|
|
|
@ -17,6 +17,11 @@ |
|
|
|
|
|
|
|
|
|
#include "segdata.h" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#define DatumGetSegP(X) ((SEG *) DatumGetPointer(X)) |
|
|
|
|
#define PG_GETARG_SEG_P(n) DatumGetSegP(PG_GETARG_POINTER(n)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
#define GIST_DEBUG |
|
|
|
|
#define GIST_QUERY_DEBUG |
|
|
|
@ -47,52 +52,45 @@ PG_FUNCTION_INFO_V1(seg_center); |
|
|
|
|
/*
|
|
|
|
|
** GiST support methods |
|
|
|
|
*/ |
|
|
|
|
bool gseg_consistent(GISTENTRY *entry, |
|
|
|
|
SEG *query, |
|
|
|
|
StrategyNumber strategy, |
|
|
|
|
Oid subtype, |
|
|
|
|
bool *recheck); |
|
|
|
|
GISTENTRY *gseg_compress(GISTENTRY *entry); |
|
|
|
|
GISTENTRY *gseg_decompress(GISTENTRY *entry); |
|
|
|
|
float *gseg_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result); |
|
|
|
|
GIST_SPLITVEC *gseg_picksplit(GistEntryVector *entryvec, GIST_SPLITVEC *v); |
|
|
|
|
bool gseg_leaf_consistent(SEG *key, SEG *query, StrategyNumber strategy); |
|
|
|
|
bool gseg_internal_consistent(SEG *key, SEG *query, StrategyNumber strategy); |
|
|
|
|
SEG *gseg_union(GistEntryVector *entryvec, int *sizep); |
|
|
|
|
SEG *gseg_binary_union(SEG *r1, SEG *r2, int *sizep); |
|
|
|
|
bool *gseg_same(SEG *b1, SEG *b2, bool *result); |
|
|
|
|
PG_FUNCTION_INFO_V1(gseg_consistent); |
|
|
|
|
PG_FUNCTION_INFO_V1(gseg_compress); |
|
|
|
|
PG_FUNCTION_INFO_V1(gseg_decompress); |
|
|
|
|
PG_FUNCTION_INFO_V1(gseg_picksplit); |
|
|
|
|
PG_FUNCTION_INFO_V1(gseg_penalty); |
|
|
|
|
PG_FUNCTION_INFO_V1(gseg_union); |
|
|
|
|
PG_FUNCTION_INFO_V1(gseg_same); |
|
|
|
|
static Datum gseg_leaf_consistent(Datum key, Datum query, StrategyNumber strategy); |
|
|
|
|
static Datum gseg_internal_consistent(Datum key, Datum query, StrategyNumber strategy); |
|
|
|
|
static Datum gseg_binary_union(Datum r1, Datum r2, int *sizep); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
** R-tree support functions |
|
|
|
|
*/ |
|
|
|
|
bool seg_same(SEG *a, SEG *b); |
|
|
|
|
bool seg_contains_int(SEG *a, int *b); |
|
|
|
|
bool seg_contains_float4(SEG *a, float4 *b); |
|
|
|
|
bool seg_contains_float8(SEG *a, float8 *b); |
|
|
|
|
bool seg_contains(SEG *a, SEG *b); |
|
|
|
|
bool seg_contained(SEG *a, SEG *b); |
|
|
|
|
bool seg_overlap(SEG *a, SEG *b); |
|
|
|
|
bool seg_left(SEG *a, SEG *b); |
|
|
|
|
bool seg_over_left(SEG *a, SEG *b); |
|
|
|
|
bool seg_right(SEG *a, SEG *b); |
|
|
|
|
bool seg_over_right(SEG *a, SEG *b); |
|
|
|
|
SEG *seg_union(SEG *a, SEG *b); |
|
|
|
|
SEG *seg_inter(SEG *a, SEG *b); |
|
|
|
|
void rt_seg_size(SEG *a, float *sz); |
|
|
|
|
PG_FUNCTION_INFO_V1(seg_same); |
|
|
|
|
PG_FUNCTION_INFO_V1(seg_contains); |
|
|
|
|
PG_FUNCTION_INFO_V1(seg_contained); |
|
|
|
|
PG_FUNCTION_INFO_V1(seg_overlap); |
|
|
|
|
PG_FUNCTION_INFO_V1(seg_left); |
|
|
|
|
PG_FUNCTION_INFO_V1(seg_over_left); |
|
|
|
|
PG_FUNCTION_INFO_V1(seg_right); |
|
|
|
|
PG_FUNCTION_INFO_V1(seg_over_right); |
|
|
|
|
PG_FUNCTION_INFO_V1(seg_union); |
|
|
|
|
PG_FUNCTION_INFO_V1(seg_inter); |
|
|
|
|
static void rt_seg_size(SEG *a, float *size); |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
** Various operators |
|
|
|
|
*/ |
|
|
|
|
int32 seg_cmp(SEG *a, SEG *b); |
|
|
|
|
bool seg_lt(SEG *a, SEG *b); |
|
|
|
|
bool seg_le(SEG *a, SEG *b); |
|
|
|
|
bool seg_gt(SEG *a, SEG *b); |
|
|
|
|
bool seg_ge(SEG *a, SEG *b); |
|
|
|
|
bool seg_different(SEG *a, SEG *b); |
|
|
|
|
PG_FUNCTION_INFO_V1(seg_cmp); |
|
|
|
|
PG_FUNCTION_INFO_V1(seg_lt); |
|
|
|
|
PG_FUNCTION_INFO_V1(seg_le); |
|
|
|
|
PG_FUNCTION_INFO_V1(seg_gt); |
|
|
|
|
PG_FUNCTION_INFO_V1(seg_ge); |
|
|
|
|
PG_FUNCTION_INFO_V1(seg_different); |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
** Auxiliary funxtions |
|
|
|
|
** Auxiliary functions |
|
|
|
|
*/ |
|
|
|
|
static int restore(char *s, float val, int n); |
|
|
|
|
|
|
|
|
@ -120,7 +118,7 @@ seg_in(PG_FUNCTION_ARGS) |
|
|
|
|
Datum |
|
|
|
|
seg_out(PG_FUNCTION_ARGS) |
|
|
|
|
{ |
|
|
|
|
SEG *seg = (SEG *) PG_GETARG_POINTER(0); |
|
|
|
|
SEG *seg = PG_GETARG_SEG_P(0); |
|
|
|
|
char *result; |
|
|
|
|
char *p; |
|
|
|
|
|
|
|
|
@ -161,7 +159,7 @@ seg_out(PG_FUNCTION_ARGS) |
|
|
|
|
Datum |
|
|
|
|
seg_center(PG_FUNCTION_ARGS) |
|
|
|
|
{ |
|
|
|
|
SEG *seg = (SEG *) PG_GETARG_POINTER(0); |
|
|
|
|
SEG *seg = PG_GETARG_SEG_P(0); |
|
|
|
|
|
|
|
|
|
PG_RETURN_FLOAT4(((float) seg->lower + (float) seg->upper) / 2.0); |
|
|
|
|
} |
|
|
|
@ -169,7 +167,7 @@ seg_center(PG_FUNCTION_ARGS) |
|
|
|
|
Datum |
|
|
|
|
seg_lower(PG_FUNCTION_ARGS) |
|
|
|
|
{ |
|
|
|
|
SEG *seg = (SEG *) PG_GETARG_POINTER(0); |
|
|
|
|
SEG *seg = PG_GETARG_SEG_P(0); |
|
|
|
|
|
|
|
|
|
PG_RETURN_FLOAT4(seg->lower); |
|
|
|
|
} |
|
|
|
@ -177,7 +175,7 @@ seg_lower(PG_FUNCTION_ARGS) |
|
|
|
|
Datum |
|
|
|
|
seg_upper(PG_FUNCTION_ARGS) |
|
|
|
|
{ |
|
|
|
|
SEG *seg = (SEG *) PG_GETARG_POINTER(0); |
|
|
|
|
SEG *seg = PG_GETARG_SEG_P(0); |
|
|
|
|
|
|
|
|
|
PG_RETURN_FLOAT4(seg->upper); |
|
|
|
|
} |
|
|
|
@ -193,13 +191,16 @@ seg_upper(PG_FUNCTION_ARGS) |
|
|
|
|
** the predicate x op query == FALSE, where op is the oper |
|
|
|
|
** corresponding to strategy in the pg_amop table. |
|
|
|
|
*/ |
|
|
|
|
bool |
|
|
|
|
gseg_consistent(GISTENTRY *entry, |
|
|
|
|
SEG *query, |
|
|
|
|
StrategyNumber strategy, |
|
|
|
|
Oid subtype, |
|
|
|
|
bool *recheck) |
|
|
|
|
Datum |
|
|
|
|
gseg_consistent(PG_FUNCTION_ARGS) |
|
|
|
|
{ |
|
|
|
|
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0); |
|
|
|
|
Datum query = PG_GETARG_DATUM(1); |
|
|
|
|
StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2); |
|
|
|
|
|
|
|
|
|
/* Oid subtype = PG_GETARG_OID(3); */ |
|
|
|
|
bool *recheck = (bool *) PG_GETARG_POINTER(4); |
|
|
|
|
|
|
|
|
|
/* All cases served by this function are exact */ |
|
|
|
|
*recheck = false; |
|
|
|
|
|
|
|
|
@ -208,73 +209,77 @@ gseg_consistent(GISTENTRY *entry, |
|
|
|
|
* gseg_leaf_consistent |
|
|
|
|
*/ |
|
|
|
|
if (GIST_LEAF(entry)) |
|
|
|
|
return (gseg_leaf_consistent((SEG *) DatumGetPointer(entry->key), query, strategy)); |
|
|
|
|
return gseg_leaf_consistent(entry->key, query, strategy); |
|
|
|
|
else |
|
|
|
|
return (gseg_internal_consistent((SEG *) DatumGetPointer(entry->key), query, strategy)); |
|
|
|
|
return gseg_internal_consistent(entry->key, query, strategy); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
** The GiST Union method for segments |
|
|
|
|
** returns the minimal bounding seg that encloses all the entries in entryvec |
|
|
|
|
*/ |
|
|
|
|
SEG * |
|
|
|
|
gseg_union(GistEntryVector *entryvec, int *sizep) |
|
|
|
|
Datum |
|
|
|
|
gseg_union(PG_FUNCTION_ARGS) |
|
|
|
|
{ |
|
|
|
|
GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0); |
|
|
|
|
int *sizep = (int *) PG_GETARG_POINTER(1); |
|
|
|
|
int numranges, |
|
|
|
|
i; |
|
|
|
|
SEG *out = (SEG *) NULL; |
|
|
|
|
SEG *tmp; |
|
|
|
|
Datum out = 0; |
|
|
|
|
Datum tmp; |
|
|
|
|
|
|
|
|
|
#ifdef GIST_DEBUG |
|
|
|
|
fprintf(stderr, "union\n"); |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
numranges = entryvec->n; |
|
|
|
|
tmp = (SEG *) DatumGetPointer(entryvec->vector[0].key); |
|
|
|
|
tmp = entryvec->vector[0].key; |
|
|
|
|
*sizep = sizeof(SEG); |
|
|
|
|
|
|
|
|
|
for (i = 1; i < numranges; i++) |
|
|
|
|
{ |
|
|
|
|
out = gseg_binary_union(tmp, (SEG *) |
|
|
|
|
DatumGetPointer(entryvec->vector[i].key), |
|
|
|
|
sizep); |
|
|
|
|
out = gseg_binary_union(tmp, entryvec->vector[i].key, sizep); |
|
|
|
|
tmp = out; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return (out); |
|
|
|
|
PG_RETURN_DATUM(out); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
** GiST Compress and Decompress methods for segments |
|
|
|
|
** do not do anything. |
|
|
|
|
*/ |
|
|
|
|
GISTENTRY * |
|
|
|
|
gseg_compress(GISTENTRY *entry) |
|
|
|
|
Datum |
|
|
|
|
gseg_compress(PG_FUNCTION_ARGS) |
|
|
|
|
{ |
|
|
|
|
return (entry); |
|
|
|
|
PG_RETURN_POINTER(PG_GETARG_POINTER(0)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
GISTENTRY * |
|
|
|
|
gseg_decompress(GISTENTRY *entry) |
|
|
|
|
Datum |
|
|
|
|
gseg_decompress(PG_FUNCTION_ARGS) |
|
|
|
|
{ |
|
|
|
|
return (entry); |
|
|
|
|
PG_RETURN_POINTER(PG_GETARG_POINTER(0)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
** The GiST Penalty method for segments |
|
|
|
|
** As in the R-tree paper, we use change in area as our penalty metric |
|
|
|
|
*/ |
|
|
|
|
float * |
|
|
|
|
gseg_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result) |
|
|
|
|
Datum |
|
|
|
|
gseg_penalty(PG_FUNCTION_ARGS) |
|
|
|
|
{ |
|
|
|
|
GISTENTRY *origentry = (GISTENTRY *) PG_GETARG_POINTER(0); |
|
|
|
|
GISTENTRY *newentry = (GISTENTRY *) PG_GETARG_POINTER(1); |
|
|
|
|
float *result = (float *) PG_GETARG_POINTER(2); |
|
|
|
|
SEG *ud; |
|
|
|
|
float tmp1, |
|
|
|
|
tmp2; |
|
|
|
|
|
|
|
|
|
ud = seg_union((SEG *) DatumGetPointer(origentry->key), |
|
|
|
|
(SEG *) DatumGetPointer(newentry->key)); |
|
|
|
|
ud = DatumGetSegP(DirectFunctionCall2(seg_union, |
|
|
|
|
origentry->key, |
|
|
|
|
newentry->key)); |
|
|
|
|
rt_seg_size(ud, &tmp1); |
|
|
|
|
rt_seg_size((SEG *) DatumGetPointer(origentry->key), &tmp2); |
|
|
|
|
rt_seg_size(DatumGetSegP(origentry->key), &tmp2); |
|
|
|
|
*result = tmp1 - tmp2; |
|
|
|
|
|
|
|
|
|
#ifdef GIST_DEBUG |
|
|
|
@ -282,7 +287,7 @@ gseg_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result) |
|
|
|
|
fprintf(stderr, "\t%g\n", *result); |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
return (result); |
|
|
|
|
PG_RETURN_POINTER(result); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
@ -309,14 +314,15 @@ gseg_picksplit_item_cmp(const void *a, const void *b) |
|
|
|
|
* it's easier and more robust to just sort the segments by center-point and |
|
|
|
|
* split at the middle. |
|
|
|
|
*/ |
|
|
|
|
GIST_SPLITVEC * |
|
|
|
|
gseg_picksplit(GistEntryVector *entryvec, |
|
|
|
|
GIST_SPLITVEC *v) |
|
|
|
|
Datum |
|
|
|
|
gseg_picksplit(PG_FUNCTION_ARGS) |
|
|
|
|
{ |
|
|
|
|
GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0); |
|
|
|
|
GIST_SPLITVEC *v = (GIST_SPLITVEC *) PG_GETARG_POINTER(1); |
|
|
|
|
int i; |
|
|
|
|
SEG *datum_l, |
|
|
|
|
*datum_r, |
|
|
|
|
*seg; |
|
|
|
|
SEG *seg, |
|
|
|
|
*seg_l, |
|
|
|
|
*seg_r; |
|
|
|
|
gseg_picksplit_item *sort_items; |
|
|
|
|
OffsetNumber *left, |
|
|
|
|
*right; |
|
|
|
@ -337,7 +343,7 @@ gseg_picksplit(GistEntryVector *entryvec, |
|
|
|
|
palloc(maxoff * sizeof(gseg_picksplit_item)); |
|
|
|
|
for (i = 1; i <= maxoff; i++) |
|
|
|
|
{ |
|
|
|
|
seg = (SEG *) DatumGetPointer(entryvec->vector[i].key); |
|
|
|
|
seg = DatumGetSegP(entryvec->vector[i].key); |
|
|
|
|
/* center calculation is done this way to avoid possible overflow */ |
|
|
|
|
sort_items[i - 1].center = seg->lower * 0.5f + seg->upper * 0.5f; |
|
|
|
|
sort_items[i - 1].index = i; |
|
|
|
@ -359,13 +365,17 @@ gseg_picksplit(GistEntryVector *entryvec, |
|
|
|
|
/*
|
|
|
|
|
* Emit segments to the left output page, and compute its bounding box. |
|
|
|
|
*/ |
|
|
|
|
datum_l = (SEG *) palloc(sizeof(SEG)); |
|
|
|
|
memcpy(datum_l, sort_items[0].data, sizeof(SEG)); |
|
|
|
|
seg_l = (SEG *) palloc(sizeof(SEG)); |
|
|
|
|
memcpy(seg_l, sort_items[0].data, sizeof(SEG)); |
|
|
|
|
*left++ = sort_items[0].index; |
|
|
|
|
v->spl_nleft++; |
|
|
|
|
for (i = 1; i < firstright; i++) |
|
|
|
|
{ |
|
|
|
|
datum_l = seg_union(datum_l, sort_items[i].data); |
|
|
|
|
Datum sortitem = PointerGetDatum(sort_items[i].data); |
|
|
|
|
|
|
|
|
|
seg_l = DatumGetSegP(DirectFunctionCall2(seg_union, |
|
|
|
|
PointerGetDatum(seg_l), |
|
|
|
|
sortitem)); |
|
|
|
|
*left++ = sort_items[i].index; |
|
|
|
|
v->spl_nleft++; |
|
|
|
|
} |
|
|
|
@ -373,30 +383,36 @@ gseg_picksplit(GistEntryVector *entryvec, |
|
|
|
|
/*
|
|
|
|
|
* Likewise for the right page. |
|
|
|
|
*/ |
|
|
|
|
datum_r = (SEG *) palloc(sizeof(SEG)); |
|
|
|
|
memcpy(datum_r, sort_items[firstright].data, sizeof(SEG)); |
|
|
|
|
seg_r = (SEG *) palloc(sizeof(SEG)); |
|
|
|
|
memcpy(seg_r, sort_items[firstright].data, sizeof(SEG)); |
|
|
|
|
*right++ = sort_items[firstright].index; |
|
|
|
|
v->spl_nright++; |
|
|
|
|
for (i = firstright + 1; i < maxoff; i++) |
|
|
|
|
{ |
|
|
|
|
datum_r = seg_union(datum_r, sort_items[i].data); |
|
|
|
|
Datum sortitem = PointerGetDatum(sort_items[i].data); |
|
|
|
|
|
|
|
|
|
seg_r = DatumGetSegP(DirectFunctionCall2(seg_union, |
|
|
|
|
PointerGetDatum(seg_r), |
|
|
|
|
sortitem)); |
|
|
|
|
*right++ = sort_items[i].index; |
|
|
|
|
v->spl_nright++; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
v->spl_ldatum = PointerGetDatum(datum_l); |
|
|
|
|
v->spl_rdatum = PointerGetDatum(datum_r); |
|
|
|
|
v->spl_ldatum = PointerGetDatum(seg_l); |
|
|
|
|
v->spl_rdatum = PointerGetDatum(seg_r); |
|
|
|
|
|
|
|
|
|
return v; |
|
|
|
|
PG_RETURN_POINTER(v); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
** Equality methods |
|
|
|
|
*/ |
|
|
|
|
bool * |
|
|
|
|
gseg_same(SEG *b1, SEG *b2, bool *result) |
|
|
|
|
Datum |
|
|
|
|
gseg_same(PG_FUNCTION_ARGS) |
|
|
|
|
{ |
|
|
|
|
if (seg_same(b1, b2)) |
|
|
|
|
bool *result = (bool *) PG_GETARG_POINTER(2); |
|
|
|
|
|
|
|
|
|
if (DirectFunctionCall2(seg_same, PG_GETARG_DATUM(0), PG_GETARG_DATUM(1))) |
|
|
|
|
*result = TRUE; |
|
|
|
|
else |
|
|
|
|
*result = FALSE; |
|
|
|
@ -405,18 +421,16 @@ gseg_same(SEG *b1, SEG *b2, bool *result) |
|
|
|
|
fprintf(stderr, "same: %s\n", (*result ? "TRUE" : "FALSE")); |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
return (result); |
|
|
|
|
PG_RETURN_POINTER(result); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
** SUPPORT ROUTINES |
|
|
|
|
*/ |
|
|
|
|
bool |
|
|
|
|
gseg_leaf_consistent(SEG *key, |
|
|
|
|
SEG *query, |
|
|
|
|
StrategyNumber strategy) |
|
|
|
|
static Datum |
|
|
|
|
gseg_leaf_consistent(Datum key, Datum query, StrategyNumber strategy) |
|
|
|
|
{ |
|
|
|
|
bool retval; |
|
|
|
|
Datum retval; |
|
|
|
|
|
|
|
|
|
#ifdef GIST_QUERY_DEBUG |
|
|
|
|
fprintf(stderr, "leaf_consistent, %d\n", strategy); |
|
|
|
@ -425,41 +439,40 @@ gseg_leaf_consistent(SEG *key, |
|
|
|
|
switch (strategy) |
|
|
|
|
{ |
|
|
|
|
case RTLeftStrategyNumber: |
|
|
|
|
retval = (bool) seg_left(key, query); |
|
|
|
|
retval = DirectFunctionCall2(seg_left, key, query); |
|
|
|
|
break; |
|
|
|
|
case RTOverLeftStrategyNumber: |
|
|
|
|
retval = (bool) seg_over_left(key, query); |
|
|
|
|
retval = DirectFunctionCall2(seg_over_left, key, query); |
|
|
|
|
break; |
|
|
|
|
case RTOverlapStrategyNumber: |
|
|
|
|
retval = (bool) seg_overlap(key, query); |
|
|
|
|
retval = DirectFunctionCall2(seg_overlap, key, query); |
|
|
|
|
break; |
|
|
|
|
case RTOverRightStrategyNumber: |
|
|
|
|
retval = (bool) seg_over_right(key, query); |
|
|
|
|
retval = DirectFunctionCall2(seg_over_right, key, query); |
|
|
|
|
break; |
|
|
|
|
case RTRightStrategyNumber: |
|
|
|
|
retval = (bool) seg_right(key, query); |
|
|
|
|
retval = DirectFunctionCall2(seg_right, key, query); |
|
|
|
|
break; |
|
|
|
|
case RTSameStrategyNumber: |
|
|
|
|
retval = (bool) seg_same(key, query); |
|
|
|
|
retval = DirectFunctionCall2(seg_same, key, query); |
|
|
|
|
break; |
|
|
|
|
case RTContainsStrategyNumber: |
|
|
|
|
case RTOldContainsStrategyNumber: |
|
|
|
|
retval = (bool) seg_contains(key, query); |
|
|
|
|
retval = DirectFunctionCall2(seg_contains, key, query); |
|
|
|
|
break; |
|
|
|
|
case RTContainedByStrategyNumber: |
|
|
|
|
case RTOldContainedByStrategyNumber: |
|
|
|
|
retval = (bool) seg_contained(key, query); |
|
|
|
|
retval = DirectFunctionCall2(seg_contained, key, query); |
|
|
|
|
break; |
|
|
|
|
default: |
|
|
|
|
retval = FALSE; |
|
|
|
|
} |
|
|
|
|
return (retval); |
|
|
|
|
|
|
|
|
|
PG_RETURN_DATUM(retval); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool |
|
|
|
|
gseg_internal_consistent(SEG *key, |
|
|
|
|
SEG *query, |
|
|
|
|
StrategyNumber strategy) |
|
|
|
|
static Datum |
|
|
|
|
gseg_internal_consistent(Datum key, Datum query, StrategyNumber strategy) |
|
|
|
|
{ |
|
|
|
|
bool retval; |
|
|
|
|
|
|
|
|
@ -470,117 +483,147 @@ gseg_internal_consistent(SEG *key, |
|
|
|
|
switch (strategy) |
|
|
|
|
{ |
|
|
|
|
case RTLeftStrategyNumber: |
|
|
|
|
retval = (bool) !seg_over_right(key, query); |
|
|
|
|
retval = |
|
|
|
|
!DatumGetBool(DirectFunctionCall2(seg_over_right, key, query)); |
|
|
|
|
break; |
|
|
|
|
case RTOverLeftStrategyNumber: |
|
|
|
|
retval = (bool) !seg_right(key, query); |
|
|
|
|
retval = |
|
|
|
|
!DatumGetBool(DirectFunctionCall2(seg_right, key, query)); |
|
|
|
|
break; |
|
|
|
|
case RTOverlapStrategyNumber: |
|
|
|
|
retval = (bool) seg_overlap(key, query); |
|
|
|
|
retval = |
|
|
|
|
DatumGetBool(DirectFunctionCall2(seg_overlap, key, query)); |
|
|
|
|
break; |
|
|
|
|
case RTOverRightStrategyNumber: |
|
|
|
|
retval = (bool) !seg_left(key, query); |
|
|
|
|
retval = |
|
|
|
|
!DatumGetBool(DirectFunctionCall2(seg_left, key, query)); |
|
|
|
|
break; |
|
|
|
|
case RTRightStrategyNumber: |
|
|
|
|
retval = (bool) !seg_over_left(key, query); |
|
|
|
|
retval = |
|
|
|
|
!DatumGetBool(DirectFunctionCall2(seg_over_left, key, query)); |
|
|
|
|
break; |
|
|
|
|
case RTSameStrategyNumber: |
|
|
|
|
case RTContainsStrategyNumber: |
|
|
|
|
case RTOldContainsStrategyNumber: |
|
|
|
|
retval = (bool) seg_contains(key, query); |
|
|
|
|
retval = |
|
|
|
|
DatumGetBool(DirectFunctionCall2(seg_contains, key, query)); |
|
|
|
|
break; |
|
|
|
|
case RTContainedByStrategyNumber: |
|
|
|
|
case RTOldContainedByStrategyNumber: |
|
|
|
|
retval = (bool) seg_overlap(key, query); |
|
|
|
|
retval = |
|
|
|
|
DatumGetBool(DirectFunctionCall2(seg_overlap, key, query)); |
|
|
|
|
break; |
|
|
|
|
default: |
|
|
|
|
retval = FALSE; |
|
|
|
|
} |
|
|
|
|
return (retval); |
|
|
|
|
|
|
|
|
|
PG_RETURN_BOOL(retval); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
SEG * |
|
|
|
|
gseg_binary_union(SEG *r1, SEG *r2, int *sizep) |
|
|
|
|
static Datum |
|
|
|
|
gseg_binary_union(Datum r1, Datum r2, int *sizep) |
|
|
|
|
{ |
|
|
|
|
SEG *retval; |
|
|
|
|
Datum retval; |
|
|
|
|
|
|
|
|
|
retval = seg_union(r1, r2); |
|
|
|
|
retval = DirectFunctionCall2(seg_union, r1, r2); |
|
|
|
|
*sizep = sizeof(SEG); |
|
|
|
|
|
|
|
|
|
return (retval); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bool |
|
|
|
|
seg_contains(SEG *a, SEG *b) |
|
|
|
|
Datum |
|
|
|
|
seg_contains(PG_FUNCTION_ARGS) |
|
|
|
|
{ |
|
|
|
|
return ((a->lower <= b->lower) && (a->upper >= b->upper)); |
|
|
|
|
SEG *a = PG_GETARG_SEG_P(0); |
|
|
|
|
SEG *b = PG_GETARG_SEG_P(1); |
|
|
|
|
|
|
|
|
|
PG_RETURN_BOOL((a->lower <= b->lower) && (a->upper >= b->upper)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool |
|
|
|
|
seg_contained(SEG *a, SEG *b) |
|
|
|
|
Datum |
|
|
|
|
seg_contained(PG_FUNCTION_ARGS) |
|
|
|
|
{ |
|
|
|
|
return (seg_contains(b, a)); |
|
|
|
|
Datum a = PG_GETARG_DATUM(0); |
|
|
|
|
Datum b = PG_GETARG_DATUM(1); |
|
|
|
|
|
|
|
|
|
PG_RETURN_DATUM(DirectFunctionCall2(seg_contains, b, a)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*****************************************************************************
|
|
|
|
|
* Operator class for R-tree indexing |
|
|
|
|
*****************************************************************************/ |
|
|
|
|
|
|
|
|
|
bool |
|
|
|
|
seg_same(SEG *a, SEG *b) |
|
|
|
|
Datum |
|
|
|
|
seg_same(PG_FUNCTION_ARGS) |
|
|
|
|
{ |
|
|
|
|
return seg_cmp(a, b) == 0; |
|
|
|
|
int cmp = DatumGetInt32( |
|
|
|
|
DirectFunctionCall2(seg_cmp, PG_GETARG_DATUM(0), PG_GETARG_DATUM(1))); |
|
|
|
|
|
|
|
|
|
PG_RETURN_BOOL(cmp == 0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* seg_overlap -- does a overlap b?
|
|
|
|
|
*/ |
|
|
|
|
bool |
|
|
|
|
seg_overlap(SEG *a, SEG *b) |
|
|
|
|
Datum |
|
|
|
|
seg_overlap(PG_FUNCTION_ARGS) |
|
|
|
|
{ |
|
|
|
|
return ( |
|
|
|
|
((a->upper >= b->upper) && (a->lower <= b->upper)) |
|
|
|
|
|| |
|
|
|
|
((b->upper >= a->upper) && (b->lower <= a->upper)) |
|
|
|
|
); |
|
|
|
|
SEG *a = PG_GETARG_SEG_P(0); |
|
|
|
|
SEG *b = PG_GETARG_SEG_P(1); |
|
|
|
|
|
|
|
|
|
PG_RETURN_BOOL(((a->upper >= b->upper) && (a->lower <= b->upper)) || |
|
|
|
|
((b->upper >= a->upper) && (b->lower <= a->upper))); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* seg_overleft -- is the right edge of (a) located at or left of the right edge of (b)?
|
|
|
|
|
/* seg_over_left -- is the right edge of (a) located at or left of the right edge of (b)?
|
|
|
|
|
*/ |
|
|
|
|
bool |
|
|
|
|
seg_over_left(SEG *a, SEG *b) |
|
|
|
|
Datum |
|
|
|
|
seg_over_left(PG_FUNCTION_ARGS) |
|
|
|
|
{ |
|
|
|
|
return (a->upper <= b->upper); |
|
|
|
|
SEG *a = PG_GETARG_SEG_P(0); |
|
|
|
|
SEG *b = PG_GETARG_SEG_P(1); |
|
|
|
|
|
|
|
|
|
PG_RETURN_BOOL(a->upper <= b->upper); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* seg_left -- is (a) entirely on the left of (b)?
|
|
|
|
|
*/ |
|
|
|
|
bool |
|
|
|
|
seg_left(SEG *a, SEG *b) |
|
|
|
|
Datum |
|
|
|
|
seg_left(PG_FUNCTION_ARGS) |
|
|
|
|
{ |
|
|
|
|
return (a->upper < b->lower); |
|
|
|
|
SEG *a = PG_GETARG_SEG_P(0); |
|
|
|
|
SEG *b = PG_GETARG_SEG_P(1); |
|
|
|
|
|
|
|
|
|
PG_RETURN_BOOL(a->upper < b->lower); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* seg_right -- is (a) entirely on the right of (b)?
|
|
|
|
|
*/ |
|
|
|
|
bool |
|
|
|
|
seg_right(SEG *a, SEG *b) |
|
|
|
|
Datum |
|
|
|
|
seg_right(PG_FUNCTION_ARGS) |
|
|
|
|
{ |
|
|
|
|
return (a->lower > b->upper); |
|
|
|
|
SEG *a = PG_GETARG_SEG_P(0); |
|
|
|
|
SEG *b = PG_GETARG_SEG_P(1); |
|
|
|
|
|
|
|
|
|
PG_RETURN_BOOL(a->lower > b->upper); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* seg_overright -- is the left edge of (a) located at or right of the left edge of (b)?
|
|
|
|
|
/* seg_over_right -- is the left edge of (a) located at or right of the left edge of (b)?
|
|
|
|
|
*/ |
|
|
|
|
bool |
|
|
|
|
seg_over_right(SEG *a, SEG *b) |
|
|
|
|
Datum |
|
|
|
|
seg_over_right(PG_FUNCTION_ARGS) |
|
|
|
|
{ |
|
|
|
|
return (a->lower >= b->lower); |
|
|
|
|
} |
|
|
|
|
SEG *a = PG_GETARG_SEG_P(0); |
|
|
|
|
SEG *b = PG_GETARG_SEG_P(1); |
|
|
|
|
|
|
|
|
|
PG_RETURN_BOOL(a->lower >= b->lower); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
SEG * |
|
|
|
|
seg_union(SEG *a, SEG *b) |
|
|
|
|
Datum |
|
|
|
|
seg_union(PG_FUNCTION_ARGS) |
|
|
|
|
{ |
|
|
|
|
SEG *a = PG_GETARG_SEG_P(0); |
|
|
|
|
SEG *b = PG_GETARG_SEG_P(1); |
|
|
|
|
SEG *n; |
|
|
|
|
|
|
|
|
|
n = (SEG *) palloc(sizeof(*n)); |
|
|
|
@ -613,13 +656,14 @@ seg_union(SEG *a, SEG *b) |
|
|
|
|
n->l_ext = b->l_ext; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return (n); |
|
|
|
|
PG_RETURN_POINTER(n); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SEG * |
|
|
|
|
seg_inter(SEG *a, SEG *b) |
|
|
|
|
Datum |
|
|
|
|
seg_inter(PG_FUNCTION_ARGS) |
|
|
|
|
{ |
|
|
|
|
SEG *a = PG_GETARG_SEG_P(0); |
|
|
|
|
SEG *b = PG_GETARG_SEG_P(1); |
|
|
|
|
SEG *n; |
|
|
|
|
|
|
|
|
|
n = (SEG *) palloc(sizeof(*n)); |
|
|
|
@ -652,10 +696,10 @@ seg_inter(SEG *a, SEG *b) |
|
|
|
|
n->l_ext = b->l_ext; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return (n); |
|
|
|
|
PG_RETURN_POINTER(n); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void |
|
|
|
|
static void |
|
|
|
|
rt_seg_size(SEG *a, float *size) |
|
|
|
|
{ |
|
|
|
|
if (a == (SEG *) NULL || a->upper <= a->lower) |
|
|
|
@ -669,7 +713,7 @@ rt_seg_size(SEG *a, float *size) |
|
|
|
|
Datum |
|
|
|
|
seg_size(PG_FUNCTION_ARGS) |
|
|
|
|
{ |
|
|
|
|
SEG *seg = (SEG *) PG_GETARG_POINTER(0); |
|
|
|
|
SEG *seg = PG_GETARG_SEG_P(0); |
|
|
|
|
|
|
|
|
|
PG_RETURN_FLOAT4((float) Abs(seg->upper - seg->lower)); |
|
|
|
|
} |
|
|
|
@ -678,16 +722,19 @@ seg_size(PG_FUNCTION_ARGS) |
|
|
|
|
/*****************************************************************************
|
|
|
|
|
* Miscellaneous operators |
|
|
|
|
*****************************************************************************/ |
|
|
|
|
int32 |
|
|
|
|
seg_cmp(SEG *a, SEG *b) |
|
|
|
|
Datum |
|
|
|
|
seg_cmp(PG_FUNCTION_ARGS) |
|
|
|
|
{ |
|
|
|
|
SEG *a = PG_GETARG_SEG_P(0); |
|
|
|
|
SEG *b = PG_GETARG_SEG_P(1); |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* First compare on lower boundary position |
|
|
|
|
*/ |
|
|
|
|
if (a->lower < b->lower) |
|
|
|
|
return -1; |
|
|
|
|
PG_RETURN_INT32(-1); |
|
|
|
|
if (a->lower > b->lower) |
|
|
|
|
return 1; |
|
|
|
|
PG_RETURN_INT32(1); |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* a->lower == b->lower, so consider type of boundary. |
|
|
|
@ -699,27 +746,27 @@ seg_cmp(SEG *a, SEG *b) |
|
|
|
|
if (a->l_ext != b->l_ext) |
|
|
|
|
{ |
|
|
|
|
if (a->l_ext == '-') |
|
|
|
|
return -1; |
|
|
|
|
PG_RETURN_INT32(-1); |
|
|
|
|
if (b->l_ext == '-') |
|
|
|
|
return 1; |
|
|
|
|
PG_RETURN_INT32(1); |
|
|
|
|
if (a->l_ext == '<') |
|
|
|
|
return -1; |
|
|
|
|
PG_RETURN_INT32(-1); |
|
|
|
|
if (b->l_ext == '<') |
|
|
|
|
return 1; |
|
|
|
|
PG_RETURN_INT32(1); |
|
|
|
|
if (a->l_ext == '>') |
|
|
|
|
return 1; |
|
|
|
|
PG_RETURN_INT32(1); |
|
|
|
|
if (b->l_ext == '>') |
|
|
|
|
return -1; |
|
|
|
|
PG_RETURN_INT32(-1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* For other boundary types, consider # of significant digits first. |
|
|
|
|
*/ |
|
|
|
|
if (a->l_sigd < b->l_sigd) /* (a) is blurred and is likely to include (b) */ |
|
|
|
|
return -1; |
|
|
|
|
PG_RETURN_INT32(-1); |
|
|
|
|
if (a->l_sigd > b->l_sigd) /* (a) is less blurred and is likely to be
|
|
|
|
|
* included in (b) */ |
|
|
|
|
return 1; |
|
|
|
|
PG_RETURN_INT32(1); |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* For same # of digits, an approximate boundary is more blurred than |
|
|
|
@ -728,9 +775,9 @@ seg_cmp(SEG *a, SEG *b) |
|
|
|
|
if (a->l_ext != b->l_ext) |
|
|
|
|
{ |
|
|
|
|
if (a->l_ext == '~') /* (a) is approximate, while (b) is exact */ |
|
|
|
|
return -1; |
|
|
|
|
PG_RETURN_INT32(-1); |
|
|
|
|
if (b->l_ext == '~') |
|
|
|
|
return 1; |
|
|
|
|
PG_RETURN_INT32(1); |
|
|
|
|
/* can't get here unless data is corrupt */ |
|
|
|
|
elog(ERROR, "bogus lower boundary types %d %d", |
|
|
|
|
(int) a->l_ext, (int) b->l_ext); |
|
|
|
@ -742,9 +789,9 @@ seg_cmp(SEG *a, SEG *b) |
|
|
|
|
* First compare on upper boundary position |
|
|
|
|
*/ |
|
|
|
|
if (a->upper < b->upper) |
|
|
|
|
return -1; |
|
|
|
|
PG_RETURN_INT32(-1); |
|
|
|
|
if (a->upper > b->upper) |
|
|
|
|
return 1; |
|
|
|
|
PG_RETURN_INT32(1); |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* a->upper == b->upper, so consider type of boundary. |
|
|
|
@ -756,17 +803,17 @@ seg_cmp(SEG *a, SEG *b) |
|
|
|
|
if (a->u_ext != b->u_ext) |
|
|
|
|
{ |
|
|
|
|
if (a->u_ext == '-') |
|
|
|
|
return 1; |
|
|
|
|
PG_RETURN_INT32(1); |
|
|
|
|
if (b->u_ext == '-') |
|
|
|
|
return -1; |
|
|
|
|
PG_RETURN_INT32(-1); |
|
|
|
|
if (a->u_ext == '<') |
|
|
|
|
return -1; |
|
|
|
|
PG_RETURN_INT32(-1); |
|
|
|
|
if (b->u_ext == '<') |
|
|
|
|
return 1; |
|
|
|
|
PG_RETURN_INT32(1); |
|
|
|
|
if (a->u_ext == '>') |
|
|
|
|
return 1; |
|
|
|
|
PG_RETURN_INT32(1); |
|
|
|
|
if (b->u_ext == '>') |
|
|
|
|
return -1; |
|
|
|
|
PG_RETURN_INT32(-1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
@ -774,10 +821,10 @@ seg_cmp(SEG *a, SEG *b) |
|
|
|
|
* result here is converse of the lower-boundary case. |
|
|
|
|
*/ |
|
|
|
|
if (a->u_sigd < b->u_sigd) /* (a) is blurred and is likely to include (b) */ |
|
|
|
|
return 1; |
|
|
|
|
PG_RETURN_INT32(1); |
|
|
|
|
if (a->u_sigd > b->u_sigd) /* (a) is less blurred and is likely to be
|
|
|
|
|
* included in (b) */ |
|
|
|
|
return -1; |
|
|
|
|
PG_RETURN_INT32(-1); |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* For same # of digits, an approximate boundary is more blurred than |
|
|
|
@ -786,45 +833,61 @@ seg_cmp(SEG *a, SEG *b) |
|
|
|
|
if (a->u_ext != b->u_ext) |
|
|
|
|
{ |
|
|
|
|
if (a->u_ext == '~') /* (a) is approximate, while (b) is exact */ |
|
|
|
|
return 1; |
|
|
|
|
PG_RETURN_INT32(1); |
|
|
|
|
if (b->u_ext == '~') |
|
|
|
|
return -1; |
|
|
|
|
PG_RETURN_INT32(-1); |
|
|
|
|
/* can't get here unless data is corrupt */ |
|
|
|
|
elog(ERROR, "bogus upper boundary types %d %d", |
|
|
|
|
(int) a->u_ext, (int) b->u_ext); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return 0; |
|
|
|
|
PG_RETURN_INT32(0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool |
|
|
|
|
seg_lt(SEG *a, SEG *b) |
|
|
|
|
Datum |
|
|
|
|
seg_lt(PG_FUNCTION_ARGS) |
|
|
|
|
{ |
|
|
|
|
return seg_cmp(a, b) < 0; |
|
|
|
|
int cmp = DatumGetInt32( |
|
|
|
|
DirectFunctionCall2(seg_cmp, PG_GETARG_DATUM(0), PG_GETARG_DATUM(1))); |
|
|
|
|
|
|
|
|
|
PG_RETURN_BOOL(cmp < 0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool |
|
|
|
|
seg_le(SEG *a, SEG *b) |
|
|
|
|
Datum |
|
|
|
|
seg_le(PG_FUNCTION_ARGS) |
|
|
|
|
{ |
|
|
|
|
return seg_cmp(a, b) <= 0; |
|
|
|
|
int cmp = DatumGetInt32( |
|
|
|
|
DirectFunctionCall2(seg_cmp, PG_GETARG_DATUM(0), PG_GETARG_DATUM(1))); |
|
|
|
|
|
|
|
|
|
PG_RETURN_BOOL(cmp <= 0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool |
|
|
|
|
seg_gt(SEG *a, SEG *b) |
|
|
|
|
Datum |
|
|
|
|
seg_gt(PG_FUNCTION_ARGS) |
|
|
|
|
{ |
|
|
|
|
return seg_cmp(a, b) > 0; |
|
|
|
|
int cmp = DatumGetInt32( |
|
|
|
|
DirectFunctionCall2(seg_cmp, PG_GETARG_DATUM(0), PG_GETARG_DATUM(1))); |
|
|
|
|
|
|
|
|
|
PG_RETURN_BOOL(cmp > 0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool |
|
|
|
|
seg_ge(SEG *a, SEG *b) |
|
|
|
|
Datum |
|
|
|
|
seg_ge(PG_FUNCTION_ARGS) |
|
|
|
|
{ |
|
|
|
|
return seg_cmp(a, b) >= 0; |
|
|
|
|
int cmp = DatumGetInt32( |
|
|
|
|
DirectFunctionCall2(seg_cmp, PG_GETARG_DATUM(0), PG_GETARG_DATUM(1))); |
|
|
|
|
|
|
|
|
|
PG_RETURN_BOOL(cmp >= 0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool |
|
|
|
|
seg_different(SEG *a, SEG *b) |
|
|
|
|
|
|
|
|
|
Datum |
|
|
|
|
seg_different(PG_FUNCTION_ARGS) |
|
|
|
|
{ |
|
|
|
|
return seg_cmp(a, b) != 0; |
|
|
|
|
int cmp = DatumGetInt32( |
|
|
|
|
DirectFunctionCall2(seg_cmp, PG_GETARG_DATUM(0), PG_GETARG_DATUM(1))); |
|
|
|
|
|
|
|
|
|
PG_RETURN_BOOL(cmp != 0); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -985,24 +1048,6 @@ restore(char *result, float val, int n) |
|
|
|
|
** Miscellany |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
bool |
|
|
|
|
seg_contains_int(SEG *a, int *b) |
|
|
|
|
{ |
|
|
|
|
return ((a->lower <= *b) && (a->upper >= *b)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool |
|
|
|
|
seg_contains_float4(SEG *a, float4 *b) |
|
|
|
|
{ |
|
|
|
|
return ((a->lower <= *b) && (a->upper >= *b)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool |
|
|
|
|
seg_contains_float8(SEG *a, float8 *b) |
|
|
|
|
{ |
|
|
|
|
return ((a->lower <= *b) && (a->upper >= *b)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/* find out the number of significant digits in a string representing
|
|
|
|
|
* a floating point number |
|
|
|
|
*/ |
|
|
|
|