@ -1,61 +1,57 @@
/*
Name : imath . h
Purpose : Arbitrary precision integer arithmetic routines .
Author : M . J . Fromberger < http : //spinning-yarns.org/michael/sw/>
Info : Id : imath . h 21 2006 - 04 - 02 18 : 58 : 36 Z sting
Copyright ( C ) 2002 Michael J . Fromberger , All Rights Reserved .
Permission is hereby granted , free of charge , to any person
obtaining a copy of this software and associated documentation files
( the " Software " ) , to deal in the Software without restriction ,
including without limitation the rights to use , copy , modify , merge ,
publish , distribute , sublicense , and / or sell copies of the Software ,
and to permit persons to whom the Software is furnished to do so ,
subject to the following conditions :
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software .
THE SOFTWARE IS PROVIDED " AS IS " , WITHOUT WARRANTY OF ANY KIND ,
EXPRESS OR IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY , FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT . IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER LIABILITY , WHETHER IN AN
ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING FROM , OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
Name : imath . h
Purpose : Arbitrary precision integer arithmetic routines .
Author : M . J . Fromberger
Copyright ( C ) 2002 - 2007 Michael J . Fromberger , All Rights Reserved .
Permission is hereby granted , free of charge , to any person obtaining a copy
of this software and associated documentation files ( the " Software " ) , to deal
in the Software without restriction , including without limitation the rights
to use , copy , modify , merge , publish , distribute , sublicense , and / or sell
copies of the Software , and to permit persons to whom the Software is
furnished to do so , subject to the following conditions :
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software .
THE SOFTWARE IS PROVIDED " AS IS " , WITHOUT WARRANTY OF ANY KIND , EXPRESS OR
IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY ,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT . IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER
LIABILITY , WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING FROM ,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE .
*/
/* contrib/pgcrypto/imath.h */
# ifndef IMATH_H_
# define IMATH_H_
/* use always 32bit digits - should some arch use 16bit digits? */
# define USE_LONG_LONG
# include <limits.h>
typedef unsigned char mp_sign ;
typedef unsigned int mp_size ;
typedef int mp_result ;
typedef long mp_small ; /* must be a signed type */
typedef unsigned long mp_usmall ; /* must be an unsigned type */
# ifdef USE_LONG_LONG
typedef uint32 mp_digit ;
typedef uint64 mp_word ;
# define MP_DIGIT_MAX 0xFFFFFFFFULL
# define MP_WORD_MAX 0xFFFFFFFFFFFFFFFFULL
/* Build with words as uint64_t by default. */
# ifdef USE_32BIT_WORDS
typedef uint16_t mp_digit ;
typedef uint32_t mp_word ;
# define MP_DIGIT_MAX (UINT16_MAX * 1UL)
# define MP_WORD_MAX (UINT32_MAX * 1UL)
# else
typedef uint16 mp_digit ;
typedef uint32 mp_word ;
# define MP_DIGIT_MAX 0xFFFFUL
# define MP_WORD_MAX 0xFFFFFFFFUL
typedef uint32_t mp_digit ;
typedef uint64_t mp_word ;
# define MP_DIGIT_MAX (UINT32_MAX * UINT64_C(1))
# define MP_WORD_MAX (UINT64_MAX)
# endif
typedef struct mpz
typedef struct
{
mp_digit single ;
mp_digit * digits ;
mp_size alloc ;
mp_size used ;
@ -64,10 +60,26 @@ typedef struct mpz
* mp_int ;
# define MP_DIGITS(Z) ((Z)->digits)
# define MP_ALLOC(Z) ((Z)->alloc)
# define MP_USED(Z) ((Z)->used)
# define MP_SIGN(Z) ((Z)->sign)
static inline mp_digit *
MP_DIGITS ( mp_int Z )
{
return Z - > digits ;
}
static inline mp_size
MP_ALLOC ( mp_int Z )
{
return Z - > alloc ;
}
static inline mp_size
MP_USED ( mp_int Z )
{
return Z - > used ;
}
static inline mp_sign
MP_SIGN ( mp_int Z )
{
return Z - > sign ;
}
extern const mp_result MP_OK ;
extern const mp_result MP_FALSE ;
@ -77,134 +89,357 @@ extern const mp_result MP_RANGE;
extern const mp_result MP_UNDEF ;
extern const mp_result MP_TRUNC ;
extern const mp_result MP_BADARG ;
extern const mp_result MP_MINERR ;
# define MP_DIGIT_BIT (sizeof(mp_digit) * CHAR_BIT)
# define MP_WORD_BIT (sizeof(mp_word) * CHAR_BIT)
# define MP_SMALL_MIN LONG_MIN
# define MP_SMALL_MAX LONG_MAX
# define MP_USMALL_MAX ULONG_MAX
# define MP_MIN_RADIX 2
# define MP_MAX_RADIX 36
# define MP_DIGIT_BIT (sizeof(mp_digit) * CHAR_BIT)
# define MP_WORD_BIT (sizeof(mp_word) * CHAR_BIT)
/** Sets the default number of digits allocated to an `mp_int` constructed by
` mp_int_init_size ( ) ` with ` prec = = 0 ` . Allocations are rounded up to
multiples of this value . ` MP_DEFAULT_PREC ` is the default value . Requires
` ndigits > 0 ` . */
void mp_int_default_precision ( mp_size ndigits ) ;
# define MP_MIN_RADIX 2
# define MP_MAX_RADIX 36
/** Sets the number of digits below which multiplication will use the standard
quadratic " schoolbook " multiplcation algorithm rather than Karatsuba - Ofman .
Requires ` ndigits > = sizeof ( mp_word ) ` . */
void mp_int_multiply_threshold ( mp_size ndigits ) ;
/** A sign indicating a (strictly) negative value. */
extern const mp_sign MP_NEG ;
/** A sign indicating a zero or positive value. */
extern const mp_sign MP_ZPOS ;
# define mp_int_is_odd(Z) ((Z)->digits[0] & 1)
# define mp_int_is_even(Z) !((Z)->digits[0] & 1)
/** Reports whether `z` is odd, having remainder 1 when divided by 2. */
static inline bool
mp_int_is_odd ( mp_int z )
{
return ( z - > digits [ 0 ] & 1 ) ! = 0 ;
}
mp_size mp_get_default_precision ( void ) ;
void mp_set_default_precision ( mp_size s ) ;
mp_size mp_get_multiply_threshold ( void ) ;
void mp_set_multiply_threshold ( mp_size s ) ;
/** Reports whether `z` is even, having remainder 0 when divided by 2. */
static inline bool
mp_int_is_even ( mp_int z )
{
return ( z - > digits [ 0 ] & 1 ) = = 0 ;
}
/** Initializes `z` with 1-digit precision and sets it to zero. This function
cannot fail unless ` z = = NULL ` . */
mp_result mp_int_init ( mp_int z ) ;
/** Allocates a fresh zero-valued `mpz_t` on the heap, returning NULL in case
of error . The only possible error is out - of - memory . */
mp_int mp_int_alloc ( void ) ;
/** Initializes `z` with at least `prec` digits of storage, and sets it to
zero . If ` prec ` is zero , the default precision is used . In either case the
size is rounded up to the nearest multiple of the word size . */
mp_result mp_int_init_size ( mp_int z , mp_size prec ) ;
/** Initializes `z` to be a copy of an already-initialized value in `old`. The
new copy does not share storage with the original . */
mp_result mp_int_init_copy ( mp_int z , mp_int old ) ;
mp_result mp_int_init_value ( mp_int z , int value ) ;
mp_result mp_int_set_value ( mp_int z , int value ) ;
/** Initializes `z` to the specified signed `value` at default precision. */
mp_result mp_int_init_value ( mp_int z , mp_small value ) ;
/** Initializes `z` to the specified unsigned `value` at default precision. */
mp_result mp_int_init_uvalue ( mp_int z , mp_usmall uvalue ) ;
/** Sets `z` to the value of the specified signed `value`. */
mp_result mp_int_set_value ( mp_int z , mp_small value ) ;
/** Sets `z` to the value of the specified unsigned `value`. */
mp_result mp_int_set_uvalue ( mp_int z , mp_usmall uvalue ) ;
/** Releases the storage used by `z`. */
void mp_int_clear ( mp_int z ) ;
/** Releases the storage used by `z` and also `z` itself.
This should only be used for ` z ` allocated by ` mp_int_alloc ( ) ` . */
void mp_int_free ( mp_int z ) ;
mp_result mp_int_copy ( mp_int a , mp_int c ) ; /* c = a */
void mp_int_swap ( mp_int a , mp_int c ) ; /* swap a, c */
void mp_int_zero ( mp_int z ) ; /* z = 0 */
mp_result mp_int_abs ( mp_int a , mp_int c ) ; /* c = |a| */
mp_result mp_int_neg ( mp_int a , mp_int c ) ; /* c = -a */
mp_result mp_int_add ( mp_int a , mp_int b , mp_int c ) ; /* c = a + b */
mp_result mp_int_add_value ( mp_int a , int value , mp_int c ) ;
mp_result mp_int_sub ( mp_int a , mp_int b , mp_int c ) ; /* c = a - b */
mp_result mp_int_sub_value ( mp_int a , int value , mp_int c ) ;
mp_result mp_int_mul ( mp_int a , mp_int b , mp_int c ) ; /* c = a * b */
mp_result mp_int_mul_value ( mp_int a , int value , mp_int c ) ;
mp_result mp_int_mul_pow2 ( mp_int a , int p2 , mp_int c ) ;
mp_result mp_int_sqr ( mp_int a , mp_int c ) ; /* c = a * a */
mp_result mp_int_div ( mp_int a , mp_int b , /* q = a / b */
mp_int q , mp_int r ) ; /* r = a % b */
mp_result mp_int_div_value ( mp_int a , int value , /* q = a / value */
mp_int q , int * r ) ; /* r = a % value */
mp_result mp_int_div_pow2 ( mp_int a , int p2 , /* q = a / 2^p2 */
mp_int q , mp_int r ) ; /* r = q % 2^p2 */
mp_result mp_int_mod ( mp_int a , mp_int m , mp_int c ) ; /* c = a % m */
# define mp_int_mod_value(A, V, R) mp_int_div_value((A), (V), 0, (R))
mp_result mp_int_expt ( mp_int a , int b , mp_int c ) ; /* c = a^b */
mp_result mp_int_expt_value ( int a , int b , mp_int c ) ; /* c = a^b */
int mp_int_compare ( mp_int a , mp_int b ) ; /* a <=> b */
int mp_int_compare_unsigned ( mp_int a , mp_int b ) ; /* |a| <=> |b| */
int mp_int_compare_zero ( mp_int z ) ; /* a <=> 0 */
int mp_int_compare_value ( mp_int z , int value ) ; /* a <=> v */
/* Returns true if v|a, false otherwise (including errors) */
int mp_int_divisible_value ( mp_int a , int v ) ;
/* Returns k >= 0 such that z = 2^k, if one exists; otherwise < 0 */
/** Replaces the value of `c` with a copy of the value of `a`. No new memory is
allocated unless ` a ` has more significant digits than ` c ` has allocated . */
mp_result mp_int_copy ( mp_int a , mp_int c ) ;
/** Swaps the values and storage between `a` and `c`. */
void mp_int_swap ( mp_int a , mp_int c ) ;
/** Sets `z` to zero. The allocated storage of `z` is not changed. */
void mp_int_zero ( mp_int z ) ;
/** Sets `c` to the absolute value of `a`. */
mp_result mp_int_abs ( mp_int a , mp_int c ) ;
/** Sets `c` to the additive inverse (negation) of `a`. */
mp_result mp_int_neg ( mp_int a , mp_int c ) ;
/** Sets `c` to the sum of `a` and `b`. */
mp_result mp_int_add ( mp_int a , mp_int b , mp_int c ) ;
/** Sets `c` to the sum of `a` and `value`. */
mp_result mp_int_add_value ( mp_int a , mp_small value , mp_int c ) ;
/** Sets `c` to the difference of `a` less `b`. */
mp_result mp_int_sub ( mp_int a , mp_int b , mp_int c ) ;
/** Sets `c` to the difference of `a` less `value`. */
mp_result mp_int_sub_value ( mp_int a , mp_small value , mp_int c ) ;
/** Sets `c` to the product of `a` and `b`. */
mp_result mp_int_mul ( mp_int a , mp_int b , mp_int c ) ;
/** Sets `c` to the product of `a` and `value`. */
mp_result mp_int_mul_value ( mp_int a , mp_small value , mp_int c ) ;
/** Sets `c` to the product of `a` and `2^p2`. Requires `p2 >= 0`. */
mp_result mp_int_mul_pow2 ( mp_int a , mp_small p2 , mp_int c ) ;
/** Sets `c` to the square of `a`. */
mp_result mp_int_sqr ( mp_int a , mp_int c ) ;
/** Sets `q` and `r` to the quotent and remainder of `a / b`. Division by
powers of 2 is detected and handled efficiently . The remainder is pinned
to ` 0 < = r < b ` .
Either of ` q ` or ` r ` may be NULL , but not both , and ` q ` and ` r ` may not
point to the same value . */
mp_result mp_int_div ( mp_int a , mp_int b , mp_int q , mp_int r ) ;
/** Sets `q` and `*r` to the quotent and remainder of `a / value`. Division by
powers of 2 is detected and handled efficiently . The remainder is pinned to
` 0 < = * r < b ` . Either of ` q ` or ` r ` may be NULL . */
mp_result mp_int_div_value ( mp_int a , mp_small value , mp_int q , mp_small * r ) ;
/** Sets `q` and `r` to the quotient and remainder of `a / 2^p2`. This is a
special case for division by powers of two that is more efficient than
using ordinary division . Note that ` mp_int_div ( ) ` will automatically handle
this case , this function is for cases where you have only the exponent . */
mp_result mp_int_div_pow2 ( mp_int a , mp_small p2 , mp_int q , mp_int r ) ;
/** Sets `c` to the remainder of `a / m`.
The remainder is pinned to ` 0 < = c < m ` . */
mp_result mp_int_mod ( mp_int a , mp_int m , mp_int c ) ;
/** Sets `c` to the value of `a` raised to the `b` power.
It returns ` MP_RANGE ` if ` b < 0 ` . */
mp_result mp_int_expt ( mp_int a , mp_small b , mp_int c ) ;
/** Sets `c` to the value of `a` raised to the `b` power.
It returns ` MP_RANGE ` if ` b < 0 ` . */
mp_result mp_int_expt_value ( mp_small a , mp_small b , mp_int c ) ;
/** Sets `c` to the value of `a` raised to the `b` power.
It returns ` MP_RANGE ` ) if ` b < 0 ` . */
mp_result mp_int_expt_full ( mp_int a , mp_int b , mp_int c ) ;
/** Sets `*r` to the remainder of `a / value`.
The remainder is pinned to ` 0 < = r < value ` . */
static inline
mp_result
mp_int_mod_value ( mp_int a , mp_small value , mp_small * r )
{
return mp_int_div_value ( a , value , 0 , r ) ;
}
/** Returns the comparator of `a` and `b`. */
int mp_int_compare ( mp_int a , mp_int b ) ;
/** Returns the comparator of the magnitudes of `a` and `b`, disregarding their
signs . Neither ` a ` nor ` b ` is modified by the comparison . */
int mp_int_compare_unsigned ( mp_int a , mp_int b ) ;
/** Returns the comparator of `z` and zero. */
int mp_int_compare_zero ( mp_int z ) ;
/** Returns the comparator of `z` and the signed value `v`. */
int mp_int_compare_value ( mp_int z , mp_small v ) ;
/** Returns the comparator of `z` and the unsigned value `uv`. */
int mp_int_compare_uvalue ( mp_int z , mp_usmall uv ) ;
/** Reports whether `a` is divisible by `v`. */
bool mp_int_divisible_value ( mp_int a , mp_small v ) ;
/** Returns `k >= 0` such that `z` is `2^k`, if such a `k` exists. If no such
` k ` exists , the function returns - 1. */
int mp_int_is_pow2 ( mp_int z ) ;
mp_result mp_int_exptmod ( mp_int a , mp_int b , mp_int m ,
mp_int c ) ; /* c = a^b (mod m) */
mp_result mp_int_exptmod_evalue ( mp_int a , int value ,
mp_int m , mp_int c ) ; /* c = a^v (mod m) */
mp_result mp_int_exptmod_bvalue ( int value , mp_int b ,
mp_int m , mp_int c ) ; /* c = v^b (mod m) */
mp_result mp_int_exptmod_known ( mp_int a , mp_int b ,
mp_int m , mp_int mu ,
mp_int c ) ; /* c = a^b (mod m) */
/** Sets `c` to the value of `a` raised to the `b` power, reduced modulo `m`.
It returns ` MP_RANGE ` if ` b < 0 ` or ` MP_UNDEF ` if ` m = = 0 ` . */
mp_result mp_int_exptmod ( mp_int a , mp_int b , mp_int m , mp_int c ) ;
/** Sets `c` to the value of `a` raised to the `value` power, modulo `m`.
It returns ` MP_RANGE ` if ` value < 0 ` or ` MP_UNDEF ` if ` m = = 0 ` . */
mp_result mp_int_exptmod_evalue ( mp_int a , mp_small value , mp_int m , mp_int c ) ;
/** Sets `c` to the value of `value` raised to the `b` power, modulo `m`.
It returns ` MP_RANGE ` if ` b < 0 ` or ` MP_UNDEF ` if ` m = = 0 ` . */
mp_result mp_int_exptmod_bvalue ( mp_small value , mp_int b , mp_int m , mp_int c ) ;
/** Sets `c` to the value of `a` raised to the `b` power, reduced modulo `m`,
given a precomputed reduction constant ` mu ` defined for Barrett ' s modular
reduction algorithm .
It returns ` MP_RANGE ` if ` b < 0 ` or ` MP_UNDEF ` if ` m = = 0 ` . */
mp_result mp_int_exptmod_known ( mp_int a , mp_int b , mp_int m , mp_int mu , mp_int c ) ;
/** Sets `c` to the reduction constant for Barrett reduction by modulus `m`.
Requires that ` c ` and ` m ` point to distinct locations . */
mp_result mp_int_redux_const ( mp_int m , mp_int c ) ;
mp_result mp_int_invmod ( mp_int a , mp_int m , mp_int c ) ; /* c = 1/a (mod m) */
/** Sets `c` to the multiplicative inverse of `a` modulo `m`, if it exists.
The least non - negative representative of the congruence class is computed .
It returns ` MP_UNDEF ` if the inverse does not exist , or ` MP_RANGE ` if ` a = =
0 ` or ` m < = 0 ` . */
mp_result mp_int_invmod ( mp_int a , mp_int m , mp_int c ) ;
/** Sets `c` to the greatest common divisor of `a` and `b`.
It returns ` MP_UNDEF ` if the GCD is undefined , such as for example if ` a `
and ` b ` are both zero . */
mp_result mp_int_gcd ( mp_int a , mp_int b , mp_int c ) ;
mp_result mp_int_gcd ( mp_int a , mp_int b , mp_int c ) ; /* c = gcd(a, b) */
/** Sets `c` to the greatest common divisor of `a` and `b`, and sets `x` and
` y ` to values satisfying Bezout ' s identity ` gcd ( a , b ) = ax + by ` .
mp_result mp_int_egcd ( mp_int a , mp_int b , mp_int c , /* c = gcd(a, b) */
mp_int x , mp_int y ) ; /* c = ax + by */
It returns ` MP_UNDEF ` if the GCD is undefined , such as for example if ` a `
and ` b ` are both zero . */
mp_result mp_int_egcd ( mp_int a , mp_int b , mp_int c , mp_int x , mp_int y ) ;
mp_result mp_int_sqrt ( mp_int a , mp_int c ) ; /* c = floor(sqrt(q)) */
/** Sets `c` to the least common multiple of `a` and `b`.
/* Convert to an int, if representable (returns MP_RANGE if not). */
mp_result mp_int_to_int ( mp_int z , int * out ) ;
It returns ` MP_UNDEF ` if the LCM is undefined , such as for example if ` a `
and ` b ` are both zero . */
mp_result mp_int_lcm ( mp_int a , mp_int b , mp_int c ) ;
/* Convert to nul-terminated string with the specified radix, writing at
most limit characters including the nul terminator */
mp_result mp_int_to_string ( mp_int z , mp_size radix ,
char * str , int limit ) ;
/** Sets `c` to the greatest integer not less than the `b`th root of `a`,
using Newton ' s root - finding algorithm .
It returns ` MP_UNDEF ` if ` a < 0 ` and ` b ` is even . */
mp_result mp_int_root ( mp_int a , mp_small b , mp_int c ) ;
/* Return the number of characters required to represent
z in the given radix . May over - estimate . */
/** Sets `c` to the greatest integer not less than the square root of `a`.
This is a special case of ` mp_int_root ( ) ` . */
static inline
mp_result
mp_int_sqrt ( mp_int a , mp_int c )
{
return mp_int_root ( a , 2 , c ) ;
}
/** Returns `MP_OK` if `z` is representable as `mp_small`, else `MP_RANGE`.
If ` out ` is not NULL , ` * out ` is set to the value of ` z ` when ` MP_OK ` . */
mp_result mp_int_to_int ( mp_int z , mp_small * out ) ;
/** Returns `MP_OK` if `z` is representable as `mp_usmall`, or `MP_RANGE`.
If ` out ` is not NULL , ` * out ` is set to the value of ` z ` when ` MP_OK ` . */
mp_result mp_int_to_uint ( mp_int z , mp_usmall * out ) ;
/** Converts `z` to a zero-terminated string of characters in the specified
` radix ` , writing at most ` limit ` characters to ` str ` including the
terminating NUL value . A leading ` - ` is used to indicate a negative value .
Returns ` MP_TRUNC ` if ` limit ` was to small to write all of ` z ` .
Requires ` MP_MIN_RADIX < = radix < = MP_MAX_RADIX ` . */
mp_result mp_int_to_string ( mp_int z , mp_size radix , char * str , int limit ) ;
/** Reports the minimum number of characters required to represent `z` as a
zero - terminated string in the given ` radix ` .
Requires ` MP_MIN_RADIX < = radix < = MP_MAX_RADIX ` . */
mp_result mp_int_string_len ( mp_int z , mp_size radix ) ;
/* Read zero-terminated string into z */
/** Reads a string of ASCII digits in the specified `radix` from the zero
terminated ` str ` provided into ` z ` . For values of ` radix > 10 ` , the letters
` A ` . . ` Z ` or ` a ` . . ` z ` are accepted . Letters are interpreted without respect
to case .
Leading whitespace is ignored , and a leading ` + ` or ` - ` is interpreted as a
sign flag . Processing stops when a NUL or any other character out of range
for a digit in the given radix is encountered .
If the whole string was consumed , ` MP_OK ` is returned ; otherwise
` MP_TRUNC ` . is returned .
Requires ` MP_MIN_RADIX < = radix < = MP_MAX_RADIX ` . */
mp_result mp_int_read_string ( mp_int z , mp_size radix , const char * str ) ;
mp_result mp_int_read_cstring ( mp_int z , mp_size radix , const char * str ,
char * * end ) ;
/* Return the number of significant bits in z */
/** Reads a string of ASCII digits in the specified `radix` from the zero
terminated ` str ` provided into ` z ` . For values of ` radix > 10 ` , the letters
` A ` . . ` Z ` or ` a ` . . ` z ` are accepted . Letters are interpreted without respect
to case .
Leading whitespace is ignored , and a leading ` + ` or ` - ` is interpreted as a
sign flag . Processing stops when a NUL or any other character out of range
for a digit in the given radix is encountered .
If the whole string was consumed , ` MP_OK ` is returned ; otherwise
` MP_TRUNC ` . is returned . If ` end ` is not NULL , ` * end ` is set to point to
the first unconsumed byte of the input string ( the NUL byte if the whole
string was consumed ) . This emulates the behavior of the standard C
` strtol ( ) ` function .
Requires ` MP_MIN_RADIX < = radix < = MP_MAX_RADIX ` . */
mp_result mp_int_read_cstring ( mp_int z , mp_size radix , const char * str , char * * end ) ;
/** Returns the number of significant bits in `z`. */
mp_result mp_int_count_bits ( mp_int z ) ;
/* Convert z to two's complement binary, writing at most limit bytes */
/** Converts `z` to 2's complement binary, writing at most `limit` bytes into
the given ` buf ` . Returns ` MP_TRUNC ` if the buffer limit was too small to
contain the whole value . If this occurs , the contents of buf will be
effectively garbage , as the function uses the buffer as scratch space .
The binary representation of ` z ` is in base - 256 with digits ordered from
most significant to least significant ( network byte ordering ) . The
high - order bit of the first byte is set for negative values , clear for
non - negative values .
As a result , non - negative values will be padded with a leading zero byte if
the high - order byte of the base - 256 magnitude is set . This extra byte is
accounted for by the ` mp_int_binary_len ( ) ` function . */
mp_result mp_int_to_binary ( mp_int z , unsigned char * buf , int limit ) ;
/* Read a two's complement binary value into z from the given buffer */
/** Reads a 2's complement binary value from `buf` into `z`, where `len` is the
length of the buffer . The contents of ` buf ` may be overwritten during
processing , although they will be restored when the function returns . */
mp_result mp_int_read_binary ( mp_int z , unsigned char * buf , int len ) ;
/* Return the number of bytes required to represent z in binary. */
/** Returns the number of bytes to represent ` z` in 2's complement binary. */
mp_result mp_int_binary_len ( mp_int z ) ;
/* Convert z to unsigned binary, writing at most limit bytes */
/** Converts the magnitude of `z` to unsigned binary, writing at most `limit`
bytes into the given ` buf ` . The sign of ` z ` is ignored , but ` z ` is not
modified . Returns ` MP_TRUNC ` if the buffer limit was too small to contain
the whole value . If this occurs , the contents of ` buf ` will be effectively
garbage , as the function uses the buffer as scratch space during
conversion .
The binary representation of ` z ` is in base - 256 with digits ordered from
most significant to least significant ( network byte ordering ) . */
mp_result mp_int_to_unsigned ( mp_int z , unsigned char * buf , int limit ) ;
/* Read an unsigned binary value into z from the given buffer */
/** Reads an unsigned binary value from `buf` into `z`, where `len` is the
length of the buffer . The contents of ` buf ` are not modified during
processing . */
mp_result mp_int_read_unsigned ( mp_int z , unsigned char * buf , int len ) ;
/* Return the number of bytes required to represent z as unsigned output */
/** Returns the number of bytes required to represent `z` as an unsigned binary
value in base 256. */
mp_result mp_int_unsigned_len ( mp_int z ) ;
/* Return a statically allocated string describing error code res */
/** Returns a pointer to a brief, human-readable, zero-terminated string
describing ` res ` . The returned string is statically allocated and must not
be freed by the caller . */
const char * mp_error_string ( mp_result res ) ;
#if 0
void s_print ( char * tag , mp_int z ) ;
void s_print_buf ( char * tag , mp_digit * buf , mp_size num ) ;
# endif
# endif /* end IMATH_H_ */