavior for timestamps between 2011 and 2014. This patch makes some cosmetic changes in ecpglib to keep its usage of datetime lookup tables as similar as possible to the backend code, but doesn't do anything about the increasingly obsolete set of timezone abbreviation definitions that are hard-wired into ecpglib. Whatever we do about that will likely not be appropriate material for back-patching. Also, a potential free() of a garbage pointer after an out-of-memory failure in ecpglib has been fixed. This patch also fixes pre-existing bugs in DetermineTimeZoneOffset() that caused it to produce unexpected results near a timezone transition, if both the "before" and "after" states are marked as standard time. We'd only ever thought about or tested transitions between standard and DST time, but that's not what's happening when a zone simply redefines their base GMT offset. In passing, update the SGML documentation to refer to the Olson/zoneinfo/ zic timezone database as the "IANA" database, since it's now being maintained under the auspices of IANA.
11 years ago
tz = DetermineTimeZoneAbbrevOffsetTS(now, tzname, tzp, &isdst);
Support timezone abbreviations that sometimes change. Up to now, PG has assumed that any given timezone abbreviation (such as "EDT") represents a constant GMT offset in the usage of any particular region; we had a way to configure what that offset was, but not for it to be changeable over time. But, as with most things horological, this view of the world is too simplistic: there are numerous regions that have at one time or another switched to a different GMT offset but kept using the same timezone abbreviation. Almost the entire Russian Federation did that a few years ago, and later this month they're going to do it again. And there are similar examples all over the world. To cope with this, invent the notion of a "dynamic timezone abbreviation", which is one that is referenced to a particular underlying timezone (as defined in the IANA timezone database) and means whatever it currently means in that zone. For zones that use or have used daylight-savings time, the standard and DST abbreviations continue to have the property that you can specify standard or DST time and get that time offset whether or not DST was theoretically in effect at the time. However, the abbreviations mean what they meant at the time in question (or most recently before that time) rather than being absolutely fixed. The standard abbreviation-list files have been changed to use this behavior for abbreviations that have actually varied in meaning since 1970. The old simple-numeric definitions are kept for abbreviations that have not changed, since they are a bit faster to resolve. While this is clearly a new feature, it seems necessary to back-patch it into all active branches, because otherwise use of Russian zone abbreviations is going to become even more problematic than it already was. This change supersedes the changes in commit 513d06ded et al to modify the fixed meanings of the Russian abbreviations; since we've not shipped that yet, this will avoid an undesirably incompatible (not to mention incorrect) change in behavior for timestamps between 2011 and 2014. This patch makes some cosmetic changes in ecpglib to keep its usage of datetime lookup tables as similar as possible to the backend code, but doesn't do anything about the increasingly obsolete set of timezone abbreviation definitions that are hard-wired into ecpglib. Whatever we do about that will likely not be appropriate material for back-patching. Also, a potential free() of a garbage pointer after an out-of-memory failure in ecpglib has been fixed. This patch also fixes pre-existing bugs in DetermineTimeZoneOffset() that caused it to produce unexpected results near a timezone transition, if both the "before" and "after" states are marked as standard time. We'd only ever thought about or tested transitions between standard and DST time, but that's not what's happening when a zone simply redefines their base GMT offset. In passing, update the SGML documentation to refer to the Olson/zoneinfo/ zic timezone database as the "IANA" database, since it's now being maintained under the auspices of IANA.
11 years ago
}
else
{
/* Get the offset-from-GMT that is valid now for the zone name */
TimestampTz now = GetCurrentTransactionStartTimestamp();
struct pg_tm tm;
fsec_t fsec;
if (timestamp2tm(now, &tz, &tm, &fsec, NULL, tzp) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
}
result = (TimeTzADT *) palloc(sizeof(TimeTzADT));
result->time = t->time + (t->zone - tz) * USECS_PER_SEC;
/* C99 modulo has the wrong sign convention for negative input */
while (result->time < INT64CONST(0))
result->time += USECS_PER_DAY;
if (result->time >= USECS_PER_DAY)
result->time %= USECS_PER_DAY;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
result->zone = tz;
PG_RETURN_TIMETZADT_P(result);
}
/* timetz_izone()
* Encode time with time zone type with specified time interval as time zone.
*/
Datum
timetz_izone(PG_FUNCTION_ARGS)
{
Interval *zone = PG_GETARG_INTERVAL_P(0);
TimeTzADT *time = PG_GETARG_TIMETZADT_P(1);
TimeTzADT *result;
int tz;
if (INTERVAL_NOT_FINITE(zone))
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("interval time zone \"%s\" must be finite",
DatumGetCString(DirectFunctionCall1(interval_out,
PointerGetDatum(zone))))));
if (zone->month != 0 || zone->day != 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("interval time zone \"%s\" must not include months or days",
DatumGetCString(DirectFunctionCall1(interval_out,
PointerGetDatum(zone))))));
tz = -(zone->time / USECS_PER_SEC);
result = (TimeTzADT *) palloc(sizeof(TimeTzADT));
result->time = time->time + (time->zone - tz) * USECS_PER_SEC;
/* C99 modulo has the wrong sign convention for negative input */
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
while (result->time < INT64CONST(0))
result->time += USECS_PER_DAY;
if (result->time >= USECS_PER_DAY)
result->time %= USECS_PER_DAY;
Support alternate storage scheme of 64-bit integer for date/time types. Use "--enable-integer-datetimes" in configuration to use this rather than the original float8 storage. I would recommend the integer-based storage for any platform on which it is available. We perhaps should make this the default for the production release. Change timezone(timestamptz) results to return timestamp rather than a character string. Formerly, we didn't have a way to represent timestamps with an explicit time zone other than freezing the info into a string. Now, we can reasonably omit the explicit time zone from the result and return a timestamp with values appropriate for the specified time zone. Much cleaner, and if you need the time zone in the result you can put it into a character string pretty easily anyway. Allow fractional seconds in date/time types even for dates prior to 1BC. Limit timestamp data types to 6 decimal places of precision. Just right for a micro-second storage of int8 date/time types, and reduces the number of places ad-hoc rounding was occuring for the float8-based types. Use lookup tables for precision/rounding calculations for timestamp and interval types. Formerly used pow() to calculate the desired value but with a more limited range there is no reason to not type in a lookup table. Should be *much* better performance, though formerly there were some optimizations to help minimize the number of times pow() was called. Define a HAVE_INT64_TIMESTAMP variable. Based on the configure option "--enable-integer-datetimes" and the existing internal INT64_IS_BUSTED. Add explicit date/interval operators and functions for addition and subtraction. Formerly relied on implicit type promotion from date to timestamp with time zone. Change timezone conversion functions for the timetz type from "timetz()" to "timezone()". This is consistant with other time zone coersion functions for other types. Bump the catalog version to 200204201. Fix up regression tests to reflect changes in fractional seconds representation for date/times in BC eras. All regression tests pass on my Linux box.
24 years ago
result->zone = tz;
PG_RETURN_TIMETZADT_P(result);
}
/* timetz_at_local()
*
* Unlike for timestamp[tz]_at_local, the type for timetz does not flip between
* time with/without time zone, so we cannot just call the conversion function.
*/
Datum
timetz_at_local(PG_FUNCTION_ARGS)
{
Datum time = PG_GETARG_DATUM(0);
const char *tzn = pg_get_timezone_name(session_timezone);
Datum zone = PointerGetDatum(cstring_to_text(tzn));
return DirectFunctionCall2(timetz_zone, zone, time);
}