You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
postgres/src/backend/utils/adt/int8.c

1524 lines
32 KiB

/*-------------------------------------------------------------------------
*
* int8.c
* Internal 64-bit integer operations
*
* Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/utils/adt/int8.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <ctype.h>
#include <limits.h>
#include <math.h>
#include "common/int.h"
#include "funcapi.h"
#include "libpq/pqformat.h"
#include "nodes/nodeFuncs.h"
#include "nodes/supportnodes.h"
#include "optimizer/optimizer.h"
#include "utils/builtins.h"
typedef struct
{
int64 current;
int64 finish;
int64 step;
} generate_series_fctx;
/***********************************************************************
**
** Routines for 64-bit integers.
**
***********************************************************************/
/*----------------------------------------------------------
* Formatting and conversion routines.
*---------------------------------------------------------*/
/* int8in()
*/
Datum
int8in(PG_FUNCTION_ARGS)
{
char *num = PG_GETARG_CSTRING(0);
PG_RETURN_INT64(pg_strtoint64_safe(num, fcinfo->context));
}
/* int8out()
*/
Datum
int8out(PG_FUNCTION_ARGS)
{
int64 val = PG_GETARG_INT64(0);
char buf[MAXINT8LEN + 1];
char *result;
int len;
len = pg_lltoa(val, buf) + 1;
/*
* Since the length is already known, we do a manual palloc() and memcpy()
* to avoid the strlen() call that would otherwise be done in pstrdup().
*/
result = palloc(len);
memcpy(result, buf, len);
PG_RETURN_CSTRING(result);
}
/*
* int8recv - converts external binary format to int8
*/
Datum
int8recv(PG_FUNCTION_ARGS)
{
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
PG_RETURN_INT64(pq_getmsgint64(buf));
}
/*
* int8send - converts int8 to binary format
*/
Datum
int8send(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
StringInfoData buf;
pq_begintypsend(&buf);
pq_sendint64(&buf, arg1);
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
/*----------------------------------------------------------
* Relational operators for int8s, including cross-data-type comparisons.
*---------------------------------------------------------*/
/* int8relop()
* Is val1 relop val2?
*/
Datum
int8eq(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 == val2);
}
Datum
int8ne(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 != val2);
}
Datum
int8lt(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 < val2);
}
Datum
int8gt(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 > val2);
}
Datum
int8le(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 <= val2);
}
Datum
int8ge(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 >= val2);
}
/* int84relop()
* Is 64-bit val1 relop 32-bit val2?
*/
Datum
int84eq(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(val1 == val2);
}
Datum
int84ne(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(val1 != val2);
}
Datum
int84lt(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(val1 < val2);
}
Datum
int84gt(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(val1 > val2);
}
Datum
int84le(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(val1 <= val2);
}
Datum
int84ge(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(val1 >= val2);
}
/* int48relop()
* Is 32-bit val1 relop 64-bit val2?
*/
Datum
int48eq(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 == val2);
}
Datum
int48ne(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 != val2);
}
Datum
int48lt(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 < val2);
}
Datum
int48gt(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 > val2);
}
Datum
int48le(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 <= val2);
}
Datum
int48ge(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 >= val2);
}
/* int82relop()
* Is 64-bit val1 relop 16-bit val2?
*/
Datum
int82eq(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int16 val2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(val1 == val2);
}
Datum
int82ne(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int16 val2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(val1 != val2);
}
Datum
int82lt(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int16 val2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(val1 < val2);
}
Datum
int82gt(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int16 val2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(val1 > val2);
}
Datum
int82le(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int16 val2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(val1 <= val2);
}
Datum
int82ge(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int16 val2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(val1 >= val2);
}
/* int28relop()
* Is 16-bit val1 relop 64-bit val2?
*/
Datum
int28eq(PG_FUNCTION_ARGS)
{
int16 val1 = PG_GETARG_INT16(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 == val2);
}
Datum
int28ne(PG_FUNCTION_ARGS)
{
int16 val1 = PG_GETARG_INT16(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 != val2);
}
Datum
int28lt(PG_FUNCTION_ARGS)
{
int16 val1 = PG_GETARG_INT16(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 < val2);
}
Datum
int28gt(PG_FUNCTION_ARGS)
{
int16 val1 = PG_GETARG_INT16(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 > val2);
}
Datum
int28le(PG_FUNCTION_ARGS)
{
int16 val1 = PG_GETARG_INT16(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 <= val2);
}
Datum
int28ge(PG_FUNCTION_ARGS)
{
int16 val1 = PG_GETARG_INT16(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 >= val2);
}
Support all SQL:2011 options for window frame clauses. This patch adds the ability to use "RANGE offset PRECEDING/FOLLOWING" frame boundaries in window functions. We'd punted on that back in the original patch to add window functions, because it was not clear how to do it in a reasonably data-type-extensible fashion. That problem is resolved here by adding the ability for btree operator classes to provide an "in_range" support function that defines how to add or subtract the RANGE offset value. Factoring it this way also allows the operator class to avoid overflow problems near the ends of the datatype's range, if it wishes to expend effort on that. (In the committed patch, the integer opclasses handle that issue, but it did not seem worth the trouble to avoid overflow failures for datetime types.) The patch includes in_range support for the integer_ops opfamily (int2/int4/int8) as well as the standard datetime types. Support for other numeric types has been requested, but that seems like suitable material for a follow-on patch. In addition, the patch adds GROUPS mode which counts the offset in ORDER-BY peer groups rather than rows, and it adds the frame_exclusion options specified by SQL:2011. As far as I can see, we are now fully up to spec on window framing options. Existing behaviors remain unchanged, except that I changed the errcode for a couple of existing error reports to meet the SQL spec's expectation that negative "offset" values should be reported as SQLSTATE 22013. Internally and in relevant parts of the documentation, we now consistently use the terminology "offset PRECEDING/FOLLOWING" rather than "value PRECEDING/FOLLOWING", since the term "value" is confusingly vague. Oliver Ford, reviewed and whacked around some by me Discussion: https://postgr.es/m/CAGMVOdu9sivPAxbNN0X+q19Sfv9edEPv=HibOJhB14TJv_RCQg@mail.gmail.com
8 years ago
/*
* in_range support function for int8.
*
* Note: we needn't supply int8_int4 or int8_int2 variants, as implicit
* coercion of the offset value takes care of those scenarios just as well.
*/
Datum
in_range_int8_int8(PG_FUNCTION_ARGS)
{
int64 val = PG_GETARG_INT64(0);
int64 base = PG_GETARG_INT64(1);
int64 offset = PG_GETARG_INT64(2);
bool sub = PG_GETARG_BOOL(3);
bool less = PG_GETARG_BOOL(4);
int64 sum;
if (offset < 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
Support all SQL:2011 options for window frame clauses. This patch adds the ability to use "RANGE offset PRECEDING/FOLLOWING" frame boundaries in window functions. We'd punted on that back in the original patch to add window functions, because it was not clear how to do it in a reasonably data-type-extensible fashion. That problem is resolved here by adding the ability for btree operator classes to provide an "in_range" support function that defines how to add or subtract the RANGE offset value. Factoring it this way also allows the operator class to avoid overflow problems near the ends of the datatype's range, if it wishes to expend effort on that. (In the committed patch, the integer opclasses handle that issue, but it did not seem worth the trouble to avoid overflow failures for datetime types.) The patch includes in_range support for the integer_ops opfamily (int2/int4/int8) as well as the standard datetime types. Support for other numeric types has been requested, but that seems like suitable material for a follow-on patch. In addition, the patch adds GROUPS mode which counts the offset in ORDER-BY peer groups rather than rows, and it adds the frame_exclusion options specified by SQL:2011. As far as I can see, we are now fully up to spec on window framing options. Existing behaviors remain unchanged, except that I changed the errcode for a couple of existing error reports to meet the SQL spec's expectation that negative "offset" values should be reported as SQLSTATE 22013. Internally and in relevant parts of the documentation, we now consistently use the terminology "offset PRECEDING/FOLLOWING" rather than "value PRECEDING/FOLLOWING", since the term "value" is confusingly vague. Oliver Ford, reviewed and whacked around some by me Discussion: https://postgr.es/m/CAGMVOdu9sivPAxbNN0X+q19Sfv9edEPv=HibOJhB14TJv_RCQg@mail.gmail.com
8 years ago
errmsg("invalid preceding or following size in window function")));
if (sub)
offset = -offset; /* cannot overflow */
if (unlikely(pg_add_s64_overflow(base, offset, &sum)))
{
/*
* If sub is false, the true sum is surely more than val, so correct
* answer is the same as "less". If sub is true, the true sum is
* surely less than val, so the answer is "!less".
*/
PG_RETURN_BOOL(sub ? !less : less);
}
if (less)
PG_RETURN_BOOL(val <= sum);
else
PG_RETURN_BOOL(val >= sum);
}
/*----------------------------------------------------------
* Arithmetic operators on 64-bit integers.
*---------------------------------------------------------*/
Datum
int8um(PG_FUNCTION_ARGS)
{
int64 arg = PG_GETARG_INT64(0);
int64 result;
if (unlikely(arg == PG_INT64_MIN))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
result = -arg;
PG_RETURN_INT64(result);
}
Datum
int8up(PG_FUNCTION_ARGS)
{
int64 arg = PG_GETARG_INT64(0);
PG_RETURN_INT64(arg);
}
Datum
int8pl(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
if (unlikely(pg_add_s64_overflow(arg1, arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int8mi(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
if (unlikely(pg_sub_s64_overflow(arg1, arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int8mul(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
if (unlikely(pg_mul_s64_overflow(arg1, arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int8div(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
if (arg2 == 0)
{
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
PG_RETURN_NULL();
}
/*
* INT64_MIN / -1 is problematic, since the result can't be represented on
* a two's-complement machine. Some machines produce INT64_MIN, some
* produce zero, some throw an exception. We can dodge the problem by
* recognizing that division by -1 is the same as negation.
*/
if (arg2 == -1)
{
if (unlikely(arg1 == PG_INT64_MIN))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
result = -arg1;
PG_RETURN_INT64(result);
}
/* No overflow is possible */
result = arg1 / arg2;
PG_RETURN_INT64(result);
}
/* int8abs()
* Absolute value
*/
Datum
int8abs(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 result;
if (unlikely(arg1 == PG_INT64_MIN))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
result = (arg1 < 0) ? -arg1 : arg1;
PG_RETURN_INT64(result);
}
/* int8mod()
* Modulo operation.
*/
Datum
int8mod(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
if (unlikely(arg2 == 0))
{
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
PG_RETURN_NULL();
}
/*
* Some machines throw a floating-point exception for INT64_MIN % -1,
* which is a bit silly since the correct answer is perfectly
* well-defined, namely zero.
*/
if (arg2 == -1)
PG_RETURN_INT64(0);
/* No overflow is possible */
PG_RETURN_INT64(arg1 % arg2);
}
/*
* Greatest Common Divisor
*
* Returns the largest positive integer that exactly divides both inputs.
* Special cases:
* - gcd(x, 0) = gcd(0, x) = abs(x)
* because 0 is divisible by anything
* - gcd(0, 0) = 0
* complies with the previous definition and is a common convention
*
* Special care must be taken if either input is INT64_MIN ---
* gcd(0, INT64_MIN), gcd(INT64_MIN, 0) and gcd(INT64_MIN, INT64_MIN) are
* all equal to abs(INT64_MIN), which cannot be represented as a 64-bit signed
* integer.
*/
static int64
int8gcd_internal(int64 arg1, int64 arg2)
{
int64 swap;
int64 a1,
a2;
/*
* Put the greater absolute value in arg1.
*
* This would happen automatically in the loop below, but avoids an
* expensive modulo operation, and simplifies the special-case handling
* for INT64_MIN below.
*
* We do this in negative space in order to handle INT64_MIN.
*/
a1 = (arg1 < 0) ? arg1 : -arg1;
a2 = (arg2 < 0) ? arg2 : -arg2;
if (a1 > a2)
{
swap = arg1;
arg1 = arg2;
arg2 = swap;
}
/* Special care needs to be taken with INT64_MIN. See comments above. */
if (arg1 == PG_INT64_MIN)
{
if (arg2 == 0 || arg2 == PG_INT64_MIN)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
/*
* Some machines throw a floating-point exception for INT64_MIN % -1,
* which is a bit silly since the correct answer is perfectly
* well-defined, namely zero. Guard against this and just return the
* result, gcd(INT64_MIN, -1) = 1.
*/
if (arg2 == -1)
return 1;
}
/* Use the Euclidean algorithm to find the GCD */
while (arg2 != 0)
{
swap = arg2;
arg2 = arg1 % arg2;
arg1 = swap;
}
/*
* Make sure the result is positive. (We know we don't have INT64_MIN
* anymore).
*/
if (arg1 < 0)
arg1 = -arg1;
return arg1;
}
Datum
int8gcd(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = int8gcd_internal(arg1, arg2);
PG_RETURN_INT64(result);
}
/*
* Least Common Multiple
*/
Datum
int8lcm(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 gcd;
int64 result;
/*
* Handle lcm(x, 0) = lcm(0, x) = 0 as a special case. This prevents a
* division-by-zero error below when x is zero, and an overflow error from
* the GCD computation when x = INT64_MIN.
*/
if (arg1 == 0 || arg2 == 0)
PG_RETURN_INT64(0);
/* lcm(x, y) = abs(x / gcd(x, y) * y) */
gcd = int8gcd_internal(arg1, arg2);
arg1 = arg1 / gcd;
if (unlikely(pg_mul_s64_overflow(arg1, arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
/* If the result is INT64_MIN, it cannot be represented. */
if (unlikely(result == PG_INT64_MIN))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
if (result < 0)
result = -result;
PG_RETURN_INT64(result);
}
Datum
int8inc(PG_FUNCTION_ARGS)
{
/*
* When int8 is pass-by-reference, we provide this special case to avoid
* palloc overhead for COUNT(): when called as an aggregate, we know that
* the argument is modifiable local storage, so just update it in-place.
* (If int8 is pass-by-value, then of course this is useless as well as
* incorrect, so just ifdef it out.)
*/
#ifndef USE_FLOAT8_BYVAL /* controls int8 too */
if (AggCheckCallContext(fcinfo, NULL))
{
int64 *arg = (int64 *) PG_GETARG_POINTER(0);
if (unlikely(pg_add_s64_overflow(*arg, 1, arg)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_POINTER(arg);
}
else
#endif
{
/* Not called as an aggregate, so just do it the dumb way */
int64 arg = PG_GETARG_INT64(0);
int64 result;
if (unlikely(pg_add_s64_overflow(arg, 1, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
}
Datum
int8dec(PG_FUNCTION_ARGS)
{
/*
* When int8 is pass-by-reference, we provide this special case to avoid
* palloc overhead for COUNT(): when called as an aggregate, we know that
* the argument is modifiable local storage, so just update it in-place.
* (If int8 is pass-by-value, then of course this is useless as well as
* incorrect, so just ifdef it out.)
*/
#ifndef USE_FLOAT8_BYVAL /* controls int8 too */
if (AggCheckCallContext(fcinfo, NULL))
{
int64 *arg = (int64 *) PG_GETARG_POINTER(0);
if (unlikely(pg_sub_s64_overflow(*arg, 1, arg)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_POINTER(arg);
}
else
#endif
{
/* Not called as an aggregate, so just do it the dumb way */
int64 arg = PG_GETARG_INT64(0);
int64 result;
if (unlikely(pg_sub_s64_overflow(arg, 1, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
}
/*
* These functions are exactly like int8inc/int8dec but are used for
* aggregates that count only non-null values. Since the functions are
* declared strict, the null checks happen before we ever get here, and all we
* need do is increment the state value. We could actually make these pg_proc
* entries point right at int8inc/int8dec, but then the opr_sanity regression
* test would complain about mismatched entries for a built-in function.
*/
Datum
int8inc_any(PG_FUNCTION_ARGS)
{
return int8inc(fcinfo);
}
Datum
int8inc_float8_float8(PG_FUNCTION_ARGS)
{
return int8inc(fcinfo);
}
Datum
int8dec_any(PG_FUNCTION_ARGS)
{
return int8dec(fcinfo);
}
Teach planner and executor about monotonic window funcs Window functions such as row_number() always return a value higher than the previously returned value for tuples in any given window partition. Traditionally queries such as; SELECT * FROM ( SELECT *, row_number() over (order by c) rn FROM t ) t WHERE rn <= 10; were executed fairly inefficiently. Neither the query planner nor the executor knew that once rn made it to 11 that nothing further would match the outer query's WHERE clause. It would blindly continue until all tuples were exhausted from the subquery. Here we implement means to make the above execute more efficiently. This is done by way of adding a pg_proc.prosupport function to various of the built-in window functions and adding supporting code to allow the support function to inform the planner if the window function is monotonically increasing, monotonically decreasing, both or neither. The planner is then able to make use of that information and possibly allow the executor to short-circuit execution by way of adding a "run condition" to the WindowAgg to allow it to determine if some of its execution work can be skipped. This "run condition" is not like a normal filter. These run conditions are only built using quals comparing values to monotonic window functions. For monotonic increasing functions, quals making use of the btree operators for <, <= and = can be used (assuming the window function column is on the left). You can see here that once such a condition becomes false that a monotonic increasing function could never make it subsequently true again. For monotonically decreasing functions the >, >= and = btree operators for the given type can be used for run conditions. The best-case situation for this is when there is a single WindowAgg node without a PARTITION BY clause. Here when the run condition becomes false the WindowAgg node can simply return NULL. No more tuples will ever match the run condition. It's a little more complex when there is a PARTITION BY clause. In this case, we cannot return NULL as we must still process other partitions. To speed this case up we pull tuples from the outer plan to check if they're from the same partition and simply discard them if they are. When we find a tuple belonging to another partition we start processing as normal again until the run condition becomes false or we run out of tuples to process. When there are multiple WindowAgg nodes to evaluate then this complicates the situation. For intermediate WindowAggs we must ensure we always return all tuples to the calling node. Any filtering done could lead to incorrect results in WindowAgg nodes above. For all intermediate nodes, we can still save some work when the run condition becomes false. We've no need to evaluate the WindowFuncs anymore. Other WindowAgg nodes cannot reference the value of these and these tuples will not appear in the final result anyway. The savings here are small in comparison to what can be saved in the top-level WingowAgg, but still worthwhile. Intermediate WindowAgg nodes never filter out tuples, but here we change WindowAgg so that the top-level WindowAgg filters out tuples that don't match the intermediate WindowAgg node's run condition. Such filters appear in the "Filter" clause in EXPLAIN for the top-level WindowAgg node. Here we add prosupport functions to allow the above to work for; row_number(), rank(), dense_rank(), count(*) and count(expr). It appears technically possible to do the same for min() and max(), however, it seems unlikely to be useful enough, so that's not done here. Bump catversion Author: David Rowley Reviewed-by: Andy Fan, Zhihong Yu Discussion: https://postgr.es/m/CAApHDvqvp3At8++yF8ij06sdcoo1S_b2YoaT9D4Nf+MObzsrLQ@mail.gmail.com
4 years ago
/*
* int8inc_support
* prosupport function for int8inc() and int8inc_any()
*/
Datum
int8inc_support(PG_FUNCTION_ARGS)
{
Node *rawreq = (Node *) PG_GETARG_POINTER(0);
if (IsA(rawreq, SupportRequestWFuncMonotonic))
{
SupportRequestWFuncMonotonic *req = (SupportRequestWFuncMonotonic *) rawreq;
MonotonicFunction monotonic = MONOTONICFUNC_NONE;
int frameOptions = req->window_clause->frameOptions;
/* No ORDER BY clause then all rows are peers */
if (req->window_clause->orderClause == NIL)
monotonic = MONOTONICFUNC_BOTH;
else
{
/*
* Otherwise take into account the frame options. When the frame
* bound is the start of the window then the resulting value can
* never decrease, therefore is monotonically increasing
*/
if (frameOptions & FRAMEOPTION_START_UNBOUNDED_PRECEDING)
monotonic |= MONOTONICFUNC_INCREASING;
/*
* Likewise, if the frame bound is the end of the window then the
* resulting value can never decrease.
*/
if (frameOptions & FRAMEOPTION_END_UNBOUNDED_FOLLOWING)
monotonic |= MONOTONICFUNC_DECREASING;
}
req->monotonic = monotonic;
PG_RETURN_POINTER(req);
}
PG_RETURN_POINTER(NULL);
}
Datum
int8larger(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = ((arg1 > arg2) ? arg1 : arg2);
PG_RETURN_INT64(result);
}
Datum
int8smaller(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = ((arg1 < arg2) ? arg1 : arg2);
PG_RETURN_INT64(result);
}
Datum
int84pl(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int32 arg2 = PG_GETARG_INT32(1);
int64 result;
if (unlikely(pg_add_s64_overflow(arg1, (int64) arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int84mi(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int32 arg2 = PG_GETARG_INT32(1);
int64 result;
if (unlikely(pg_sub_s64_overflow(arg1, (int64) arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int84mul(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int32 arg2 = PG_GETARG_INT32(1);
int64 result;
if (unlikely(pg_mul_s64_overflow(arg1, (int64) arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int84div(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int32 arg2 = PG_GETARG_INT32(1);
int64 result;
if (arg2 == 0)
{
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
PG_RETURN_NULL();
}
/*
* INT64_MIN / -1 is problematic, since the result can't be represented on
* a two's-complement machine. Some machines produce INT64_MIN, some
* produce zero, some throw an exception. We can dodge the problem by
* recognizing that division by -1 is the same as negation.
*/
if (arg2 == -1)
{
if (unlikely(arg1 == PG_INT64_MIN))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
result = -arg1;
PG_RETURN_INT64(result);
}
/* No overflow is possible */
result = arg1 / arg2;
PG_RETURN_INT64(result);
}
Datum
int48pl(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
if (unlikely(pg_add_s64_overflow((int64) arg1, arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int48mi(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
if (unlikely(pg_sub_s64_overflow((int64) arg1, arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int48mul(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
if (unlikely(pg_mul_s64_overflow((int64) arg1, arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int48div(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int64 arg2 = PG_GETARG_INT64(1);
if (unlikely(arg2 == 0))
{
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
PG_RETURN_NULL();
}
/* No overflow is possible */
PG_RETURN_INT64((int64) arg1 / arg2);
}
Datum
int82pl(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int16 arg2 = PG_GETARG_INT16(1);
int64 result;
if (unlikely(pg_add_s64_overflow(arg1, (int64) arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int82mi(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int16 arg2 = PG_GETARG_INT16(1);
int64 result;
if (unlikely(pg_sub_s64_overflow(arg1, (int64) arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int82mul(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int16 arg2 = PG_GETARG_INT16(1);
int64 result;
if (unlikely(pg_mul_s64_overflow(arg1, (int64) arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int82div(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int16 arg2 = PG_GETARG_INT16(1);
int64 result;
if (unlikely(arg2 == 0))
{
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
PG_RETURN_NULL();
}
/*
* INT64_MIN / -1 is problematic, since the result can't be represented on
* a two's-complement machine. Some machines produce INT64_MIN, some
* produce zero, some throw an exception. We can dodge the problem by
* recognizing that division by -1 is the same as negation.
*/
if (arg2 == -1)
{
if (unlikely(arg1 == PG_INT64_MIN))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
result = -arg1;
PG_RETURN_INT64(result);
}
/* No overflow is possible */
result = arg1 / arg2;
PG_RETURN_INT64(result);
}
Datum
int28pl(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
if (unlikely(pg_add_s64_overflow((int64) arg1, arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int28mi(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
if (unlikely(pg_sub_s64_overflow((int64) arg1, arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int28mul(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
if (unlikely(pg_mul_s64_overflow((int64) arg1, arg2, &result)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64(result);
}
Datum
int28div(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int64 arg2 = PG_GETARG_INT64(1);
if (unlikely(arg2 == 0))
{
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
PG_RETURN_NULL();
}
/* No overflow is possible */
PG_RETURN_INT64((int64) arg1 / arg2);
}
/* Binary arithmetics
*
* int8and - returns arg1 & arg2
* int8or - returns arg1 | arg2
* int8xor - returns arg1 # arg2
* int8not - returns ~arg1
* int8shl - returns arg1 << arg2
* int8shr - returns arg1 >> arg2
*/
Datum
int8and(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
PG_RETURN_INT64(arg1 & arg2);
}
Datum
int8or(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
PG_RETURN_INT64(arg1 | arg2);
}
Datum
int8xor(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
PG_RETURN_INT64(arg1 ^ arg2);
}
Datum
int8not(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
PG_RETURN_INT64(~arg1);
}
Datum
int8shl(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_INT64(arg1 << arg2);
}
Datum
int8shr(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_INT64(arg1 >> arg2);
}
/*----------------------------------------------------------
* Conversion operators.
*---------------------------------------------------------*/
Datum
int48(PG_FUNCTION_ARGS)
{
int32 arg = PG_GETARG_INT32(0);
PG_RETURN_INT64((int64) arg);
}
Datum
int84(PG_FUNCTION_ARGS)
{
int64 arg = PG_GETARG_INT64(0);
if (unlikely(arg < PG_INT32_MIN) || unlikely(arg > PG_INT32_MAX))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
PG_RETURN_INT32((int32) arg);
}
Datum
int28(PG_FUNCTION_ARGS)
{
int16 arg = PG_GETARG_INT16(0);
PG_RETURN_INT64((int64) arg);
}
Datum
int82(PG_FUNCTION_ARGS)
{
int64 arg = PG_GETARG_INT64(0);
if (unlikely(arg < PG_INT16_MIN) || unlikely(arg > PG_INT16_MAX))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("smallint out of range")));
PG_RETURN_INT16((int16) arg);
}
Datum
i8tod(PG_FUNCTION_ARGS)
{
int64 arg = PG_GETARG_INT64(0);
float8 result;
result = arg;
PG_RETURN_FLOAT8(result);
}
/* dtoi8()
* Convert float8 to 8-byte integer.
*/
Datum
dtoi8(PG_FUNCTION_ARGS)
{
float8 num = PG_GETARG_FLOAT8(0);
/*
* Get rid of any fractional part in the input. This is so we don't fail
* on just-out-of-range values that would round into range. Note
* assumption that rint() will pass through a NaN or Inf unchanged.
*/
num = rint(num);
/* Range check */
if (unlikely(isnan(num) || !FLOAT8_FITS_IN_INT64(num)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64((int64) num);
}
Datum
i8tof(PG_FUNCTION_ARGS)
{
int64 arg = PG_GETARG_INT64(0);
float4 result;
result = arg;
PG_RETURN_FLOAT4(result);
}
/* ftoi8()
* Convert float4 to 8-byte integer.
*/
Datum
ftoi8(PG_FUNCTION_ARGS)
{
float4 num = PG_GETARG_FLOAT4(0);
/*
* Get rid of any fractional part in the input. This is so we don't fail
* on just-out-of-range values that would round into range. Note
* assumption that rint() will pass through a NaN or Inf unchanged.
*/
num = rint(num);
/* Range check */
if (unlikely(isnan(num) || !FLOAT4_FITS_IN_INT64(num)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range")));
PG_RETURN_INT64((int64) num);
}
Datum
i8tooid(PG_FUNCTION_ARGS)
{
int64 arg = PG_GETARG_INT64(0);
if (unlikely(arg < 0) || unlikely(arg > PG_UINT32_MAX))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("OID out of range")));
PG_RETURN_OID((Oid) arg);
}
Datum
oidtoi8(PG_FUNCTION_ARGS)
{
Oid arg = PG_GETARG_OID(0);
PG_RETURN_INT64((int64) arg);
}
/*
* non-persistent numeric series generator
*/
Datum
generate_series_int8(PG_FUNCTION_ARGS)
{
return generate_series_step_int8(fcinfo);
}
Datum
generate_series_step_int8(PG_FUNCTION_ARGS)
{
FuncCallContext *funcctx;
generate_series_fctx *fctx;
int64 result;
MemoryContext oldcontext;
/* stuff done only on the first call of the function */
if (SRF_IS_FIRSTCALL())
{
int64 start = PG_GETARG_INT64(0);
int64 finish = PG_GETARG_INT64(1);
int64 step = 1;
/* see if we were given an explicit step size */
if (PG_NARGS() == 3)
step = PG_GETARG_INT64(2);
if (step == 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("step size cannot equal zero")));
/* create a function context for cross-call persistence */
funcctx = SRF_FIRSTCALL_INIT();
/*
* switch to memory context appropriate for multiple function calls
*/
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* allocate memory for user context */
fctx = (generate_series_fctx *) palloc(sizeof(generate_series_fctx));
/*
* Use fctx to keep state from call to call. Seed current with the
* original start value
*/
fctx->current = start;
fctx->finish = finish;
fctx->step = step;
funcctx->user_fctx = fctx;
MemoryContextSwitchTo(oldcontext);
}
/* stuff done on every call of the function */
funcctx = SRF_PERCALL_SETUP();
/*
* get the saved state and use current as the result for this iteration
*/
fctx = funcctx->user_fctx;
result = fctx->current;
if ((fctx->step > 0 && fctx->current <= fctx->finish) ||
(fctx->step < 0 && fctx->current >= fctx->finish))
{
/*
* Increment current in preparation for next iteration. If next-value
* computation overflows, this is the final result.
*/
if (pg_add_s64_overflow(fctx->current, fctx->step, &fctx->current))
fctx->step = 0;
/* do when there is more left to send */
SRF_RETURN_NEXT(funcctx, Int64GetDatum(result));
}
else
/* do when there is no more left */
SRF_RETURN_DONE(funcctx);
}
/*
* Planner support function for generate_series(int8, int8 [, int8])
*/
Datum
generate_series_int8_support(PG_FUNCTION_ARGS)
{
Node *rawreq = (Node *) PG_GETARG_POINTER(0);
Node *ret = NULL;
if (IsA(rawreq, SupportRequestRows))
{
/* Try to estimate the number of rows returned */
SupportRequestRows *req = (SupportRequestRows *) rawreq;
if (is_funcclause(req->node)) /* be paranoid */
{
List *args = ((FuncExpr *) req->node)->args;
Node *arg1,
*arg2,
*arg3;
/* We can use estimated argument values here */
arg1 = estimate_expression_value(req->root, linitial(args));
arg2 = estimate_expression_value(req->root, lsecond(args));
if (list_length(args) >= 3)
arg3 = estimate_expression_value(req->root, lthird(args));
else
arg3 = NULL;
/*
* If any argument is constant NULL, we can safely assume that
* zero rows are returned. Otherwise, if they're all non-NULL
* constants, we can calculate the number of rows that will be
* returned. Use double arithmetic to avoid overflow hazards.
*/
if ((IsA(arg1, Const) &&
((Const *) arg1)->constisnull) ||
(IsA(arg2, Const) &&
((Const *) arg2)->constisnull) ||
(arg3 != NULL && IsA(arg3, Const) &&
((Const *) arg3)->constisnull))
{
req->rows = 0;
ret = (Node *) req;
}
else if (IsA(arg1, Const) &&
IsA(arg2, Const) &&
(arg3 == NULL || IsA(arg3, Const)))
{
double start,
finish,
step;
start = DatumGetInt64(((Const *) arg1)->constvalue);
finish = DatumGetInt64(((Const *) arg2)->constvalue);
step = arg3 ? DatumGetInt64(((Const *) arg3)->constvalue) : 1;
/* This equation works for either sign of step */
if (step != 0)
{
req->rows = floor((finish - start + step) / step);
ret = (Node *) req;
}
}
}
}
PG_RETURN_POINTER(ret);
}